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ABSTRACT

Predicting properties of nodes in a graph is an important problem with applications
in a variety of domains. Graph-based Semi Supervised Learning (SSL) methods
aim to address this problem by labeling a small subset of the nodes as seeds, and
then utilizing the graph structure to predict label scores for the rest of the nodes in
the graph. Recently, Graph Convolutional Networks (GCNs) have achieved im-
pressive performance on the graph-based SSL task. In addition to label scores, it
is also desirable to have a confidence score associated with them. Unfortunately,
confidence estimation in the context of GCN has not been previously explored.
We fill this important gap in this paper and propose ConfGCN, which estimates
labels scores along with their confidences jointly in GCN-based setting. Con-
fGCN uses these estimated confidences to determine the influence of one node
on another during neighborhood aggregation, thereby acquiring anisotropi ca-
pabilities. Through extensive analysis and experiments on standard benchmarks,
we find that ConfGCN is able to significantly outperform state-of-the-art base-
lines. We have made ConfGCN’s source code available to encourage reproducible
research.

1 INTRODUCTION

Graphs are all around us, ranging from citation and social networks to knowledge graphs. Predict-
ing properties of nodes in such graphs is often desirable. For example, given a citation network, we
may want to predict the research area of an author. Making such predictions, especially in the semi-
supervised setting, has been the focus of graph-based semi-supervised learning (SSL) (Subramanya
& Talukdar| 2014). In graph-based SSL, a small set of nodes are initially labeled. Starting with
such supervision and while utilizing the rest of the graph structure, the initially unlabeled nodes are
labeled. Conventionally, the graph structure has been incorporated as an explicit regularizer which
enforces a smoothness constraint on the labels estimated on nodes (Zhu et al., 2003a; |Belkin et al.,
2006; Weston et al.| 2008)). Recently proposed Graph Convolutional Networks (GCN) (Defferrard
et al., 2016} Kipf & Welling, 2016) provide a framework to apply deep neural networks to graph-
structured data. GCNs have been employed successfully for improving performance on tasks such
as semantic role labeling (Marcheggiani & Titovl 2017), machine translation (Bastings et al.,|2017),
relation extraction (Vashishth et al.| 2018}, Zhang et al., 2018), event extraction (Nguyen & Grish-
man, 2018)), shape segmentation (Y1 et al.,|2016)), and action recognition (Huang et al., 2017). GCN
formulations for graph-based SSL have also attained state-of-the-art performance (Kipf & Welling,
2016 |Liao et al., 2018 |Velickovic et al., 2018). In this paper, we also focus on the task of graph-
based SSL using GCNss.

GCN iteratively estimates embedding of nodes in the graph by aggregating embeddings of neigh-
borhood nodes, while backpropagating errors from a target loss function. Finally, the learned node
embeddings are used to estimate label scores on the nodes. In addition to the label scores, it is
desirable to also have confidence estimates associated with them. Such confidence scores may be
used to determine how much to trust the label scores estimated on a given node. While methods to
estimate label score confidence in non-deep graph-based SSL has been previously proposed (Orbach
& Crammer, 2012), confidence-based GCN is still unexplored.

'anisotropic (adjective): varying in magnitude according to the direction of measurement (Oxford English
Dictionary)
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Figure 1: Label prediction on node a by Kipf-GCN and ConfGCN (this paper). Lg is a’s true label.
Shade intensity of a node reflects the estimated score of label L; assigned to that node. Since Kipf-
GCN is not capable of estimating influence of one node on another, it is misled by the dominant
label L, in node a’s neighborhood and thereby making the wrong assignment. ConfGCN, on the
other hand, estimates confidences (shown by bars) over the label scores, and uses them to increase
influence of nodes b and c to estimate the right label on a. Please see Section|I|for details.

In order to fill this important gap, we propose ConfGCN, a GCN framework for graph-based SSL.
ConfGCN jointly estimates label scores on nodes, along with confidences over them. One of the
added benefits of confidence over node’s label scores is that they may be used to subdue irrelevant
nodes in a node’s neighborhood, thereby controlling the number of effective neighbors for each
node. In other words, this enables anisotropic behavior in GCNs. Let us explain this through the
example shown in Figure|l| In this figure, while node a has true label Lq (white), it is incorrectly
classified as L; (black) by Kipf-GCN (Kipf & Welling, 2016 This is because Kipf-GCN suffers
from limitations of its neighborhood aggregation scheme (Xu et al., 2018]). For example, Kipf-GCN
has no constraints on the number of nodes that can influence the representation of a given target node.
In a k-layer Kipf-GCN model, each node is influenced by all the nodes in its k-hop neighborhood.
However, in real world graphs, nodes are often present in heterogeneous neighborhoods, i.e., a node
is often surrounded by nodes of other labels. For example, in Figure 1} node a is surrounded by
three nodes (d, e, and f) which are predominantly labeled L, while two nodes (b and c) are labeled
Ly. Please note that all of these are estimated label scores during GCN learning. In this case, it
is desirable that node a is more influenced by nodes b and c¢ than the other three nodes. However,
since Kipf-GCN doesn’t discriminate among the neighboring nodes, it is swayed by the majority
and thereby estimating the wrong label L; for node a.

