ORL: Reinforcement Learning Benchmarks for Online Stochastic
Optimization Problems

Anonymous Authors'

Abstract

Reinforcement Learning (RL) has achieved state-
of-the-art performance in a wide variety of do-
mains: from robotics, to gaming, to traffic control.
The domain of Operations Research (OR) is par-
ticularly amenable to RL approaches, because
many of the canonical problems can be character-
ized as online stochastic optimization problems
where the distribution of data is unknown. While
there is a nascent literature at the intersection of
RL and OR, there are no commonly accepted
benchmarks which can be used to compare pro-
posed approaches rigorously in terms of perfor-
mance, scale, or generalizability. This paper aims
to fill that gap by introducing open source OR+RL
benchmarks for three canonical OR problems with
a wide range of practical applications: Bin Pack-
ing, Newsvendor, and Vehicle Routing. We apply
both well-known OR approaches and newer RL
algorithms to these problems and analyze results.
For each of these problems, we find that RL is
competitive with or superior to the OR baselines,
pointing the way for future theoretical work and
highlighting RL’s immediate potential utility in a
host of real-world problems.

1. Introduction

Reinforcement learning (RL) has gained steam in recent
years with state of the art results in gaming (Mnih et al.,
2013; Silver et al., 2017), robotics (Hwangbo et al., 2019;
Andrychowicz et al., 2018), computing (Mao et al., 2017;
Marcus & Papaemmanouil, 2018; Mirhoseini et al., 2017),
recommendation systems (Chen et al., 2019; Zhao et al.,
2018), and many others. In RL, an agent interacts with an
environment in a Markov Decision Process (MDP). The
agent takes actions with the environment state as input and
receives a scalar reward and the next state. RL algorithms
learn a policy that maximizes the cumulative discounted re-
ward from repeated interactions with the environment. Clas-
sic RL algorithms, such as Q-learning (Watkins & Dayan,
1992), require visitation to every discrete state, action pair
for convergence. However, with the use of neural networks,

RL can learn compact state representations and successful
policies for high-dimensional state spaces (Riedmiller, 2005;
Mnih et al., 2013). With enough interactions, state-of-the-
art RL algorithms can learn to make intelligent decisions
that even beat human strategies (Silver et al., 2017).

Operations Research has many combinatorial optimization
problems, and solving them is often hard due to the prob-
lem size. Many recent works have shown promising results
applying RL to these problems. Bello et al. (2016) show RL
techniques produce near optimal solutions for the traveling
salesman (TSP) and knapsack problems. Kool et al. (2018)
use RL to solve TSP and its variants: vehicle routing, ori-
enteering, and a stochastic variant of prize-collecting TSP.
Nazari et al. (2018) solve both static and online versions of
the vehicle routing problem. Gijsbrechts et al. (2018) apply
RL to the dual sourcing inventory replenishment problem,
and further demonstrate results on a real dataset. Kong et al.
(2018) apply RL to online versions of the knapsack, secre-
tary and adwords problems. Oroojlooyjadid et al. (2017)
apply RL to the beer game problem. Lin et al. (2018) use
RL for fleet management of taxis on a real life dataset.

Our contribution is to extend the existing OR/RL literature
to a set of OR problems with direct applicability to real-
world problems. In particular, we present benchmarks for
three classic problems: Bin Packing, Newsvendor and Vehi-
cle Routing. In each case, we show that out-of-the-box RL
algorithms are competitive with or superior to well-known
OR approaches. We aim to spur further work in two direc-
tions. First, we open source our code and parameterize the
complexity of the problems in order to encourage fair com-
parisons of algorithmic contributions. Second, we highlight
the close parallels between these problem formulations and
a host of practical problems, showing how further research
can directly impact production scenarios.

2. Bin Packing

In the classic bin packing problem, we are given items of
different sizes and need to pack them into as few fixed size
bins as possible. In the online stochastic version of this
problem, items arrive one at a time and item sizes are drawn
from an unknown distribution.

ORL: Reinforcement Learning Benchmarks for Online Stochastic Optimization Problems

Many resource allocation problems in OR and Computer
Science face uncertain future demand, and can be cast as
variants of the online bin packing problem. For exam-
ple, in warehouse and transportation operations, variants
of bin packing can be seen in: the order assignment prob-
lem (where we assign orders to fulfillment resources), the
tote packing problem (where we fill items as they arrive into
totes for shipment), and the trailer truck packing problem. In
computing, bin packing problems arise in datacenters where
virtual machines must be placed on servers, thus allocating
memory and computing to processes within a machine.

2.1. Problem Formulation

In the stochastic bin packing problem, items arrive online,
one in each time period ¢, with ¢ € {1,...,T}. Items can
be of different types j € {1, ..., J}. The size of type j is s;
and the probability that an item is of type j is p;. Without
loss of generality, we assume item types are indexed in
the increasing order of their size: s; < s2 < ... < s7.
Upon arrival, the item needs to be packed into one of the
bins, each with size B (we assume that s; < B < o). A
packing is considered feasible if the total size of the items
packed in each bin does not exceed the bin size. The task
is to find a feasible packing that minimizes the number of
bins used to pack all of the items that arrive within the time
horizon. We assume the item sizes s; and bin size B are
integers. We assume the number of bins one can open is
unlimited and denote the sum of item sizes in a bin & as level
hy. After t items have been packed, we denote the number
of bins at some level h as Nj(t), where h € {1, ..., B}.
The formulation of online bin packing is from (Gupta &
Radovanovic, 2012).

