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ABSTRACT

This paper introduces the deep coordination graph (DCG) for collaborative multi-
agent reinforcement learning. DCG strikes a flexible trade-off between represen-
tational capacity and generalization by factorizing the joint value function of all
agents according to a coordination graph into payoffs between pairs of agents. The
value can be maximized by local message passing along the graph, which allows
training of the value function end-to-end with Q-learning. Payoff functions are
approximated with deep neural networks and parameter sharing improves gener-
alization over the state-action space. We show that DCG can solve challenging
predator-prey tasks that are vulnerable to the relative overgeneralization pathol-
ogy and in which all other known value factorization approaches fail.

1 INTRODUCTION

One of the central challenges in cooperative multi-agent reinforcement learning (MARL, Oliehoek
& Amato, 2016) is coping with the size of the joint action space, which grows exponentially in
the number of agents. For example, this paper evaluates tasks where eight agents each have six
actions to choose from, yielding a joint action space with more than a million actions. Efficient
MARL methods must thus be able to generalize over large joint action spaces, in the same way that
convolutional neural networks allow deep RL to generalize over large visual state spaces.

Even though few benchmark tasks actually require agent policies to be independently executable,
one common approach to coping with large action spaces is to decentralize the decision policy and/or
value function. For example, Figure 1a shows how the joint value function can be factorized into
utility functions that each depend only on the actions of one agent (Sunehag et al., 2018; Rashid et al.,
2018). Consequently, the joint value function can be efficiently maximized if each agent simply
selects the action that maximizes its corresponding utility function. This factorization can represent
any deterministic policy and thus can represent at least one optimal policy. However, that policy
may not be learnable due to a game-theoretic pathology called relative overgeneralization1 (Panait
et al., 2006): during exploration other agents act randomly and punishment caused by uncooperative
agents may outweigh rewards that would be achievable with coordinated actions. If the employed
value function does not have the representational capacity to distinguish the values of coordinated
and uncoordinated actions, an optimal policy cannot be learned.

However, Castellini et al. (2019) show that higher-order factorization of the value function works
surprisingly well in one-shot games that are vulnerable to relative overgeneralization, even if each
factor depends on the actions of only a small subset of agents. Such a higher-order factorization
can be expressed as an undirected coordination graph (CG, Guestrin et al., 2002a), where each
vertex represents one agent and each (hyper-)edge one payoff function over the joint action space
of the connected agents. Figure 1b shows a CG with pairwise edges and the corresponding value
factorization. Depending on the CG topology, the value can thus depend nontrivially on the actions
of all agents, yielding a richer representation. Although the value can no longer be maximized by
each agent individually, the greedy action can be found using message passing along the edges (also
known as belief propagation, Pearl, 1988). Sparse cooperative Q-learning (Kok & Vlassis, 2006)
applies CGs to MARL but does not scale to modern benchmarks, as each payoff function (f12 and
f23 in Figure 1b) is represented as a table over the state and joint action space of the connected
agents. Castellini et al. (2019) use neural networks to approximate payoff functions, but only in
one-shot games, and still require a unique function for each edge in the CG. Consequently, each
agent group, represented by an edge, must still experience all corresponding action combinations,
which can require executing a significant subset of the joint action space.

1 Not to be confused with generalization in the context of function approximation.
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Figure 1: Examples of value factorization for 3 agents: (a) sum of independent utilities (as in VDN,
Sunehag et al., 2018) corresponds to an unconnected CG. QMIX uses a monotonic mixture of util-
ities instead of a sum (Rashid et al., 2018); (b) sum of pairwise payoffs (Castellini et al., 2019),
which correspond to pairwise edges; (c) no factorization (as in QTRAN, Son et al., 2019) corre-
sponds to one hyper-edge connecting all agents. Factorization allows parameter sharing between
factors, shown next to the CG, which can dramatically improve the algorithm’s sample complexity.

To address these issues, this paper proposes the deep coordination graph (DCG), a deep RL al-
gorithm that scales to modern benchmark tasks. DCG represents the value function as a CG with
pairwise payoffs2 (Figure 1b) and individual utilities (Figure 1a). This improves the representational
capacity beyond state-of-the-art value factorization approaches like VDN (Sunehag et al., 2018) and
QMIX (Rashid et al., 2018). To achieve scalability, DCG employs parameter sharing between pay-
offs and utilities. Parameter sharing has long been a staple of factorized MARL. Methods like VDN
and QMIX condition an agent’s utility on its history, that is, its past observations and actions, and
share the parameters of all utility functions. Experiences of one agent are thus used to train all. This
can dramatically improve the sample efficiency compared to unfactored methods (Foerster et al.,
2016; 2018; Lowe et al., 2017; Schröder de Witt et al., 2019; Son et al., 2019), which correspond to
a CG with one hyper-edge connecting all agents (Figure 1c). DCG takes parameter sharing one step
further by approximating all payoff functions with the same neural network. To allow unique out-
puts for each payoff, the network is conditioned on a learned embedding of the participating agents’
histories. This requires only one linear layer more than VDN and has thus less parameters as QMIX.

DCG is trained end-to-end with deepQ-learning (DQN, Mnih et al., 2015), but uses message passing
to coordinate greedy action selection between all agents in the graph. For k message passes over n
agents with m actions each, the time complexity of maximization is onlyO(km(n+m)|E|), where
|E| ≤ n2−n

2 is the number of (pairwise) edges, compared to O(mn) for DQN without factorization.

We compare DCG’s performance with that of other MARL Q-learning algorithms in a challenging
family of predator-prey tasks that require coordinated actions. Here DCG is the only algorithm that
solves the harder tasks. We also investigate the influence of graph topologies on the performance.

