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Abstract

With the deployment of neural networks on mobile devices and the necessity of
transmitting neural networks over limited or expensive channels, the file size of
trained model was identified as bottleneck. We propose a codec for the compression
of neural networks which is based on transform coding for convolutional and dense
layers and on clustering for biases and normalizations. With this codec, we achieve
average compression factors between 7.9–9.3 while the accuracy of the compressed
networks for image classification decreases only by 1%–2%, respectively.

1 Introduction

Deep neural networks spread to many scientific and industrial applications (1; 2; 3; 4). Often, the
necessity of large amounts of training data, long training duration and the computational complexity
of the inference operation are noted as bottlenecks in deep learning pipelines. More recently, the
memory footprint of saved neural networks was recognized as challenge for implementations in which
neural networks are not executed on servers or in the cloud but on mobile devices or on embedded
devices. In these use cases, the storage capacities are limited and/or the neural networks need to
be transmitted to the devices over limited transmission channels (e.g. app updates). Therefore, an
efficient compression of neural networks is desirable. General purpose compressors like Deflate
(combination of Lempel-Ziv-Storer-Szymanski with Huffman coding) perform only poorly on neural
networks as the networks consist of many slightly different floating-point weights.

In this paper, we propose a complete codec pipeline for the compression of neural networks which
relies on a transform coding method for the weights of convolutional and dense layers and a clustering-
based compression method for biases and normalizations. Our codec provides high coding efficiency,
negligible impact on the desired output of the neural network (e.g. accuracy), reasonable complexity
and is applicable to existing neural network models, i.e. no (iterative) retraining is required.

Several related works were proposed in the literature. These works mainly rely on techniques like
quantization and pruning. The tensorflow framework provides a quantization method to convert the
trained floating-point weights to 8 bit fixed-point weights. We will demonstrate that considerable
coding gains on top of those due to quantization can be achieved by our proposed methods. Han
et al. proposed the Deep Compression framework for the efficient compression of neural networks
(5). In addition to quantization, their method is based on an iterative pruning and retraining phase. In
contrast to Deep Compression, we aim at transparent compression of existing network models without
the necessity of retraining and without modifying the network architecture. It is known from other
domains like video coding that transparent coding and coding modified content are different problems
(6; 7). Iandola et al. propose a novel network architecture called SqueezeNet which particularly aims
at having as few weights in the network as possible (8). We will demonstrate that our method can
still reduce the size of this already optimized SqueezeNet network by a factor of up to 7.4.
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Figure 1: Pipeline of the proposed codec. Yellow blocks are
applied per layer.

In this section, we describe our
complete codec design with ref-
erence to the pipeline illustration
in Fig. 1. The trained neural net-
work model is the input of the
codec. All layers of the network
are processed individually. This
simplifies partly retroactive up-
dates of individual layers with-
out transmitting the complete net-
work again. Weights, biases and
normalizations are pre-scaled to
use the complete dynamic range
of the number representation.

It is observable that the filters
in neural networks contain struc-
tural information not completely
different from blocks in natural
pictures. Reasoned by this ob-
servation, the encoder base for
convolutional filters consists of a
two-dimensional discrete cosine
transform (2D DCT) followed by
a quantization step. This combination is often referred to as transform coding.

For the DCT, the transformation block size is set accordingly to the size of the filter (e.g. a 7 × 7
DCT for a 7 × 7 filter). Subsequent to the transformation, the coefficients are quantized. The bit
depth of the quantizer can be tuned according to the needs of the specific application. Typical values
are 5-6 bit/coefficient with only a small accuracy impact.

The weights of dense layers (also referred to as fully-connected layers) and of 1× 1 convolutions (no
spatial filtering but filtering over the depth of the previous layer, typically used in networks for depth
reduction) are arranged block-wise prior to transform coding.