It can be shown that minimizing the number of non-empty

bins is equivalent to minimizing the total waste (i.e. empty

space) in the partially filled bins. Hence our objective is to
T

minimize total waste Z W (t), where
t=0

B-1
W(t) = > Nu(t)(B - h) (1)
h=1

We use Wi (t) to denote the total waste after step t of
algorithm A when the input samples come from distribution
F'. To train our RL algorithm, we define the cumulative
reward up to time step ¢ to be W& (t). (Courcobetis &
Weber, 1990) showed that any discrete distribution falls
into one of three categories based on expected distribution
E[WEPT (1)].

1. Linear waste (LW): E[WSFT (t)] = O(t),e.g. B =9,
two item types of size {2, 3} with probability {0.8, 0.2}
respectively.

2. Perfectly Packable (PP): E[W2FT (t)] = O(V1), e.g.

B = 9, two item types of size {2, 3} with probability
{0.75,0.25} respectively.

3. PP with bounded waste (BW): E[W&PT (t)] = ©(1),
e.g. B =9, two item types of size {2, 3} with proba-
bility {0.5,0.5} respectively.

We will train an RL policy for each of the three distribution
types and compare our policy to the appropriate baseline.

2.2. Related Work

Bin packing is a well-studied problem in the operations
research and computer science literature. The problem is
already NP-hard in its basic form. As a result, many of the
classical approaches to bin packing analyze the performance
of approximation algorithms. We refer the readers to the
survey (Coffman Jr. et al., 2013) for algorithmic approaches
to classical bin packing and its generalizations.

For online bin packing, a simple heuristic — Best Fit — is
known to use at most 1.7 times the optimal number of bins in
the worst case (Johnson et al., 1974). Best Fit places an item
in a bin where, if the item were to be packed, would leave
the least amount of space. Another competitive heuristic
is Sum of Squares (SS) heuristic (Csirik et al., 2006). In
particular, SS is proven to be asymtotically optimal (up to
constants) as the episode length gets large.

The simple heuristics described above are distribution ag-
nostic. More sophisticated algorithms learn an empirical
estimate of the item size distribution, leverage such distri-
bution to solve a linear program, and use its dual to guide
the online policy (Adelman & Nemhauser, 1999)(Rhee &
Talagrand, 1993)(Iyengar & Sigman, 2004). This approach
has been used to solve online packing and covering prob-
lems (Gupta & Molinaro, 2014)(Agrawal & Devanur, 2015).

2.3. Baseline Algorithms

We use the Sum of Squares (SS) heuristic and Best Fit (BF)
as our baseline algorithm. When the tth item of size s
arrives, SS picks a bin of level h* that minimizes the value
of the following sum-of-squares potential:

B—1
D (VA (t))%. @)
h=1

It can be shown that minimizing (2) is equivalent to mini-
mizing:

h* = [Nhts(t = 1) = Na(t = 1)],

3)

where, Ny = Np = 0. Intuitively, SS tries to equalize
the number of bins at each level. Due its simplicity, we
implemented (3) version of SS.

arg min
h:Np(t—1)>0 and h+s<B

ORL: Reinforcement Learning Benchmarks for Online Stochastic Optimization Problems

BF selects a bin at the highest level that can still fit the item:

h* = arg max h 4)

h:Np (t—1)>0 and h+s<B

2.4. Reinforcement Learning Formulation

We formulate this as an MDP, where the state S; € S is
current item size s; and the number of bins at each level:
Np(n), where h € {1, ..., B}. The action A is to pick a bin
level which can fit the item. Thus, the number of actions
possible is B with one action for each level and action 0
corresponds to opening a new bin. Initially, all the bins are
empty. The reward R; is the negative of incremental waste
as each item is put into a bin. If the item is put into an
existing bin, the incremental waste will reduce by item size.
If the item is put into a new bin, the waste increases by the
empty space left in the new bin. We mask the invalid actions
such as picking a level for which bins do not exist yet.

2.5. Reinforcement Learning Algorithm

We use the Proximal Policy Optimization (PPO) algo-
rithm (Schulman et al., 2017). PPO is an actor-critic al-
gorithm (Konda & Tsitsiklis, 2000), where the actor is rep-
resented by a policy network and takes the environment state
as input and produces an action as the output. The critic is
represented by a value network and takes the environment
state as input and predicts the cumulative discounted reward
that will be obtained from this state. Intuitively, the actor
tells the agent how to act and the critic informs the agent how
good an action was. The two neural networks are initialized
with random weights, i.e. the agent takes random actions,
and the agent interacts with the environment to generate a
dataset of tuples: (S, Ay, Ry, S¢+1). The dataset is used to
update the weights of the two neural networks. The updated
neural networks are used to interact with the environment
to generate more data and the cycle continues until training
stops. We refer the reader to the original paper (Schulman
et al., 2017) for a formal explanation of the algorithm.

We use a two-layer neural network with 256 hidden nodes
each. The input to both policy and value network is the
state, the output of the policy network is a vector giving the
probabilities of taking any action in the action space, and
the output of the value network is predicted value. During
training, the agent explores the state space by sampling
from the probability distribution of the actions generated by
the policy network. During evaluation, the agent takes the
action with the highest action probability. We mask actions
by reducing the probability of invalid actions to -co. Table 1
lists the hyperparameters we use.

2.6. Results

For each sample item size distribution (BW, PP, LW), we
train the RL algorithm (PPO) and compare to the baseline

Discount factor 0.995 | KL coefficient 1.0
Experience Buffer | 320000 | Learning rate | 0.0001
SGD Mini-batch 32768 Epochs 10
Entropy coefficient 0 # Workers 31
Episode length 10000 clip param 0.3

Table 1: Hyperparameters used in PPO for Bin Packing

algorithms (SS and BF). We consider two variations, bin
size of 9 with distributions listed in section 2.1, and bin size
of 100 and the following item size distribution:

1. item sizes: [1,2,3,4,5,6,7,8,9]

2. item probabilities for BW:
[0.14,0.10,0.06,0.13,0.11,0.13,0.03,0.11,0.19]

3. item probabilities for PP:
[0.06,0.11,0.11,0.22,0,0.11,0.06, 0, 0.33]

4. item probabilities for LW: [0, 0,0, 1/3,0,0,0,0,2/3].