2 RELATED WORK

A general overview over cooperative deep MARL can be found in OroojlooyJadid & Hajinezhad
(2019). Independent Q-learning (IQL Tan, 1993) decentralizes the agents’ policy by modeling each
agent as an independentQ-learner. However, the task from the perspective of a single agent becomes
nonstationary as other agents change their policies. To address this, Foerster et al. (2017) show how
to stabilize IQL when using experience replay buffers. Another approach to decentralized agents
is centralized training and decentralized execution (Foerster et al., 2016) with a factorized value
function. Value decomposition networks (VDN, Sunehag et al., 2018) performs central Q-learning
with a value function that is the sum of independent utility functions for each agent (Figure 1a). The
greedy policy can be executed by maximizing each utility independently. QMIX (Rashid et al., 2018)
improves upon this approach by combining the agents’ utilities with a mixing network, which is
monotonic in the utilities and depends on the global state. This allows different mixtures in different
states and the central value can be maximized independently due to monotonicity. All of these
approaches are derived in Appendix A.1 and can use parameter sharing between the value/utility
functions. However, they represent the joint value with independent values/utilities and are therefore
susceptible to the relative overgeneralization pathology. We demonstrate this by comparing DCG
with all the above algorithms.

2 The method can be generalized to CG with hyper-edges, that is, to payoff functions for more than 2 agents.

2



Under review as a conference paper at ICLR 2020

Another straightforward way to decentralize in MARL is to define the joint policy as a product of in-
dependent agent policies. This lends itself to the actor-critic framework, where the critic is discarded
during execution and can therefore condition on the global state and all agents’ actions during train-
ing. Examples are MADDPG (Lowe et al., 2017) for continuous actions and COMA (Foerster et al.,
2018) for discrete actions. Wei et al. (2018) specifically investigate the relative overgeneralization
pathology in continuous multi-agent tasks and show improvement over MADDPG by introducing
policy entropy regularization. MACKRL (Schröder de Witt et al., 2019) follows the approach in
Foerster et al. (2018), but uses common knowledge to coordinate agents during centralized training.
Son et al. (2019) define QTRAN, which also has a centralized critic but uses a greedy actor w.r.t.
a VDN factorized function. The corresponding utility functions are distilled from the critic under
constraints that ensure proper decentralization. Böhmer et al. (2019) present another approach to
decentralize a centralized value function, which is locally maximized by coordinate ascent and de-
centralized by training IQL agents from the same replay buffer. Centralized joint Q-value functions
do not allow to share parameters to the same extent as value factorization, and we compare DCG
to QTRAN to demonstrate the advantage in sample efficiency. That being said, DCG value factor-
ization can in principle be applied to any of the above centralized critics to equally improve sample
efficiency at the same cost of representational capacity. We leave this to future work.

Other work deals with gigantic numbers of agents, which requires additional assumptions to reduce
the sample complexity. For example, Yang et al. (2018) introduce mean-field multi-agent learn-
ing (MF-MARL), which factorizes a tabular value function for hundreds of agents into pairwise
payoff functions between neighbors in a uniform grid of agents. These payoffs share parameters
similar to DCG. Chen et al. (2018) introduce a value factorization for a similar setup based on a
low-rank approximation of the joint value. This approach is restricted by uniformity assumptions
between agents, but uses otherwise parameter sharing similar to DCG. The value function cannot be
maximized globally and must be locally maximized with coordinate ascent. These techniques are
designed for much larger sets of agents and do not perform well in the usual MARL settings con-
sidered in this paper. While they use similar parameter sharing techniques as DCG, we do therefore
not compare against them.

Coordination graphs (CG) have been extensively studied in multi-agent robotics with given payoffs
(e.g. Rogers et al., 2011; Yedidsion et al., 2018). Sparse cooperative Q-learning (SCQL, Kok &
Vlassis, 2006) uses CG in discrete state and action spaces by representing all utility and payoff
functions as tables. However, the tabular approach restricts practical application of SCQL to tasks
with few agents and small state and action spaces. Castellini et al. (2019) use neural networks to
approximate payoff functions, but only in one-shot games, and still require a unique function for
each edge in the CG. DCG expands greatly upon these works by introducing parameter sharing
between all payoffs (as in VDN/QMIX), conditioning on local information (as in MF-MARL) and
evaluating in more complex tasks that are vulnerable to relative overgeneralization.

3 BACKGROUND

In this paper we assume a Dec-POMDP for n agents 〈S, {Ai}ni=1, P, r, {Oi}ni=1, {σi}ni=1, n, γ〉
(Oliehoek & Amato, 2016). S denotes a finite or continuous set of environmental states and Ai
the discrete set of actions available to agent i. At discrete time t, the next state st+1 ∈ S is drawn
from transition kernel st+1 ∼ P (·|st,at), conditioned on the current state st ∈ S and joint action
at ∈ A := A1 × . . . × An of all agents. A transition yields collaborative reward rt := r(st,at),
and γ ∈ [0, 1) denotes the discount factor. Each agent i observes the state only partially by drawing
observations oit ∈ Oi from its observation kernel oit ∼ σi(·|st). The history of agent i’s observations
oit ∈ Oi and actions ait ∈ Ai is in the following denoted as τ it := (oi0, a

i
0, o

i
1, . . . , o

i
t−1, a

i
t−1, o

i
t) ∈

(Oi ×Ai)t ×Oi. Without loss of generality, this paper restricts itself to episodic tasks, which yield
episodes (s0, {oi0}ni=1,a0, r0, . . . , sT , {oiT }ni=1) of varying (but finite) length T .

3.1 DEEP Q-LEARNING

The goal of collaborative multi-agent reinforcement learning (MARL) is to find an optimal policy
π∗ : S × A → [0, 1], that chooses joint actions at ∈ A such that the expected discounted sum of
future reward is maximized. This can be achieved by estimating the optimal Q-value function3:

3 We overload the notation f(y|x) to also indicate the inputs x and outputs y of multivariate functions f .
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q∗(a|s) := IEπ∗
[ T−1∑

t=0

γtrt
∣∣ s0=s
a0=a

]
= r(s,a) + γ

∫
P (s′|s,a) max q∗(·|s′) ds′ . (1)

The optimal policy π∗(·|st) chooses greedily the action a ∈ A that maximizes the corresponding
optimal Q-value q∗(a|st). In fully observable discrete state and action spaces, q∗ can be learned in
the limit from interactions with the environment (Watkins & Dayan, 1992). For large or continuous
state spaces, q∗ can only be approximated, e.g., with a deep neural network qθ (DQN, Mnih et al.,
2015), parameterized by θ, by minimizing the mean-squared Bellman loss with gradient descent:

LDQN := IE
[

1
T

T−1∑
t=0

(
rt + γmax qθ̄(·|st+1)− qθ(at|st)

)2 ∣∣∣ {st,at, rt, st+1}Tt=0 ∼ D
]
. (2)

The expectation is estimated with samples from an experience replay buffer D holding previ-
ously observed episodes (Lin, 1992), and θ̄ denotes the parameter of a separate target network,
which is periodically replaced with a copy of θ to improve stability. Double Q-learning fur-
ther stabilizes training by choosing the next action greedily w.r.t. the current network qθ, i.e.,
qθ̄(arg max qθ(·|st+1)|st+1) instead of the target network max qθ̄(·|st+1) (van Hasselt et al., 2016).