ConfGCN is able to overcome this problem by estimating confidences on each node’s label scores.
In Figure [I] such estimated confidences are shown by bars, with white and black bars denoting
confidences in scores of labels Ly and L, respectively. ConfGCN uses these label confidences to
subdue nodes d, e, f since they have low confidence for their label L, (shorter black bars), whereas
nodes b and c are highly confident about their labels being L (taller white bars). This leads to higher
influence of b and c during aggregation, and thereby ConfGCN correctly predicting the true label
of node a as Ly with high confidence. This clearly demonstrates the benefit of label confidences
and their utility in estimating node influences. Graph Attention Networks (GAT) (Velickovic et al.,
2018)), a recently proposed method also provides a mechanism to estimate influences by allowing
nodes to attend to their neighborhood. However, as we shall see in Section[6} ConfGCN, through its
use of label confidences, is significantly more effective.

Our contributions in this paper are as follows.

e We propose ConfGCN, a Graph Convolutional Network (GCN) framework for semi-
supervised learning which models label distribution and their confidences for each node

’In this paper, unless otherwise stated, we refer to Kipf-GCN whenever we mention GCN.
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in the graph. To the best of our knowledge, this is the first confidence-enabled formulation
of GCNss.

e ConfGCN utilize label confidences to estimate influence of one node on another in a label-
specific manner during neighborhood aggregation of GCN learning.

e Through extensive evaluation on multiple real-world datasets, we demonstrate ConfGCN
effectiveness over state-of-the-art baselines.

ConfGCN’s source code and datasets used in the paper are made publicly availableE] to foster repro-
ducible research.

2 RELATED WORK

Semi-Supervised learning (SSL) on graphs: SSL on graphs is the problem of classifying nodes
in a graph, where labels are available only for a small fraction of nodes. Conventionally, the graph
structure is imposed by adding an explicit graph-based regularization term in the loss function (Zhu
et al., 2003aj [Weston et al., 2008} [Belkin et al., 2006). Recently, implicit graph regularization via
learned node representation has proven to be more effective. This can be done either sequentially
or in an end to end fashion. Methods like DeepWalk (Perozzi et al.l 2014), node2vec (Grover &
Leskovec,|2016), and LINE (Tang et al.,[2015) first learn graph representations via sampled random
walk on the graph or breadth first search traversal and then use the learned representation for node
classification. On the contrary, Planetoid (Yang et al.| 2016) learns node embedding by jointly
predicting the class labels and the neighborhood context in the graph. Recently, [Kipf & Welling
(2016) employs Graph Convolutional Networks (GCNs) to learn node representations.

Graph Convolutional Networks (GCNs): The generalization of Convolutional Neural Networks to
non-euclidean domains is proposed by [Bruna et al.[(2013)) which formulates the spectral and spatial
construction of GCNs. This is later improved through an efficient localized filter approximation
(Defferrard et al.,[2016)). [Kipf & Welling|(2016) provide a first-order formulation of GCNs and show
its effectiveness for SSL on graphs. [Marcheggiani & Titov|(2017) propose GCNss for directed graphs
and provide a mechanism for edge-wise gating to discard noisy edges during aggregation. This is
further improved by |Velickovi¢ et al.[(2018]) which allows nodes to attend to their neighboring nodes,
implicitly providing different weights to different nodes. |[Liao et al.|(2018) propose Graph Partition
Neural Network (GPNN), an extension of GCNs to learn node representations on large graphs.
GPNN first partitions the graph into subgraphs and then alternates between locally and globally
propagating information across subgraphs. An extensive survey of GCNs and their applications can
be found in Bronstein et al.| (2017)).

Confidence Based Methods: The natural idea of incorporating confidence in predictions has been
explored by|Li & Sethil (2006)) for the task of active learning. |Leil (2014) proposes a confidence based
framework for classification problems, where the classifier consists of two regions in the predictor
space, one for confident classifications and other for ambiguous ones. In representation learning,
uncertainty (inverse of confidence) is first utilized for word embeddings by |Vilnis & McCallum
(2014). |Athiwaratkun & Wilson|(2018)) further extend this idea to learn hierarchical word represen-
tation through encapsulation of probability distributions. |Orbach & Crammer|(2012) propose TACO
(Transduction Algorithm with COnfidence), the first graph based method which learns label distri-
bution along with its uncertainty for semi-supervised node classification. |Bojchevski & Gnnemann
(2018a) embeds graph nodes as Gaussian distribution using ranking based framework which allows
to capture uncertainty of representation. They update node embeddings to maintain neighborhood
ordering, i.e. 1-hop neighbors are more similar to 2-hop neighbors and so on. Gaussian embeddings
have been used for collaborative filtering (Dos Santos et al.,[2017) and topic modelling (Das et al.,
2015)) as well.