We use a single machine with 4 GPUs and 32 CPUs for our
experiments. At a high level, by the end of training RL out-
performs or matches the baseline irrespective of distribution,
and converges to a sensible learned policy.

Figure 1 plots the reward function of the RL policy in train-
ing (blue) vs the Best Fit baseline (red) for bin size 100
and different item size distributions (BW, PP, and LW) as a
function of training time (measured in minutes). The solid
lines represent the mean reward of each policy, and the
shaded bands represent the min/max rewards. By the end
of training, RL either matches or outperforms the baseline
policy for all three item size distributions. In particular,
the reward gap between RL and baseline is the largest for
LW distribution (which is expected, as both BF and SS are
known to be suboptimal for LW distribution).

In Table 2, we inspect numerically the trained RL policy vs.
baseline for bin size 100. Note that the exploration is turned
off for the trained RL policy. Supporting what we observed
in the initial figures, this table shows the final RL policy
outperformes or matches the baseline for each distribution.

We test generalization of the RL policy by evaluating the
trained policy with a different item distribution than the
one it was trained on. For PP and BW distributions, the
trained policy mutually translate well. Both the PP and BW
policies perform as well as the baseline solutions for the
LW distribution. The policy trained on the LW distribution
generalizes reasonably well but does not do as well as the
baseline solutions in the BW and PP distributions. We
did observe overfitting if we pick model iterations from
much later in training. We leave study of overfitting and
generalization across distributions as future work. A note
on scaling: the training time for bin size 100 compared to
bin size 9 is about 3x, 4x and 10x more for PP, BW and LW
respectively.

ORL: Reinforcement Learning Benchmarks for Online Stochastic Optimization Problems

o

=500 -500

~1000! 5 —1000

—1500 -1500

episodic reward

— rl_reward

—20001 —— baseline_reward —2000

Avg. episodic reward

Avg

[50 100 150 200 250 0 50 100
Training time (min)

(a) RL vs baseline for BW distribution

Training time (min)

(b) RL vs baseline for PP distribution

—1000

-1500

-

—2000

—=2500
—3000

episodic reward

— rl_reward
—— baseline_reward

— rl_reward
—— baseline_reward

) -3500
-4000

Avg

150 200 250 300 0 200 400 600 800 1000
Training time (min)

(c) RL vs baseline for LW distribution

Figure 1: Comparison of episodic rewards between RL and Best Fit baseline during training.

. Perfect Pack | Bounded Waste | Linear Waste
Algorithm

0 o 0 o 0 o

RL with PP -49.0 295 | -48.0 29.5 -1358 442

RL withBW | -47.6 29.3 | -53.9 26.4 -1368 48.0
RL with LW | -258.6 69.3 | -143.9 849 | -880.2 43
SS -56.54 28.9 | -56.61 30.2 -2091 92
Best Fit -52.01 29.5 | -514 28.9 -1314 53

Table 2: RL and baseline solution comparison for bin pack-
ing. Mean and standard deviations are calculated across 100
episodes.

Finally, we inspect the relative structure of the policies to
ensure that RL is learning a sensible solution. In particular,
we plot the state variable values as a function of the number
of steps in an episode. Intuitively, the integral of these plots
represents the waste, which we want to minimize. An opti-
mal policy should show a (relatively) flat surface. We use
bin size of 9 for this analysis for ease of manual inspection
and study the linear waste distribution that highlights the
difference between the Sum of Squares baseline and RL
distinctly. From Figure 2, we see that the baseline policy
leaves more open bins at a lower fullness, whereas RL only
leaves open bins at level 8 (which cannot be closed once
they reach that level). For other distributions, the graphs for
both the baseline and RL policy look similar to each other.

baseline_linear_waste fl_linear_waste

Figure 2: RL vs baseline solution for LW distribution

3. Multi-Period Newsvendor Problem with
Lead Times

The Newsvendor problem (see e.g. (Zipkin, 2000)) is a sem-
inal problem in inventory management wherein we must
decide on an ordering decision (how much of an item to
purchase from a supplier) to cover a single period of uncer-
tain demand. The objective is to trade-off the various costs

incurred and revenues achieved during the period, usually
consisting of sales revenue, purchasing and holding costs,
loss of goodwill in the case of missed sales, and the terminal
salvage value of unsold items.

In practice, decisions are rarely isolated to a single period,
and they are repeatedly and periodically taken and thus have
a downstream impact. This makes the problem non-trivial,
as compared to the single-period Newsvendor which has
a known solution when the demand distribution is known.
Additionally, purchased units do not, in general, arrive quasi-
instantaneously, but rather after a few periods of transit
from the vendor to their final destination, known as the lead
time. The presence of lead times further complicates the
problem. The multi-period newsvendor problem with lead
times under the lost-sales model, where customers leave
if there is no stock to satisfy their demand, is known not
to admit a simple solution such as an order-up-to policy
(which maintains an inventory level, and orders up to that
level whenever inventory levels fall).