In partially observable environments, the learned policy cannot condition on the state st. Instead,
Hausknecht & Stone (2015) approximate a Q-function that conditions on the agent’s history τt :=
{τ it}ni=1, i.e., qθ(a|τt), by conditioning a recurrent neural network (e.g., a GRU, Chung et al., 2014)
on the agents’ observations ot := (o1

t , . . . , o
n
t ) and last actions at−1, that is, qθ(a|ht) conditions on

the recurrent network’s hidden state hψ(ht|ht−1,ot,at−1), where h0 is initialized with zeros.

Applying DQN to multi-agent tasks quickly becomes infeasible, due to the combinatorial explosion
of state and action spaces. Moreover, DQN value functions cannot be maximized without evaluating
all possible actions. To allow MARL Q-learning with efficient maximization, various algorithms
based on value factorization have been developed. We derive IQL (Tan, 1993), VDN (Sunehag
et al., 2018), QMIX (Rashid et al., 2018) and QTRAN (Son et al., 2019) in Appendix A.1.

3.2 COORDINATION GRAPHS

An undirected coordination graph (CG, Guestrin et al., 2002a) G = 〈V, E〉 contains a vertex vi ∈ V
for each agent 1 ≤ i ≤ n and a set of undirected edges {i, j} ∈ E between vertices vi and vj .
The graph is usually specified before training, but Guestrin et al. (2002b) suggest that the graph
could also depend on the state, that is, each state can have its own unique CG. A CG induces a
factorization4 of the Q-function into utility functions f i and payoff functions f ij (Fig. 1a and 1b):

qCG(st,a) := 1
|V|

∑
vi∈V

f i(ai|st) + 1
|E|

∑
{i,j}∈E

f ij(ai, aj |st) . (3)

The special case E = ∅ yields VDN, but each additional edge enables the representation of the
value of the actions of a pair of agents and can thus help to avoid relative overgeneralization. Prior
work also considered higher order coordination where the payoff functions depend on arbitrary sets
of actions (Guestrin et al., 2002a; Kok & Vlassis, 2006; Castellini et al., 2019), corresponding to
graphs with hyper-edges (Figure 1c). For the sake of simplicity we restrict ourselves here to pairwise
edges, which yield at most |E| ≤ 1

2 (n2 − n) edges, in comparison to up to n!
d! (n−d)! hyper-edges

of degree d. The induced Q-function qCG can be maximized locally using max-plus, also known as
belief propagation (Pearl, 1988). At time t each node sends messages µijt (aj) ∈ IR over all adjacent
edges {i, j} ∈ E , which can be computed locally:

µijt (aj) ← max
ai

{
1
|V|f

i(ai|st) + 1
|E|f

ij(ai, aj |st) +
∑
{k,i}∈E

µkit (ai)− µjit (ai)
}
. (4)

This process repeats for a number of iterations, after which each agent i can locally find the action
ai∗ that maximizes the estimated Q-value:

ai∗ := arg max
ai

{
1
|V|f

i(ai|st) +
∑
{k,i}∈E

µkit (ai)
}
. (5)

4 The normalizations 1
|V| and 1

|E| are not strictly necessary, but allow to potentially generalize to other CGs.
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Convergence of messages is guaranteed for acyclic CGs (Pearl, 1988; Wainwright et al., 2004), but
messages can diverge in cyclic graphs, for example fully connected CGs. Subtracting a normal-
ization constant cij :=

∑
a µ

ij
t (a) / |Ai| from each message µij before it is sent often leads to

convergence in practice (Murphy et al., 1999; Crick & Pfeffer, 2002; Yedidia et al., 2003). See
Algorithm 3 in the appendix for details.

4 METHOD

We now introduce the deep coordination graph (DCG), which learns the utility and payoff functions
of a coordination graph 〈V, E〉 with deep neural networks. A direct implementation as in Castellini
et al. (2019) would learn a separate network for each function f i and f ij . However, properly ap-
proximating these Q-values requires observing the joint actions of each agent pair in the edge set
E , which for dense graphs can be a significant subset of the joint action space of all agents A. We
address this issue by focusing on an architecture that shares parameters across functions and restricts
them to locally available information, i.e., to the histories of the participating agents.

Sunehag et al. (2018) introduces parameter sharing between the agents’ utility functions f i(ui|st) ≈
fvθ (ui|τ it ) to dramatically improve the sample efficiency of VDN. Agents can have different action
spaces Ai but the choice of unavailable actions during maximization can be prevented by setting
the utilities of unavailable actions to −∞. Specialized roles for individual agents can be achieved
by conditioning fvθ on the agent’s role, or more generally on the agent’s ID (Foerster et al., 2018;
Rashid et al., 2018). The DCG uses the same utility functions and adds payoff functions specified
by pairwise edges in a given CG (Guestrin et al., 2002a). We take inspiration from highly scalable
methods (Yang et al., 2018; Chen et al., 2018) and improve over SCQL (Kok & Vlassis, 2006) and
the approach of Castellini et al. (2019) by incorporating the following design principles:

i. restricting the payoffs f ij(ai, aj |τ it , τ
j
t ) to local information of agents i and j only;

ii. sharing parameters between all payoff and utility functions through a common RNN;
iii. low-rank approximation of payoff matrices f ij(·, ·|τ it , τ

j
t ) for large action spaces;

iv. allowing transfer/generalization to different CG (as suggested in Guestrin et al., 2002b);
v. allowing the use of privileged information like the global state during training.

