
Sherpa: Hyperparameter Optimization for Machine
Learning Models

Lars Hertel
Department of Statistics

University of California, Irvine
lhertel@uci.edu

Julian Collado
Department of Computer Science
University of California, Irvine

colladou@uci.edu

Peter Sadowski
University of Hawaii

peter.sadowski@hawaii.edu

Pierre Baldi
Department of Computer Science
University of California, Irvine

pfbaldi@ics.uci.edu

Abstract

Sherpa is a free open-source hyperparameter optimization library for machine
learning models. It is designed for problems with computationally expensive it-
erative function evaluations, such as the hyperparameter tuning of deep neural
networks. With Sherpa, scientists can quickly optimize hyperparameters using
a variety of powerful and interchangeable algorithms. Additionally, the frame-
work makes it easy to implement custom algorithms. Sherpa can be run on either
a single machine or a cluster via a grid scheduler with minimal configuration.
Finally, an interactive dashboard enables users to view the progress of models
as they are trained, cancel trials, and explore which hyperparameter combina-
tions are working best. Sherpa empowers machine learning researchers by au-
tomating the tedious aspects of model tuning and providing an extensible frame-
work for developing automated hyperparameter-tuning strategies. Its source code
and documentation are available at https://github.com/LarsHH/sherpa and
https://parameter-sherpa.readthedocs.io/, respectively. A demo can be
found at https://youtu.be/L95sasMLgP4.

1 Existing Hyperparameter Optimization Libraries

Hyperparameter optimization algorithms for machine learning models have previously been imple-
mented in software packages such as Spearmint [15], HyperOpt [2], Auto-Weka 2.0 [9], and Google
Vizier [5] among others.

Spearmint is a Python library based on Bayesian optimization using a Gaussian process. Hyperpa-
rameter exploration values are specified using the markup language YAML and run on a grid via SGE
and MongoDB. Overall, it combines Bayesian optimization with the ability for distributed training.

HyperOpt is a hyperparameter optimization framework that uses MongoDB to allow parallel compu-
tation. The user manually starts workers which receive tasks from the HyperOpt instance. It offers
the use of Random Search and Bayesian optimization based on a Tree of Parzen Estimators.

Auto-WEKA 2.0 implements the SMAC [6] algorithm for automatic model selection and hyperpa-
rameter optimization within the WEKA machine learning framework. It provides a graphical user
interface and supports parallel runs on a single machine. It is meant to be accessible for novice users
and specifically targets the problem of choosing a model. Auto-WEKA is related to Auto-Sklearn
[4] and Auto-Net [11] which specifically focus on tuning Scikit-Learn models and fully-connected

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

https://github.com/LarsHH/sherpa
https://parameter-sherpa.readthedocs.io/
https://youtu.be/L95sasMLgP4

Table 1: Comparison to Existing Libraries

Spearmint Auto-WEKA HyperOpt Google Vizier Sherpa

Early Stopping No No No Yes Yes
Dashboard/GUI Yes Yes No Yes Yes
Distributed Yes No Yes Yes Yes
Open Source Yes Yes Yes No Yes
of Algorithms 2 1 2 3 5

neural networks in Lasagne, respectively. Auto-WEKA, Auto-Sklearn, and Auto-Net focus on an
end-to-end automatic approach. This makes it easy for novice users, but restricts the user to the
respective machine learning library and the models it implements. In contrast our work aims to give
the user more flexibility over library, model and hyper-parameter optimization algorithm selection.

Google Vizier is a service provided by Google for its cloud machine learning platform. It incorporates
recent innovation in Bayesian optimization such as transfer learning and provides visualizations via a
dashboard. Google Vizier provides many key features of a current hyperparameter optimization tool
to Google Cloud users and Google engineers, but is not available in an open source version. A similar
situation occurs with other cloud based platforms like Microsoft Azure Hyperparameter Tuning 1 and
Amazon SageMaker’s Hyperparameter Optimization 2.

2 Need for a new library

The field of machine learning has experienced massive growth over recent years. Access to open
source machine learning libraries such as Scikit-Learn [14], Keras [3], Tensorflow [1], PyTorch
[13], and Caffe [8] allowed research in machine learning to be widely reproduced by the community
making it easy for practitioners to apply state of the art methods to real world problems. The field of
hyperparameter optimization for machine learning has also seen many innovations recently such as
Hyperband [10], Population Based Training [7], Neural Architecture Search [17], and innovation in
Bayesian optimization such as [16]. While the basic implementation of some of these algorithms can
be trivial, evaluating trials in a distributed fashion and keeping track of results becomes cumbersome
which makes it difficult for users to apply these algorithms to real problems. In short, Sherpa aims to
curate implementations of these algorithms while providing infrastructure to run these in a distributed
way. The aim is for the platform to be scalable from usage on a laptop to a computation grid.