Solving the multi-period newsvendor problem with lead
times and lost sales is a notoriously difficult problem (Zip-
kin, 2008). It requires keeping track of orders placed in
different periods, leading to what is known as the curse
of dimensionality, rendering any exact solution impractical
even for small lead times of 2 and 3 periods, and outright
infeasible at higher dimensions. As a result, the problem
forms a good test-bed for RL algorithms given that the ob-
servation of rewards is delayed by the lead time and that it
can be formulated as a Markov Decision Problem.

3.1. Related work

Some recent work has started looking at the newsvendor
problem using a data-centric approach (Rudin & Vahn,
2014) or a reinforcement learning approach (Oroojlooy-
jadid et al., 2016). These have so far still remained focused
on the single period problem and often trying to learn some
of the inputs, such as demand. Few other papers have con-
sidered Reinforcement Learning in the context of inventory
management, such as (Gijsbrechts et al., 2018) where a dual
sourcing problem is tackled using RL.

ORL: Reinforcement Learning Benchmarks for Online Stochastic Optimization Problems

3.2. Problem formulation

We consider the stationary, single-product, multi-period
dynamic inventory management problem with vendor lead
time (VLT) and stochastic demand. Here, the VLT [refers to
the number of time steps between the placement and receipt
of an order. The demand D is assumed to be stationary and
Poisson distributed with mean p. Items are purchased at a
cost ¢ and sold at a price p, and incur a penalty for lost sales
k for each unit of unmet demand while any unit left over
at the end of a period incurs a holding cost h. A discount
factor +y is used.

The problem is formulated as a Markov Decision Process:

State: The state .S of the problem is given by

5T —1)
where z(is the on-hand inventory, x; the units to be re-
ceived one period hence, and so on.

S = (p,c,h,k,,u,xo,..

Action: In each period the state of the system is observed
and an action A = g is taken, consisting of the size of the
order placed and to arrive [time periods later.

Reward: We first incur the purchasing cost corresponding
to the procured units given the action a. A realization d of
the demand D, which we recall is Poisson distributed with
mean i, is then observed, and demand is satisfied as much
as is possible given on-hand levels. Missed sales incur a loss
of goodwill k per unit, while leftover units incur a holding
cost h:

R = pmin(zg,d) — ca — h(zg — d)* — k(d — zo) ™.

where ()" = max(z,0).

Transition: The state of the system S is then updated to S
by moving all pipeline units downstream and incorporating
the newly purchased units:

S+ = (pvca h7kau? (l’o _d)+ + 21,22, . "axl—laa)'

3.3. Baseline solution

As noted in Section 3, it is impractical or even infeasible to
solve the problem exactly to get a baseline. However, it is
possible to use heuristics that provide good approximations
to the optimal solution. In particular, a way to tackle the
problem is to approximate it by its backlogging counterpart,
for which a closed form solution of the optimal policy exists
in the form of an order-up-to policy characterized by the
following critical ratio:
p—yc+k

p—yc+k+h

As aresult, letting z* = Fl_1 (CR), where Fy is the cumula-
tive distribution function of the [period demand, the policy

CR =

is given by:
-1 +
a= (z* — Z xl> .
i=0

We used a Proximal Policy Optimization algorithms (PPO)
(Schulman et al., 2017) as implemented in the RLLib pack-
age (Liang et al., 2017), where the policy is represented by a
neural network. We used a neural network of size (256,256)
and the hyperparameters presented in Table 3.

3.4. RL solution

Learning rate 0.0001

SGD Mini-Batch Size | 32768

Train Batch Size 320000
Episode length 40

Table 3: Hyperparameters used in PPO for Newsvendor

3.5. Results

We present the results obtained using a VLT of 5. The
economic parameters were chosen so that p, ¢ € [0,100],
h € [0,5] and k € [0, 10], while the demand mean ; was
such that p € [0,200].

In the course of our experiments we saw that how we sam-
pled the initial state and item characteristics is critical. We
modified the sampling scheme so as to sample “interesting"
states and avoid trivial or misleading initial configurations.
For example, it should be easily learned that nonprofitable
items (including the penalty for lost sale) should not be
purchased, but this is not really indicative of a good per-
formance since in practice such items would not be part of
inventory. Similarly, high initial inventory levels would not
lead to any purchase either because inventory can simply
be drained over long periods of time, resulting in a trivial
decision that results in a high reward that would unfairly
favor the perceived quality of the RL solution.

As a result, the sampling was performed as follows: p ~
U[0,100], ¢ ~ U[0, p], h ~ U[0, min(c, 5)], k ~ U0, 10]
and u ~ UJ0,200] for the economic and demand param-
eters; where U|a, b] denotes a uniformly random variable
between a and b. The initial state was simply set to be O.

Figure 3 compares the results obtained by the RL algorithm
to the baseline. We observe that the RL solution was nearing
the benchmark when the experiment was stopped.

While solving this problem numerically is intractable, the
optimal inventory policy structures are well known. It is
thus of interest to check whether their properties are be-
ing learned by the RL algorithm. Given the dimension of
the problem, we cannot observe the entire policy, but can
investigate slices thereof. We thus fix price, cost, holding

ORL: Reinforcement Learning Benchmarks for Online Stochastic Optimization Problems

-

Figure 3: RL solution reward in the newsvendor problem.

cost, penalty for lost sale and mean demand to 50, 25, 0.5,
5 and 100, respectively, and plot the optimal policy in the
space (0,0, z2, x3,0) in Figure 4. The figure shows contour
curves of the buying quantity as a function of the inventory
state. We observe that the algorithm is slowly learning the
policy structure and we can start to observe monotonicity of
the policy along most directions.

Figure 4: Slice of the learnt policy for the multi-period
newsvendor.