Restricting the payoff’s input (i) and sharing parameters (ii) improves sample efficiency signif-
icantly. As in Sunehag et al. (2018), all utilities are computed with the same neural network
f iθ(u

i|τ it ) ≈ fvθ (ui|hit), but unlike Castellini et al. (2019), all payoffs are computed with the same
neural network f ij(ai, aj |τ it , τ

j
t ) ≈ feφ(ai, aj |hit,h

j
t ), too. Both share parameters though a common

RNN hit := hψ(·|hit−1, o
i
t, a

i
t−1), which is initialized with hi0 := hψ(·|0, oi0,0).

Modeling the payoff function feφ similar to DQN (Mnih et al., 2015) yields |Ai × Aj | separate
outputs for edge {i, j}. For example, each agent in a StarCraft 2 map with 8 enemies has 13 actions
(SMAC, Samvelyan et al., 2019), which yields 169 outputs of feφ. As only executed actions-pairs are
updated during Q-learning, the parameters of many outputs remain unchanged for long stretches of
time, while the underlying RNN hψ keeps evolving. This can slow down training and affect message
passing. To reduce the number of parameters and improve the frequency in which they are updated,
we propose a low-rank approximation of the payoff (iv) with rank K, similar to Chen et al. (2018):

feφ(ai, aj |hit,h
j
t ) :=

K∑
k=1

f̂e
φ̂
(ai, k|hit,h

j
t ) f̄

e
φ̄(aj , k|hit,h

j
t ) . (6)

The approximation can be computed in one forward-pass with K(|Ai|+ |Aj |) outputs and parame-
ters φ := {φ̂, φ̄}. Note that a rankK = min{|Ai|, |Aj |} approximation does not restrict the output’s
expressiveness, while lower ranks share parameters and updates to speed up learning.

Generalization (or zero-shot transfer) of the learned functions onto new CGs in (iv) poses some
practical design challenges. To be applicable to different graphs/topologies, DCG must be invariant
to reshuffling of agent indices. This requires the payoff matrix f ij , of dimensionality |Ai| × |Aj |,
to be the same as (f ji)> with swapped inputs. We enforce invariance by computing the function feφ
for both combinations and use the average between the two. Note that this retains the ability to learn
asymmetric payoff matrices f ij 6= (f ij)>. However, this paper does not evaluate (iv) and we leave
the transfer of a learned DCG onto different graphs to future work. The DCG Q-value function is:
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qDCG
θφψ(τt,a) := 1

|V|

n∑
i=1

fvθ (ai|hit)︸ ︷︷ ︸
fV
i,ai

+ 1
2|E|

∑
{i,j}∈E

(
feφ(ai, aj |hit,h

j
t ) + feφ(aj , ai|hjt ,hit)︸ ︷︷ ︸
fE
{i,j},ai,aj

)
. (7)

Moreover, some tasks allow access to privileged information like the global state st ∈ S during
training (but not execution). We therefore propose in (v) to use this information in a privileged bias
function vϕ : S → IR with parameters ϕ, that is, qDCG-V

θφψϕ(st, τt,a) := qDCG
θφψ(τt,a) + vϕ(st).

We train DCG end-to-end with the DQN loss in (2) and DoubleQ-learning (van Hasselt et al., 2016).
Given the tensors fV ∈ IR|V|×A and fE ∈ IR|E|×A×A, A := | ∪i Ai|, where all unavailable actions
are set to −∞, the Q-value can be maximized by message passing as defined in (4) and (5). The
detailed procedure of computing the tensors (Algorithm 1), the Q-value (Algorithm 2) and greedy
action selection (Algorithm 3) is given in the appendix. Note that no gradients flow through the
message passing loop, as DQN maximizes only the bootstrapped future value.

The key benefit of DCG lies in its ability to prevent relative overgeneralization during the explo-
ration of agents: take the example of two hunters who have cornered their prey. The prey is danger-
ous and attempting to catch it alone can lead to serious injuries. From the perspective of each hunter,
the expected reward for an attack depends on the actions of the other agent, who will initially behave
randomly. If the punishment for attacking alone outweighs the reward for catching the prey, agents
that cannot represent the value for joint actions (QMIX, VDN, IQL) cannot learn the optimal policy.
However, estimating a value function over the joint action space (as in QTRAN) can be equally pro-
hibitive, as it requires many more samples for the same prediction quality. DCG provides a flexible
function class between these extremes that can be tailored to the task at hand.

5 VALIDATION

DCG E :=
{
{i, j}

∣∣ 1 ≤ i < n, i < j ≤ n
}

CYCLE E :=
{
{i, (i modn) + 1}

∣∣ 1 ≤ i ≤ n
}

LINE E :=
{
{i, i+ 1}

∣∣ 1 ≤ i < n
}

STAR E :=
{
{1, i}

∣∣ 2 ≤ i ≤ n
}

VDN E := ∅

Table 1: Tested graph topologies for DCG.

In this section we compare the performance
of DCG with various topologies (see Table 1)
to the state-of-the-art algorithms QTRAN (Son
et al., 2019), QMIX (Rashid et al., 2018), VDN
(Sunehag et al., 2018) and IQL (Tan, 1993). We
also evaluate a CG baseline similar to Castellini
et al. (2019), which conditions on a shared RNN
which summarizes all agents’ histories. All algo-
rithms are implemented in the multi-agent framework PYMARL (Samvelyan et al., 2019).