K-means clustering is used for the coding of the biases and normalizations. The number of clusters is
set analogously to the quantizer bit depth according to the quality settings. Code books are generated
for biases and normalizations. Thereby, the usage of the clustering algorithm is beneficial if less bits
are needed for coding the quantizer indices and the code book itself than for coding the values directly.
The clustering approach has the advantage that the distortion is smaller than for uniform quantization.
In consequence, the accuracy of the network is measured to be higher for a given number of quantizer
steps. However, the occurrence of code book indices is also more uniformly distributed. Due to the
higher entropy of this distribution, the compression factor is considerably smaller (see Sec. 3). In
particular the Burrow-Wheeler transform and the move-to-front transform which are both invoked for
entropy coding are put at a disadvantage by the uniform distribution. We chose to use use the same
number of quantizer steps for all parameters. For this reason the clustering was chosen for those
network parameters which are too sensible to the higher distortion caused by uniform quantization.

The processed data from the transform coding and from the clustering are entropy coded layer-wise
using BZip2, serialized and written to the output file. In addition, meta data is stored. It includes the
architecture of the layers in the network, shapes and dimensions of the filters, details on the block
arrangements, scaling factors from the pre-scaling, scaling factors and offsets from the quantizer, and
the code books for the clustering.

3 Evaluation

We evaluate our method using four image classification networks: ResNet50 (2), GoogLeNet (3),
AlexNet (9) and SqueezeNet (8). Rate-distortion analysis is a typical procedure for the evalu-
ation of compression algorithms (10). The performance of neural networks for image classifi-
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(a) GoogLeNet
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(b) ResNet
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(c) AlexNet
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(d) SqueezeNet

Figure 2: Top-5 accuracy decrease in percentage points as function of the compression factor

cation is usually measured using the Top-5 accuracy (1). Therefore, we measure the distortion
as decrease of the accuracy after compressing the networks. We use the compression factor
(uncompressed file size/compressed file size) to assess the compression efficiency.

The networks are encoded, decoded and then used for the image classification downstream pipeline.
As data, we use the ILSVRC-2012 validation set (50,000 images in 1,000 classes). To study which
algorithms from our overall pipeline contribute how much the the final result, we evaluate three
subsets of our technology: In the first subset, only quantization is applied to the network weights.
In the second subset, we apply the clustering algorithm to all parameters of all layers. In the third
set, we use our complete pipeline with transform coding and clustering. The resulting RD curves
are visualized in Fig. 2. The findings for the two state-of-the-art networks (Fig. 2(a) and 2(b)) are
quite clear: The results for the complete pipeline are superior to those of the subsets. This indicates
that all methods in the pipeline have a reason for existence and their coding gains are to some extend
additive. Compression factors of ten or higher are observed without a considerable decrease in
accuracy. AlexNet has the special property that it contains an extraordinary high number of weights
and that more than 90% of the weights are located in the first dense layer. As suggested by Han
et al. (5), this disadvantage in the design of the network can only be fixed by pruning and retraining.
Hence, we observe in Fig. 2(c) that transform coding and clustering do not bring any gain on-top of
quantization. Interestingly, our methods enables compression factors of more then five without much
decrease in accuracy even for SqueezeNet in Fig. 2(d).This is an indication that our framework is also
beneficial for networks with memory-optimized architecture. From the underlying data of Fig. 2, we
calculate numerical values for the compression factor. In average, our codec achieves compression
factors of 7.9 and 9.3 for accuracy decreases of 1% and 2%, respectively.

We analyze the computational complexity of our algorithms by measuring the encoder and decoder
run times using our unoptimized Python code. For the final codec (transform coding for convolutional
and dense weights, clustering for biases and normalizations), we measure 29s for the encoder and
7.6s for the decoder.

4 Conclusion

In this paper, we proposed a codec for the compression of neural networks which is based on
transform coding and clustering. The codec enables a low-complexity and high efficient transparent
compression of neural networks. The impact on the neural network performance is negligible.
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