4. Vehicle Routing Problem

In the traveling salesman problem (TSP), we find the short-
est route that visits each node in a graph exactly once and
returns to the starting node. TSP is one of the most widely
studied problems in combinatorial optimization both due to
its NP-hard nature and as well as its wide variety of prac-
tical applications. The vehicle routing problem (VRP) is
a generalization of TSP where one or more vehicles are
expected to visit the nodes in a graph, usually to satisfy
customer demand. VRP is also a well studied topic and has
very important applications, especially in supply chain and
logistics. These real-life applications lead to many variants
of VRP with different constraints, such as capacitated ve-
hicles, pickups and deliveries on the route, time windows
associated with each pickup and delivery etc.

An important extension of VRP is where some of the in-
formation about the graph is revealed over time, such as
demand at each node and travel time. This class of VRP
is called dynamic VRP (DVRP, also known as real-time or
online VRP). Stochastic VRP (SVRP) is where one or more
problem parameters are stochastic with some known prob-
ability distributions (as opposed to arbitrary or adversarial
distributions). In many real-life applications, the relevant
VRP is both stochastic and dynamic (SDVRP), which is also
focus of this work. We formulate a variant of SVRP and
compare solution approaches from the Operations Research
(OR) and Reinforcement Learning (RL) literature.

4.1. Problem Formulation

We consider a decentralized version of the VRP and in-
troduce the corresponding default parameters. Consider
a delivery contractor for a crowd-sourced app. Orders
arrive at the driver’s phone app over time in a dynamic
manner. Each order has a reward (e.g. delivery fee) as-
sociated with it, known to the driver at the time of order
creation, and it is assigned to a location in the city. "City"
here means the whole Euclidean space in which the VRP
problem lives. The city consists of mutually exclusive
regions (num_zones = 4) that generate orders at differ-
ent rates (order_probs_per_zone = (0.5,0.3,0.1,0.1))
and with rewards according to truncated normal distri-
bution with different ranges (order_reward_max =
(12,8,5,3), order_reward_min = (8,5,2,1)). The
orders need to be delivered within a time limit
(order_promise = 60), the timer starts with the order
creation and is same for all orders. The driver has to
accept an order and pick up the package from a given
location prior to delivery. Orders that are not accepted
disappear probabilistically (order_timeout_prob = 0.15)
when other drivers accept the orders. The vehicle has a
capacity limit (driver_capacity = 4), but the driver can
accept unlimited orders and plan their route accordingly.
Each time step and unit distance travelled adds a fixed cost
(penalty_per_timestep = 0.1, penalty_per_move =
0.1), and the whole episode length is 1000. The driver’s
goal is to maximize the total net reward. Our formulation is
known as stochastic and dynamic capacitated vehicle rout-
ing problem with pickup and delivery, time windows and
service guarantee.

4.2. Related Work

There is a substantial literature on VRP (Eksioglu et al.,
2009). The closest VRP variant to the problem considered
in this paper is the Pickup and Delivery Problem with Time
Windows (PDPTW) (Cordeau et al., 2008), which has some
additional complexities over vanilla VRP. Due to such com-
plexities, there are fewer exact solution approaches (Lu &
Dessouky, 2004; Mahmoudi & Zhou, 2016), and a majority

ORL: Reinforcement Learning Benchmarks for Online Stochastic Optimization Problems

of the literature focuses on heuristics. When the problem
is also stochastic and dynamic, exact solution methods be-
come intractable except for very specific problem settings.
In such cases, anticipatory algorithms that simulate sample
future scenarios and merge solutions to those samples are a
common choice (Berbeglia et al., 2010; Berhan et al., 2014;
Ritzinger et al., 2016; Ghiani et al., 2012).

Reinforcement Learning (RL) methods have been success-
fully used for solving the Traveling Salesman Probelm
(TSP). Bello et al. (2016) employ a pointer network (Vinyals
et al., 2015) to optimize the policy, and train an actor-critic
algorithm with the negative tour length as the reward signal.
Khalil et al. (2017) develop a single model based on graph
embeddings. They use the DQN algorithm to train a greedy
policy and graph embedding network simultaneously. For
VRP, Kool et al. (2018) utilize the Transformer architecture
(Vaswani et al., 2017) to develop a model fully based on
attention layers. Their proposed model is trained by pol-
icy gradients with a greedy baseline, and evaluated on both
standard Capacitated VRP (CVRP) and Split Deliverry VRP
(SDVRP). Nazari et al. (2018) further improve the algorithm
using embedded inputs and allow the customers and their
demands to be stochastic.

4.3. Baseline Algorithm

We modify the classical three-index Mixed Integer Program-
ming (MIP) formulation (Lu & Dessouky, 2004; Ropke &
Cordeau, 2009; Furtado et al., 2017). This deterministic
MIP is solved for the available orders in the environment.
It is further resolved when a new order arrives, if one of
the existing orders expires or, when all of the actions are
executed. When we solve the MIP, orders already accepted
or in transit are modeled as starting conditions. We leave
anticipatory models to future work (see Section 4.2).

4.4. Reinforcement Learning Algorithm

State: We include pickup location p;, driver info d;, and
order info o;. Driver info contains the driver’s position
h; and the capacity left ¢;. Order info contains the or-
ders’ location 1;, status w;, (open, accepted, picked up
or delivered), the time elapsed since each order’s gener-
ation e; and the corresponding dollar value v;. Thus,
the state is Sy = (p¢,ds,04), in which d; = (hy, ¢;),
Oy = (lt,Wtyet,Vt)-

Action The agent chooses an action A; from five options
— accept an order, pick up an accepted order, go to a cus-
tomer’s node for delivery, head to a specific pickup location,
or wait and stay unmoved.