We evaluate these methods in two complex grid-world tasks: the first formulates the relative over-
generalization problem as a family of predator-prey tasks and the second investigates how artificial
decentralization can hurt tasks that demand non-local coordination between agents. In the latter
case, decentralized value functions (QMIX, VDN, IQL) cannot learn coordinated action selection
between agents that cannot see each other directly and thus converge to a sub-optimal policy. We
also evaluate DCG and DCG-V in StarCraft 2 micromanagement tasks from the StarCraft Multi-
Agent Challenge (SMAC, Samvelyan et al., 2019).
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Figure 2: Influence of punishment p for attempts to catch prey alone on greedy test episode return
(mean and shaded standard error, [number of seeds]) in a coordination task where 8 agents hunt
8 prey (dotted line denotes best possible return). Note that fully connected DCG (DCG, solid) are
able to represent the value of joint actions and coordinate maximization, which leads to a better
performance for larger p, where DCG without edges (VDN, dashed) has to fail eventually (p < −1).
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Figure 3: Greedy test episode return for the coordination task of Figure 2 with punishment p = −2:
(a) comparison to baseline algorithms; (b) comparison between DCG topologies. Note that QMIX,
IQL, VDN and CG (dashed) do not solve the task (return 0) due to relative overgeneralization and that
QTRAN learns very slowly due to the large action space. The reliability of DCG depends on the CG-
topology: all seeds with fully connected DCG solved the task, but the high standard error for CYCLE,
LINE and STAR topologies is caused by some seeds succeeding while others fail completely.

5.1 RELATIVE OVERGENERALIZATION

To model the challenge of relative overgeneralization, we consider a partially observable grid-world
predator-prey task: 8 agents have to hunt 8 prey in a 10×10 grid. Each agent can either move in one
of the 4 compass directions, remain still, or try to catch any adjacent prey. Impossible actions, that
is, moves into an occupied target position or catching when there is no adjacent prey, are treated as
unavailable. The prey moves by randomly selecting one available movement or remains motionless
if all surrounding positions are occupied. If two adjacent agents execute the catch action, a prey is
caught and both the prey and the catching agents are removed from the grid. An agent’s observation
is a 5× 5 sub-grid centered around it, with one channel showing agents and another indicating prey.
Removed agents and prey are no longer visible and removed agents receive a special observation of
all zeros. An episode ends if all agents have been removed or after 200 time steps. Capturing a prey
is rewarded r = 10, but unsuccessful attempts by single agents are punished by a negative reward
p. The task is similar to one proposed by Son et al. (2019), but significantly more complex, both in
terms of the optimal policy and in the number of agents.

To demonstrate the effect of relative overgeneralization, Figure 2 shows the average return of greedy
test episodes for varying punishment p as mean and standard error over 8 independent runs. Without
punishment (p = 0 in Figure 2a), fully connected DCG (DCG, solid) performs as well as DCG
without edges (VDN, dashed). However, for stronger punishment VDN becomes more and more
unreliable, which is visible in the large standard errors in Figures 2b and 2c, until it fails completely
for p ≤ −1.5 in Figure 2d. This is due to relative overgeneralization, as VDN cannot represent the
values of joint actions during exploration. DCG, on the other hand, learns only slightly slower with
punishment and converges otherwise reliably to the optimal solution (dotted line).

Figure 3a shows how well DCG performs in comparison with the baseline algorithms in Appendix
A.1 for a strong punishment of p = −2. Note that QMIX, IQL and VDN completely fail to learn
the task (return 0) due to their restrictive value factorization. While CG could in principle learn the
same policy as DCG, the lack of parameter sharing appears to slow down learning dramatically here,
which yields no reward in the first million transitions. QTRAN estimates the values with a centralized
function, which conditions on all agents’ actions, and can therefore learn the task. However, QTRAN
requires much more samples than DCG before a useful policy can be learned, due to the size of
the joint action space. This is in line with the findings of Son et al. (2019), which required much
more samples to learn a task with four agents than with two and also show the characteristic dip
in performance with more agents. In comparison with both QTRAN and CG, fully connected DCG
(DCG) learn near-optimal policies remarkably fast and reliable.
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b) comparison between topologies
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Figure 4: Greedy test episode return (mean and shaded standard error, [number of seeds]) in a
non-decentralizable task where 8 agents hunt 8 prey: (a) comparison to baseline algorithms; (b)
comparison between DCG topologies. The prey turns randomly into punishing ghosts, which are
indistinguishable from normal prey. The prey status is only visible at an indicator that is placed ran-
domly at each episode in one of the grid’s corners. QTRAN, QMIX, IQL and VDN learn decentralized
policies, which are at best suboptimal in this task (around lower dotted line). Fully connected DCG
and CG can learn a near-optimal policy (upper dotted line denotes best possible return), but a lack of
parameter sharing slows down CG and yields sub-optimal performance in comparison to DCG.

We also investigated the performance of various DCG topologies defined in Table 1. Figure 3b
shows that in particular the reliability of the achieved test episode return depends strongly on the
graph topology. While all seeds of fully connected DCG succeed (DCG), DCG with CYCLE, LINE
and STAR topologies have varying means while exhibiting large standard errors. The high devia-
tions are caused by some runs finding near-optimal policies, while others fail completely (return 0).
One possible explanation is that for the failed seeds the rewarded experiences, observed in the initial
exploration, are only amongst agents that do not share a payoff function. Due to the relative over-
generalization pathology, the learned greedy policy no longer explores ‘catch’ actions and existing
payoff functions cannot experience the reward for coordinated actions anymore. It is therefore not
surprising that fully connected graphs perform best, as they represent the largest function class and
require the fewest assumptions. The topology had also little influence on the runtime of DCG, due
to efficient batching on the GPU. The tested fully connected DCG only considers pairwise edges.
Hyper-edges between more than two agents (Figure 1c) would yield even richer value representa-
tions, but would also require more samples to sufficiently approximate the payoff functions. This
effect can be seen in the much slower learning QTRAN results in Figure 3a.

5.2 ARTIFICIAL DECENTRALIZATION

The choice of decentralized value functions is in most cased motivated by the huge joint action
spaces and not because the task actually requires decentralized execution: it is an artificial decen-
tralization. While this often works surprisingly well, we want to investigate how existing algorithms
deal with tasks that cannot be fully decentralized. One obvious case in which decentralization must
fail is when the optimal policy cannot be represented by utility functions alone. For example, decen-
tralized policies behave suboptimally in tasks where the optimal policy must condition on multiple
agents’ observations in order to achieve the best return. Payoff functions in DCG, on the other hand,
condition on pairs of agents and can thus represent a richer class of policies. Note that dependencies
on more agents can be modeled as hyper-edges in the DCG (Figure 1c), but this hurts the sample
efficiency as discussed above.