3 Key Features

3.1 Choice of Algorithms

A key motivation for Sherpa is to provide implementations of recent hyperparameter tuning algorithms
to users while making it easy to add new algorithms. The currently implemented algorithms are:

• Random Search

• Grid Search

• Local Search: increasing or decreasing one hyperparameter at a time

• Bayesian Optimization using a Gaussian Process and Expected Improvement Acquisition
function

• Population Based Training (PBT)[7].

The documentation provides tutorials for using Bayesian Optimization, PBT, and Local Search and
how to implement a new hyperparameter search algorithm.

1https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/
tune-model-hyperparameters

2https://aws.amazon.com/blogs/aws/sagemaker-automatic-model-tuning/

2

https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/tune-model-hyperparameters
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/tune-model-hyperparameters
https://aws.amazon.com/blogs/aws/sagemaker-automatic-model-tuning/

Sherpa also allows to implement stopping rules, decision rules which allow stopping of underperform-
ing trials. A trial is the training of a model with a specific set of hyperparameters. Sherpa currently
implements a Median-Stopping-Rule [5] which automatically stops any trial with lower performance
than the median of the finished trials at the same epoch. Additional information can be found in the
documentation.

3.2 Scalable Computation via Plug-In Schedulers

Sherpa is meant to be flexible around the user’s computational resources. It can simply be run in a
single Python session such as a Jupyter Notebook, or in parallel using two scripts. The first Python
script then runs the Sherpa optimization and uses the Sherpa scheduler to submit jobs. A second
Python script implements the trial evaluation. A database is automatically run in the background
to receive metrics from trials. Sherpa submits the desired number of parallel trials and submits a
new one whenever a previous trial finishes. Schedulers can execute jobs locally via subprocesses, or
remotely via a grid engine such as SGE [12]. This gives the user an easy way to coordinate and run
many parallel trials and it is easy to implement new schedulers.

3.3 Visualization Dashboard

Sherpa provides an interactive web-based dashboard to keep the user informed about the progress of
the hyperparameter optimization. It has a table of all completed trials including their best performance
and hyperparameter configuration. A line chart shows the sequence of objective values for each trial
against its training iterations. Finally, a parallel coordinates plot allows the user to explore completed
trials. This is very useful for noticing trends among useful configurations allowing faster and more
successful hyperparameter explorations.

Figure 1: The dashboard provides a parallel coordinates plot (top) and a table of finished trials
(bottom left). Trials in progress are shown via a progress line-plot (bottom right).

Furthermore, the dashboard provides an interface to interact with the optimization while it is running.
A stopping button allows the user to stop trials during their training. If the user notices a trial
performing badly via the line chart, she can decide to stop it and free up the resource to train a new
trial.

3

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] James Bergstra, Dan Yamins, and David D Cox. Hyperopt: A python library for optimizing the
hyperparameters of machine learning algorithms. In Proceedings of the 12th Python in Science
Conference, pages 13–20. Citeseer, 2013.

[3] François Chollet et al. Keras. https://keras.io, 2015.

[4] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum,
and Frank Hutter. Efficient and robust automated machine learning. In Advances in Neural
Information Processing Systems, pages 2962–2970, 2015.

[5] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and
D Sculley. Google vizier: A service for black-box optimization. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1487–1495. ACM, 2017.

[6] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In International Conference on Learning and Intelligent
Optimization, pages 507–523. Springer, 2011.

[7] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based
training of neural networks. arXiv preprint arXiv:1711.09846, 2017.

[8] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093, 2014.

[9] Lars Kotthoff, Chris Thornton, Holger H Hoos, Frank Hutter, and Kevin Leyton-Brown. Auto-
weka 2.0: Automatic model selection and hyperparameter optimization in weka. The Journal of
Machine Learning Research, 18(1):826–830, 2017.

[10] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: A novel bandit-based approach to hyperparameter optimization. arXiv preprint
arXiv:1603.06560, 2016.

[11] Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter.
Towards automatically-tuned neural networks. In Workshop on Automatic Machine Learning,
pages 58–65, 2016.

[12] W. Gentzsch (Sun Microsystems). Sun grid engine: Towards creating a compute power grid. In
Proceedings of the 1st International Symposium on Cluster Computing and the Grid, CCGRID
’01, pages 35–, Washington, DC, USA, 2001. IEEE Computer Society.

[13] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, B. Michel, V. and Thirion, O. Grisel, M. Blondel,
R. Prettenhofer, P. and Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

4

https://keras.io

[15] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in neural information processing systems, pages 2951–2959,
2012.

[16] Jian Wu, Matthias Poloczek, Andrew G Wilson, and Peter Frazier. Bayesian optimization with
gradients. In Advances in Neural Information Processing Systems, pages 5273–5284, 2017.

[17] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

5

	Existing Hyperparameter Optimization Libraries
	Need for a new library
	Key Features
	Choice of Algorithms
	Scalable Computation via Plug-In Schedulers
	Visualization Dashboard