Reward: The reward R; is the total value of all delivered
orders f; minus the cost q. f; is divided into 3 equal parts
for reward shaping: when the order gets accepted, picked

up, and delivered respectively. Thus we have:
1
Rt = g (]laccepted +]lpickedfup +]ldelievered)ft — Qs

where q: = (qtime + Gmove + qfailure)~ Gtime is the time
COSt, @move 15 the moving cost (per time Step). qfaiture 1S
a large penalty (order_miss_penalty = 50) if the agent
accepts an order but fails to deliver within the promised
time.

The vehicle’s capacity remains unchanged if an order is
accepted but not picked up. In effect, this grants the agent
the flexibility to accept more orders than its capacity, which
can be picked up later when space allows. The action of
heading to a specific pickup location enables the agent to
learn to stay near popular pick up locations.

We impose action masking during the policy training. The
agent cannot perform the following invalid actions: (i) pick
up an order when its remaining capacity is O; (ii) pick up an
order that is not yet accepted; (iii) deliver an order that is
not yet picked up.

To train the policy, we apply the APE-X (Horgan et al.,
2018) DQN (Mnih et al., 2013) algorithm due to its ability
to scale by generating more experience replays and picking
from them in a distributed prioritized fashion. We feed the
input into a two-layer neural network with 512 hidden units
each to compute the Q values.

4.5. Results

For multiple problem scales determined by map size
(map_size € {5 x 5,8 x 8}), maximum number of or-
ders (order € {5,10}) and number of pick-up location
(n € {2,3}), we conduct experiments to compare the be-
havior of RL and the MIP baseline solutions. We examine
the trained RL policy’s ability to generalize to different or-
der distributions. The hyperparameters used for algorithm
training can be found in Table 5. Overall, the RL approach
outperforms the baseline across different instance sizes, and
generalizes well for unseen order patterns.

Figure 5a-5b compares the episodic rewards for the RL pol-
icy and the baseline algorithm during training. The shaded
band around the mean line shows the minimum and maxi-
mum rewards. For readability, the graphs are clipped to skip
the initial 3.5 hours of training as the rewards are highly
negative and skew the Y-axis scale. With larger map size
or higher order number, the training time required for the
agent to achieve rewards equivalent to baseline is higher.
This is expected as both the observation and action space
increase, the agent requires more exploration to converge
to a reasonable policy. Even after three days of training,
the rewards for larger instances keeps growing gradually.
The agent slowly learns to fully utilize the vehicle capacity.
Over time, the agent also learns to reject (not accept) orders

ORL: Reinforcement Learning Benchmarks for Online Stochastic Optimization Problems

1200
1000

800 WWWW
600

400 /
200 —— rl_map55
0 —— baseline_map55

—— rl_map88
baseline_map88

Avg. episodic reward

—200

500 1000 1500 2000 2500 3000 3500 4000
Training time (min)

(a) RL vs baseline solution for VRP with 3 pick-up locations,
5 orders and map sizes 5 x 5 and 8 x 8

1200

=
o
o
o

©
o
o

N
o
o

— rl_od5

—— baseline_od5

— rl_od10
baseline_od10

Avg. episodic reward
(=)}
o
o

g

500 1000 1500 2000 2500 3000 3500 4000
Training time (min)

N
=]
o

o

(b) RL vs baseline solution for VRP with 2 pick-up locations,
map 5 x 5, and number of orders 5 and 10.

Figure 5: RL vs baseline during policy training process.

which are likely to incur penalty.

As the agent is trained longer, there is potential for the
policy to overfit. In order to test this issue, we train
another policy with a shifted hot order-zone distribu-
tion ((0.1,0.5,0.3,0.1)), and evaluate against the base-
line results both using the original order-zone distribution
((0.5,0.3,0.1,0.1)). Table 4 summarizes the evaluation re-
sults. It is observed that the policy is able to outperform the
baseline consistently during evaluation phase.

We also present the rewards with and without the order miss
penalty gfqiiure to further understand the agent’s behavior
about order delivery misses. The reward values are close for
problems with less number of pick up locations and fewer
orders. As the number of pick-up locations become larger,
the gap between the rewards increases. One explanation is
the agent cannot multiplex order deliveries from different
pick-up locations and the likelihood of missing the order
delivery increases. This behavior is also seen if the number
of orders is higher. Even though the RL agent reward is
better than the baseline, there is still scope for improvement
by reducing the number of order delivery misses.

Problem Instance With(l){u]; ff\;i:?:lon;i\gzrfidwe MIP Reward
5 by 5 map, 5 orders 854.45 838.30 505.91
2 pick-up locations (136.03) (154.12) :

5 by 5 map, 5 orders 754.27 730.40 642.62
3 pick-up locations (116.48) (132.75) ’

5 by 5 map, 10 orders 774.63 692.34 640.01
2 pick-up locations (143.34) (200.65) ’

8 by 8 map, 5 orders 548.53 536.55 410,58
2 pick-up locations (107.40) (112.33) :

8 by 8 map, 5 orders 429.20 373.7 246.25
3 pick-up locations (102.37) (129.98) :

Table 4: RL and baseline solution comparison for VRP.
Values in the brackets are standard deviations and mean
reward is calculated using 50 episodes.