We evaluate the advantage of a richer policy class with a variation of the above predator-prey task.
Inspired by the video game PACMAN, at each turn a fair coin flip decides randomly whether all prey
are turned into dangerous ghosts. To disentangle the effects of relative overgeneralization, prey can
be caught by only one agent (without punishment), yielding a reward of r = 1. However, if the agent
captures a ghost, the team is punished with r = −1. Ghosts are indistinguishable from normal prey,
except for a special indicator that is placed in a random corner at the beginning of each episode. The
indicator signals on an additional channel of the agents’ observations whether the prey are currently
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a) relative overgeneralization task
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b) non-decentralizable task
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Figure 5: Low-rank payoff approximation for the tasks in (a) Figure 3 and (b) Figure 4. The inlay
in (a) magnifies the area of the gray box. Note that in (a) all approximation ranks learn much faster
than full DCG, and rank 2-4 also have better performance.

ghosts. Due to the short visibility range of the agents, the indicator is only visible in one of the 9
positions closest to its corner.

Figure 4a shows the performance of QTRAN, QMIX, IQL and VDN, all of which have decentralized
policies, in comparison to fully connected DCG and CG. The baseline algorithms have to learn a
policy that first identifies the location of the indicator and then herds prey into that corner, where
the agent is finally able to catch it without risk. By contrast, DCG and CG can learn a policy where
one agent finds the indicator, allowing all agents that share an edge to condition their payoffs on that
agent’s current observation. As a result, this policy can catch prey much more reliably, as seen in
the high performance of DCG compared to all baseline algorithms. Interestingly, as CG conditions
on all agents’ histories, the baseline shows an advantage in the beginning but then learns much
slower and reaches a significantly lower performance. We also investigate the influence of the DCG
topologies of Table 1, shown in Figure 4b. Note that while other topologies do not reach the same
performance as fully connected DCG, they still reach a policy that significantly outperforms all
baseline algorithms, around the same performance as fully connected CG.

5.3 LOW-RANK APPROXIMATION

While the above experiments already show a significant advantage of DCG with independent payoff
outputs for each action pair, we observed some serious performance issues on StarCraft 2 maps
with this architecture. The most likely cause is the difference in the number of actions per agent:
predator-prey agents choose between |Ai| = 6 actions, whereas SMAC agents on comparable maps
with 8 enemies have |Ai| = 13 actions. While payoff matrices with 36 outputs in predator-prey
appear reasonable to learn, 169 outputs in StarCraft 2 would require significantly more samples to
estimate the payoff of each joint-action properly.

Figure 5 shows the influence of low-rank payoff approximation (Equation 6 with K ∈ {1, . . . , 4})
on both predator-prey tasks from previous subsections. One can see in Figure 5a that any low-rank
approximation (DCG (rank K)) significantly improves the sample efficiency over the default
architecture with independent payoff for each action pair (DCG (full)). Only rank K = 1 leads
to slightly lower performance, which can be seen in the inlay plot. We conclude that rank K ≥ 2
is needed to represent the true values, but rank K = 1 already suffices to overcome the relative
overgeneralization pathology. The improvement in Figure 5b is less impressive, but shows that even
rankK = 1 approximation (DCG (rank 1)) yields slight performance gains over DCG (full).

5.4 STARCRAFT 2

The default architecture of DCG with independent payoff for each action pair performed poorly in
StarCraft 2. We therefore tested K = 1 low-rank payoff approximation DCG with (DCG-V) and
without (DCG) privileged information bias function vϕ, as described in Section 4, on six StarCraft
2 maps (from SMAC, Samvelyan et al., 2019). The learning curves for all StarCraft 2 maps are
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Figure 6: Cumulative reward for test episodes on SMAC maps (mean and shaded standard error,
[number of seeds]) for QMIX, VDN and fully connected DCG with rankK = 1 payoff approximation
(DCG (rank 1)) and additional state-dependent bias function (DCG-V (rank 1)).

given in Figure 6. We expected DCG to only yield an advantage on maps which struggle with the
relative overgeneralization pathology or some related issue. In this light it is somewhat surprising
that both DCG and DCG-V outperform VDN on almost all maps. DCG-V performs at least as good
as DCG and clearly outperforms it on some maps, which demonstrates that privileged information
is clearly useful. As expected, a direct comparison with the state-of-the-art method QMIX depends
strongly on the StarCraft 2 map. On the one hand, DCG-V clearly outperforms QMIX on MMM2
(Figure 6a), which is classified as super hard by SMAC. We also learn much faster on the easy
map so many baneling (Figure 6b). On the other hand, QMIX performs better on the hard map
3s vs 5z (Figure 6d), which might be due to the low number of 3 agents. For this few agents,
the added representational capacity of DCG may not improve the task as much as the non-linear
state-dependent mixing of QMIX. However, it is hard to pin-point why state dependent mixing is an
advantage here.

We conclude from these results that that some maps (like MMM2) clearly benefit from the improved
coordination and value representation of DCG, while in most others DCG-V is on par with QMIX.

6 CONCLUSIONS & FUTURE WORK

This paper introduced the deep coordination graph (DCG), an architecture for value factorization
that is specified by a coordination graph (CG) and can be maximized by message passing. We
evaluated deep Q-learning with DCG and show that the architecture enables learning of tasks where
relative overgeneralization causes all decentralized baselines to fail, whereas centralized critics are
much less sample efficient than DCG. We also demonstrated that artificial decentralization can lead
to suboptimal behavior in all compared methods except DCG. Our method significantly improves
over existing CG methods, which we demonstrate experimentally as well. Fully connected DCG
performed best in all experiments and should be preferred in the absence of prior knowledge about
the task. Additionally, we introduced a low-rank payoff approximation for large action spaces and a
privileged bias function (DCG-V). Evaluated on StarCraft 2 micromanagement tasks, DCG-V per-
forms competitive with the state-of-the-art QMIX. Although not evaluated in this paper, DCG should
be able to transfer/generalize to different graphs/topologies and can also be defined for higher-order
dependencies. This would in principle allow the training of DCG on dynamically generated graphs,
including hyper-edges with varying degrees. We plan to investigate this in future work.
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A APPENDIX

A.1 BASELINE ALGORITHMS

IQL Independent Q-learning (Tan, 1993) is a straightforward approach of value decentralization
that allows efficient maximization by modeling each agent as an independent DQN qiθ(a

i|τ it ). The
value functions can be trained without any knowledge of other agents, which are assumed to be
part of the environment. This violates the stationarity assumption of P and can become therefore
instable (see e.g. Foerster et al., 2017). IQL is nonetheless widely used in practice, as parameter
sharing between agents can make it very sample efficient.