5. Conclusion

In this paper, we have established Deep Reinforcement
Learning (DRL) benchmarks for three canonical Operations

Replay buffer alpha 0.5 # steps for Q 3
Replay buffer eps 0.1 Learning rate le-3
Final explore eps 0.01 Adam epsilon | 1.5e-4
Replay buffer size le6 # Workers 7

Episode length 10000 | Training Batch 512

Table 5: Hyperparameters used in APEX-DQN for VRP

Research problems: Bin Packing, Newsvendor, and Vehi-
cle Routing. We formulated an online stochastic version of
each problem, and compared state-of-the-art OR approaches
with vanilla RL techniques. In each case, RL either outper-
forms or is competitive with the baseline. While we do not
overcome the NP-hardness of the problems, as wall-clock
training time scales with problem size, we find that DRL is
a good tool for these problems because neural networks are
good at state space approximation. These results illustrate
the potential value of RL for a wide range of real-world
industrial OR problems, from order assignment, to retail
buying, to real-time routing. Our experiments indicate the
following issues as important for making RL solutions more
practical in the future: overfitting to a particular distribu-
tion, initialization of the RL model, and enforcement of
constraints (via e.g. masking).

We identify two major areas for future work. First, we
used out-of-the-box RL algorithms, with almost no problem-
specific tweaking. Further research can add value by testing
various RL algorithms, neural net structures, etc. and seeing
their relative value in each problem especially as complexity
scales up. Second, in this paper we only looked at canonical,
theoretical models. Further research should endeavor to
apply these RL techniques to real-world industrial problems.

References

Adelman, D. and Nemhauser, G. L. Price-directed control
of remnant inventory systems. Operations Research, 47
(6):889-898, 1999. doi: 10.1287/opre.47.6.889.

Agrawal, S. and Devanur, N. R. Fast algorithms for online

ORL: Reinforcement Learning Benchmarks for Online Stochastic Optimization Problems

stochastic convex programming. In Proceedings of the
Twenty-sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 15, pp. 1405-1424, Philadelphia, PA,
USA, 2015. Society for Industrial and Applied Mathe-
matics.

Andrychowicz, M., Baker, B., Chociej, M., Jozefowicz,
R., McGrew, B., Pachocki, J., Petron, A., Plappert, M.,
Powell, G., Ray, A., et al. Learning dexterous in-hand
manipulation. arXiv preprint arXiv:1808.00177, 2018.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio,
S. Neural combinatorial optimization with reinforcement
learning. arXiv preprint arXiv:1611.09940, 2016.

Berbeglia, G., Cordeau, J.-F., and Laporte, G. Dynamic
pickup and delivery problems. European Journal of
Operational Research, 202(1):8 — 15, 2010. ISSN
0377-2217. doi: https://doi.org/10.1016/j.ejor.2009.04.
024. URL http://www.sciencedirect.com/
science/article/pii/S0377221709002999.

Berhan, E., Beshah, B., Kitaw, D., and Abraham,
A. Stochastic vehicle routing problem: A litera-
ture survey. Journal of Information & Knowledge
Management, 13(03):1450022, 2014. doi: 10.1142/

S0219649214500221. URL https://doi.org/10.

1142/50219649214500221.

Chen, M., Beutel, A., Covington, P., Jain, S., Belletti, F.,
and Chi, E. H. Top-k off-policy correction for a rein-
force recommender system. In Proceedings of the Twelfth
ACM International Conference on Web Search and Data
Mining, pp. 456-464. ACM, 2019.

Coffman Jr., E. G., Csirik, J., Galambos, G., Martello, S.,
and Vigo, D. Bin Packing Approximation Algorithms:
Survey and Classification, pp. 455-531. Springer New
York, New York, NY, 2013. ISBN 978-1-4419-7997-1.
doi: 10.1007/978-1-4419-7997-1_35.

Cordeau, J.-F., Laporte, G., and Ropke, S. Recent models
and algorithms for one-to-one pickup and delivery prob-
lems. In Golden, B., Raghavan, S., and Wasil, E. (eds.),
The Vehicle Routing Problem: Latest Advances and New
Challenges, volume 43. Springer, Boston, MA, 2008.

Courcobetis, C. and Weber, R. Stability of on-line bin
packing with random arrivals and long-run-average con-

straints. Probability in the Engineering and Informational
Sciences, 4(4):447-460, 1990.

Csirik, J., Johnson, D. S., Kenyon, C., Orlin, J. B., Shor,
P. W,, and Weber, R. R. On the sum-of-squares algorithm
for bin packing. Journal of the ACM (JACM), 53(1):1-65,
2006.

Eksioglu, B., Vural, A. V., and Reisman, A. The vehicle
routing problem: A taxonomic review. Computers &
Industrial Engineering, 57(4):1472 — 1483, 2009. ISSN
0360-8352. doi: https://doi.org/10.1016/j.cie.2009.05.
009. URL http://www.sciencedirect.com/
science/article/pii/S0360835209001405.

Furtado, M. G. S., Munari, P, and Morabito, R.
Pickup and delivery problem with time windows: A
new compact two-index formulation. Operations
Research Letters, 45(4):334 — 341, 2017. ISSN
0167-6377. doi: https://doi.org/10.1016/j.0r1.2017.04.
013. URL http://www.sciencedirect.com/
science/article/pii/S0167637717302651.

Ghiani, G., Manni, E., and Thomas, B. W. A comparison
of anticipatory algorithms for the dynamic and stochastic
traveling salesman problem. Transportation Science, 46
(3):374-387, 2012. doi: 10.1287/trsc.1110.0374.

Gijsbrechts, J., Boute, R. N., Van Mieghem, J. A., and
Zhang, D. Can deep reinforcement learning improve in-
ventory management? performance and implementation
of dual sourcing-mode problems. Performance and Imple-

mentation of Dual Sourcing-Mode Problems (December
17, 2018), 2018.

Gupta, A. and Molinaro, M. How experts can solve Ips
online. In Schulz, A. S. and Wagner, D. (eds.), Algo-
rithms - ESA 2014, pp. 517-529, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

Gupta, V. and Radovanovic, A. Online stochastic bin pack-
ing. arXiv preprint arXiv:1211.2687, 2012.

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel,
M., Van Hasselt, H., and Silver, D. Distributed priori-
tized experience replay. arXiv preprint arXiv:1803.00933,
2018.

Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsou-
nis, V., Koltun, V., and Hutter, M. Learning agile and
dynamic motor skills for legged robots. Science Robotics,
4(26):eaau5872, 2019.

Iyengar, G. and Sigman, K. Exponential penalty function
control of loss networks. Ann. Appl. Probab., 14(4):1698—
1740, 11 2004. doi: 10.1214/105051604000000936.

Johnson, D., Demers, A., Ullman, J., Garey, M., and Gra-
ham, R. Worst-case performance bounds for simple one-
dimensional packing algorithms. SIAM Journal on Com-
puting, 3(4):299-325, 1974. doi: 10.1137/0203025.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. In Advances in Neural Information Processing
Systems, pp. 6348-6358, 2017.

ORL: Reinforcement Learning Benchmarks for Online Stochastic Optimization Problems

Konda, V. R. and Tsitsiklis, J. N. Actor-critic algorithms. In
Advances in neural information processing systems, pp.
1008-1014, 2000.

Kong, W., Liaw, C., Mehta, A., and Sivakumar, D. A
new dog learns old tricks: Rl finds classic optimization
algorithms. 2018.

Kool, W., van Hoof, H., and Welling, M. Attention, learn to
solve routing problems! 2018.

Liang, E., Liaw, R., Moritz, P., Nishihara, R., Fox, R., Gold-
berg, K., Gonzalez, J. E., Jordan, M. 1., and Stoica, I.
Rllib: Abstractions for distributed reinforcement learning.
arXiv preprint arXiv:1712.09381, 2017.

Lin, K., Zhao, R., Xu, Z., and Zhou, J. Efficient large-scale
fleet management via multi-agent deep reinforcement
learning. In Proceedings of the 24th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data
Mining, pp. 1774-1783. ACM, 2018.

Lu, Q. and Dessouky, M. An exact algorithm for the multiple
vehicle pickup and delivery problem. Transportation
Science, 38(4):503-514, 2004. doi: 10.1287/trsc.1030.
0040.

Mahmoudi, M. and Zhou, X. Finding optimal solu-
tions for vehicle routing problem with pickup and
delivery services with time windows: A dynamic
programming approach based on state—space—time
network representations. Transportation Research
Part B: Methodological, 89:19 — 42, 2016. ISSN
0191-2615. doi: https://doi.org/10.1016/j.trb.2016.03.
009. URL http://www.sciencedirect.com/
science/article/pii/S0191261516301497.

Mao, H., Netravali, R., and Alizadeh, M. Neural adaptive
video streaming with pensieve. In Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication, pp. 197-210. ACM, 2017.

Marcus, R. and Papaemmanouil, O. Towards a hands-free
query optimizer through deep learning. arXiv preprint
arXiv:1809.10212, 2018.

Mirhoseini, A., Pham, H., Le, Q. V., Steiner, B., Larsen, R.,
Zhou, Y., Kumar, N., Norouzi, M., Bengio, S., and Dean,
J. Device placement optimization with reinforcement
learning. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pp. 2430-2439.
JMLR. org, 2017.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, 1., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Nazari, M., Oroojlooy, A., Snyder, L., and Takdc, M. Rein-
forcement learning for solving the vehicle routing prob-
lem. In Advances in Neural Information Processing Sys-
tems, pp. 9861-9871, 2018.

Oroojlooyjadid, A., Snyder, L., and Taka¢, M. Applying
deep learning to the newsvendor problem. arXiv preprint
arXiv:1607.02177, 2016.

Oroojlooyjadid, A., Nazari, M., Snyder, L., and Tak4¢, M. A
deep g-network for the beer game: A reinforcement learn-
ing algorithm to solve inventory optimization problems.
arXiv preprint arXiv:1708.05924, 2017.

Rhee, W. and Talagrand, M. On-line bin packing of items
of random sizes, ii. SIAM Journal on Computing, 22(6):
1251-1256, 1993. doi: 10.1137/0222074.

Riedmiller, M. Neural fitted q iteration—first experiences
with a data efficient neural reinforcement learning method.
In European Conference on Machine Learning, pp. 317—
328. Springer, 2005.

Ritzinger, U., Puchinger, J., and Hartl, R. F. A sur-
vey on dynamic and stochastic vehicle routing prob-
lems. International Journal of Production Research,
54(1):215-231, 2016. doi: 10.1080/00207543.2015.
1043403. URL https://doi.org/10.1080/
00207543.2015.1043403.

Ropke, S. and Cordeau, J.-F. Branch and cut and price
for the pickup and delivery problem with time windows.
Transportation Science, 43(3):267-286, 2009. doi: 10.
1287/trsc.1090.0272.

Rudin, C. and Vahn, G.-Y. The big data newsvendor: Practi-
cal insights from machine learning. 2014.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I, Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 5998-6008, 2017.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
In Advances in Neural Information Processing Systems,
pp- 2692-2700, 2015.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8(3-4):279-292, 1992.

ORL: Reinforcement Learning Benchmarks for Online Stochastic Optimization Problems

Zhao, X., Xia, L., Zhang, L., Ding, Z., Yin, D., and Tang,
J. Deep reinforcement learning for page-wise recommen-
dations. In Proceedings of the 12th ACM Conference on
Recommender Systems, pp. 95-103. ACM, 2018.

Zipkin, P. H. Foundations of inventory management.
McGraw-Hill, 2000.

Zipkin, P. H. Old and new methods for lost-sales inventory
systems. Operations Research, 56(5):1256-1263, 2008.