Note that parameter sharing requires access to privileged information during training, called cen-
tralized training and decentralized execution (Foerster et al., 2016). This is particularly useful for
actor-critic methods like MADDPG (Lowe et al., 2017), Multi-agent soft Q-learning (Wei et al.,
2018), COMA (Foerster et al., 2018) and MACKRL (Schröder de Witt et al., 2019), where the
centralized critic can condition on the underlying state st and the joint action at ∈ A.

VDN Another way to exploit centralized training is value function factorization. For example,
value decomposition networks (VDN, Sunehag et al., 2018) perform centralized deepQ-learning on
a joint Q-value function that factors as the sum of independent utility functions f i, for each agent i:

qVDN
θ (τt,a) :=

n∑
i=1

f iθ(a
i|τ it ) . (8)

This value function qVDN can be maximized by maximizing each agent’s utility f iθ independently.

QMIX (Rashid et al., 2018) improves upon this concept by factoring the value function as

qQMIX
θφ (st, τt,a) := ϕφ

(
st, f

1
θ (a1|τ1

t ), . . . , fnθ (an|τnt )
)
. (9)

Here ϕφ is a monotonic mixing hypernetwork with non-negative weights that retains monotonicity in
the inputs f iθ. Maximizing each utility f iθ therefore also maximizes the joint value qQMIX, as in VDN.
The mixing parameters are generated by a neural network, parameterized by φ, that condition on the
state st, allowing different mixing of utilities in different states. QMIX improves performance over
VDN, in particular in StarCraft II micromanagement tasks (SMAC, Samvelyan et al., 2019).

QTRAN Recently Son et al. (2019) introduced QTRAN, which learns the centralized critic of a
greedy policy w.r.t. a VDN factorized function, which in turn is distilled from the critic by regression
under constraints. The algorithm defines three value functions qVDN, q and v, where q(τt,u) is the
centralized Q-value function, as in Section 3.1, and

v(τt) := max q(τt, ·)−max qVDN(τt, ·) . (10)

They prove that the greedy policies w.r.t. q and qVDN are identical under the constraints:

qVDN(τt,u)− q(τt,a) + v(τt) ≥ 0 , ∀a ∈ A , ∀τt ∈ {(Oi ×Ai)t ×Oi}ni=1 , (11)

with strict equality if and only if a = arg max qVDN(τt, ·) . QTRAN minimizes the parameters φ
of the centralized asymmetric value qiφ(ai|τt,a−i), a−i := (a1, . . . , ai−1, ai+1, . . . , an), for each
agent (which is similar to Foerster et al., 2018) with the combined loss LTD:

LTD := IE
[

1
nT

T∑
t=0

n∑
i=0

(
rt + γqiφ̄(āit+1|τt+1, ā

−i
t+1)− qiφ(ait|τt,a−it )

)2 ]
, (12)
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where āt := arg max qVDN
θ (τt, ·),∀t, denotes what a greedy decentralized agent would have chosen.

The decentralized value qVDN
θ and the greedy difference vψ , with parameters θ and ψ respectively,

are distilled by regression of the each qiφ in the constraints. First the equality constraint:

LOPT := IE
[

1
nT

T∑
t=0

n∑
i=0

(
qVDN
θ (τt, āt)−⊥qiφ(āit|τt, ā−it ) + vψ(τt)

)2 ]
, (13)

where the ‘detach’ operator ⊥ stops the gradient flow through qiφ. The inequality constraints are
more complicated. In principle one would have to compute a loss for every action which has a
negative error in (13). Son et al. (2019) suggest to use only the action which minimizes qvdn:

LNOPT := IE
[

1
nT

T∑
t=0

n∑
i=0

(
min
ai∈Ai

{
f i(ai|τ it ) +

∑
j 6=i

f j(ajt |τ
j
t )−⊥qiφ(ai|τt,a−it ) + vψ(τt)

})2 ]
. (14)

We use this loss, which is called QTRAN-alt, as it is reported to perform significantly better. The
losses are combined to LQTRAN := LTD + λOPT LOPT + λNOPT LNOPT , with λOPT, λNOPT > 0.

CG To compare the effect of parameter sharing and restriction to local information in DCG, we
evaluate a variation of Castellini et al. (2019) that can solve sequential tasks. In this baseline all
agents share a RNN encoder of their belief over the current global state ht := hψ(·|ht−1,ot,at−1)
with h0 := hψ(·|0,o0,0), as introduced in Section 3.1. However, the parameters of the utility or
payoff functions are not shared, that is, θ := {θi}ni=1 and φ := {φij |{i, j} ∈ E}. Each set of
parameters θi and φij represents one linear layer from ht to Ai and Ai ×Aj outputs, respectively.

A.2 HYPER-PARAMETERS

All algorithms are implemented in the PYMARL framework (Samvelyan et al., 2019). We aimed to
keep the hyper-parameters close to those given in the framework and consistent for all algorithms.

All tasks used discount factor γ = 0.99 and ε-greedy exploration, which was linearly decayed from
ε = 1 to ε = 0.05 within the first 50, 000 time steps. Every 2000 time steps we evaluated 20 greedy
test trajectories with ε = 0. Results are plotted by first applying histogram-smoothing (100 bins) to
each seed, and then computing the mean and standard error between seeds.

All methods are based on agents’ histories, which were individually summarized with hψ by con-
ditioning a linear layer of 64 neurons on the current observation and previous action, followed
by a ReLU activation and a GRU (Chung et al., 2014) of the same dimensionality. Both layers’
parameters are shared amongst agents, which can be identified by a one-hot encoded ID in the in-
put. For the CG baseline, the linear layer and the GRU had 64n = 512 neurons. This allows a
fair comparison with DCG and also had the best final performance amongst tested dimensionalities
{64, 256, 512, 1024} in the task of Figure 4. Independent value functions qiθ (for IQL), utility func-
tions fvθ (for VDN/QMIX/QTRAN/DCG) and payoff functions feφ (for DCG) are linear layers from
the GRU output to the corresponding number of actions. The hyper-network ϕφ of QMIX produces
a mixing network with two layers connected with an ELU activation function, where the weights of
each mixing-layer are generated by a linear hyper-layer with 32 neurons conditioned on the global
state, that is, the full grid-world. For QTRAN, the critic qiφ computes the Q-value for an agent i by
taking all agents’ GRU outputs, all other agents’ one-hot encoded actions, and the one-hot encoded
agent ID i as input. The critic contains four successive linear layers with 64 neurons each and ReLU
activations between them. The greedy difference vψ also conditions on all agents’ GRU outputs and
uses three successive linear layers with 64 neurons each and ReLU activations between them. We
took the loss parameters λOPT = λNOPT = 1 from (Son et al., 2019) without any hyper-parameter
exploration.

All algorithms were trained with one RMSprop gradient step after each observed episode based on
a batch of 32 episodes, which always contains the newest, from a replay buffer holding the last 500
episodes. The optimizer uses learning rate 0.0005, α = 0.99 and ε = 0.00001. Gradients with a
norm ≥ 10 were clipped. The target network parameters were replaced by a copy of the current
parameters every 200 episodes.
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Name Agents Enemies Difficulty

so many baneling 7 Zealots 32 Banelings easy

8m vs 9m 8 Marines 9 Marines hard

3s vs 5z 3 Stalker 5 Zealots hard

3s5z 3 Stalker and 5 Zealots 3 Stalker and 5 Zealots hard

MMM2
1 Medivac
2 Marauders
7 Marines

1 Medivac
3 Marauders
8 Marines

super hard

micro focus 6 Hydralisks 8 Stalker super hard

Table 2: All tested StarCraft 2 maps for SMAC (Samvelyan et al., 2019).

A.3 STARCRAFT 2 DETAILS

We kept all hyper-parameters the same and evaluated the six maps in Table 2. All maps are from
SMAC (Samvelyan et al., 2019), except micro focus, which was provided to us by the SMAC au-
thors. The results for DCG-V, DCG, QMIX and VDN are given in Figure 6, where both DCG variants
use a rank-1 payoff approximation. Note that our results differ from those in Samvelyan et al. (2019),
due to slightly different parameters and an update after every episode. The latter differs from the
original publication because we use the the episode runner instead of the parallel runner
of PYMARL. These choices ended up improving the performance of QMIX significantly.
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Algorithm 1 Annotates a CG by computing the utility and payoff tensors (rank K approximation).
function ANNOTATE({hit−1, a

i
t−1, o

i
t}ni=1, E , {Ai}ni=1,K ∈ IN) . A := | ∪i Ai|

fV := 0 ∈ IRn×A . initialize utility tensor
fE := 0 ∈ IR|E|×A×A . initialize payoff tensor
for i ∈ {1, . . . , n} do . compute batch with all agents
hit := hψ(hit−1, o

i
t, a

i
t−1) . new hidden state

fV
i ← fvθ (hit) ∈ IRA . compute utility

for a ∈ {1, . . . , A} \ Ai do . set unavailable actions ...
fV
ia ← −∞ . ... to −∞

for e = (i, j) ∈ E do . compute batch with all edges
if K = 0 then . if no low-rank approximation
fE
e ← 1

2f
e
φ(·, ·|hit,h

j
t ) + 1

2f
e
φ(·, ·|hjt ,hit)> ∈ IRA×A . symmetric payoffs

else . if low-rank approximation
[F̂, F̄] := feφ(·, ·, ·|hit,h

j
t ) ∈ IR2×A×K

[F̂′, F̄′] := feφ(·, ·, ·|hjt ,hit) ∈ IR2×A×K

fE
e ← 1

2 F̂F̄
> + 1

2 F̄
′F̂′> ∈ IRA×A . symmetric payoffs

return {hit}ni=1,f
V,fE . return hidden states hit, utility tensor fV and payoff tensor fE

Algorithm 2 Q-value computed from utility and payoff tensors (and potentially global state st).

function QVALUE(fV ∈ IR|V|×A,fE ∈ IR|E|×A×A,a ∈ A, st ∈ S ∪ {∅}) . vϕ(∅) = 0

return 1
|V|

|V|∑
i=1

fV
iai + 1

|E|
∑

e=(i,j)∈E
fE
eaiaj + vϕ(st) . return the Q-value of the given actions a

Algorithm 3 Greedy action selection with k message passes in a coordination graph.

function GREEDY(fV ∈ IR|V|×A,fE ∈ IR|E|×A×A,V, E , {Ai}|V|i=1, k) . A := | ∪i Ai|
µ0, µ̄0 := 0 ∈ IR|E|×A . messages forward (µ) and backward (µ̄)
q0 := 1

|V|f
V . initialize “Q-value” without messages

for t ∈ {1, . . . , k} do . loop with k message passes
for e = (i, j) ∈ E do . update forward and backward messages
µte := max

a∈Ai

{
(qt−1
ia − µ̄t−1

ea ) + 1
|E|f

E
ea

}
. forward: maximize sender

µ̄te := max
a∈Aj

{
(qt−1
ja − µt−1

ea ) + 1
|E| (f

E
e )>a
}

. backward: maximizes receiver

if message normalization then . to ensure converging messages
µte ← µte − 1

|Aj |
∑
a∈Aj

µtea . normalize forward message

µ̄te ← µ̄te − 1
|Ai|

∑
a∈Ai

µ̄tea . normalize backward message

for i ∈ V do . update “Q-value” with messages
qti := 1

|V|f
V
i +

∑
e=(·,i)∈E

µte +
∑

e=(i,·)∈E

µ̄te . utility plus incoming messages

ati := arg max
a∈Ai

{qtia} . select greedy action of agent i

return ak ∈ A1 × . . .×A|V| . return actions that maximize the joint Q-value
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