3 NOTATION & PROBLEM STATEMENT

Let G = (V,&, X) be an undirected graph, where ¥V = V; UV, is the union of labeled (V;) and
unlabeled (V) nodes in the graph with cardinalities n; and n,, £ is the set of edges and X €

3ConfGCN’s source code: https:/g00.gl/qdED2X
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R(m+nu)xd jg the input node features. The actual label of a node v is denoted by a one-hot vector
Y, € R™, where m is the number of classes. Given G and seed labels Y € R™ > the goal is to
predict the labels of the unlabeled nodes. To incorporate confidence, we additionally estimate label
distribution pt,, € R™ and a diagonal co-variance matrix 3, € R™*™ Vv € V. Here, u,, ; denotes
the score of label ¢ on node v, while (3,,);; denotes the variance in the estimation of g, ;. In other
words, (£,1);; is ConfGCN’s confidence in g, ;.

v

4 BACKGROUND: GRAPH CONVOLUTIONAL NETWORKS

In this section, we give a brief overview of Graph Convolutional Networks (GCNs) for undirected
graphs as proposed by [Kipf & Welling| (2016). Given a graph G = (V, £, X) as defined Section
the node representation after a single layer of GCN can be defined as

H=f((D"*(A+I)D"?)XW) (1)

where, W € R4%? denotes the model parameters, A is the adjacency matrix and D;; = > j(A +
I);;. f is any activation function, we have used ReLU, f(x) = max(0, x) in this paper. Equation|[l]
can also be written as

hy=f| Y, Wh,+b|, YweV. )
uENG (V)

Here, b € R denotes bias, N'(v) = {u : {u,v} € £} corresponds to immediate neighbors of v in
graph G and h,, is the obtained representation of node v.

For capturing multi-hop dependencies between nodes, multiple GCN layers can be stacked on top
of one another. The representation of node v after k*" layer of GCN is given as

et =F Y (WrRE+bY) | wwev. 3)
uw€EN (v)

where, W, bF denote the layer specific parameters of GCN.

5 CONFIDENCE BASED GRAPH CONVOLUTION (CONFGCN)

Following (Orbach & Crammer,2012), ConfGCN uses co-variance matrix based symmetric Maha-
lanobis distance for defining distance between two nodes in the graph. Formally, for any two given
nodes u and v, with label distributions p,, and u, and co-variance matrices 3, and X,,, distance
between them is defined as follows.

dar (s Ba)s (o, Bw)) = (s — )T (B + 207 (u — o)

Characteristic of the above distance metric is that if either of 3,, or 32, has large eigenvalues, then
the distance will be low irrespective of the closeness of u, and g,,. On the other hand, if 3, and
33, both have low eigenvalues, then it requires p,, and ., to be close for their distance to be low.
Given the above properties, we define r,,,, the influence score of node u on its neighboring node v
during GCN aggregation, as follows.

1
Tuy = .
dar (B, Bu)s (o, )

This influence score gives more relevance to neighboring nodes with highly confident similar label,
while reducing importance of nodes with low confident label scores. This results in ConfGCN ac-
quiring anisotropic capability during neighborhood aggregation. For a node v, ConfGCN'’s equation
for updating embedding at the k-th layer is thus defined as follows.

R =f 1 D ruw x (WHRRE+%) | Vo e V. 4)
ueEN (v)
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The final node representation obtained from ConfGCN is used for predicting labels of the nodes in
the graph as follows.

Y, = softmax(WXhE + b)), vo eV
where, K denotes the number of ConfGCN’s layers. Finally, in order to learn label scores { g, } and
co-variance matrices {3, } jointly with other parameters { W* &%}, following Orbach & Crammer
(2012), we include the following three terms in ConfGCN’s objective function.

For enforcing neighboring nodes to be close to each other, we include Lgyoom defined as

Lismoon = Z (Ko — Nv)T(E;1 + 2171)0‘% = Hy).
(u,v)eE
To impose the desirable property that the label distribution of nodes in V; should be close to their
input label distribution, we incorporate Ljape defined as

1
Lighe) = g (Nv - K})T(Egl + ;I)([J/U — K))
vEV]

Here, for input labels, we assume a fixed uncertainty of %I € REXE where v > 0. We also include
the following regularization term, Ly, to constraint the co-variance matrix to be finite and positive.

Lieg = Z e, — 7 Z log(det,),
veY veY

for some 1 > 0. The first term increases monotonically with the eigenvalues of ¥ and the second
term prevents them from becoming zero. Additionally in ConfGCN, we include the L, in the

objective, to push the label distribution (1) close to the final model prediction Y).

Lo = > (1o — Yo) (1t — Vo).
veY

Finally, we include the standard cross-entropy loss for semi-supervised multi-class classification
over all the labeled nodes (V).

Lcross = - Z ZK)] IOg(?vj>-

vey;, j=1

The final objective for optimization is the linear combination of the above defined terms.
L({Wka bka Mo, Ev}) = Lcross + )\lLsmooth + )\2Llabel + )\SLconst + )\4Lreg (5)

where, \; € R, are the weights of the terms in the objective. We optimize L({W* b* p,,%,})
using stochastic gradient descent. We hypothesize that all the terms help in improving ConfGCN’s
performance and we validate this in Section[7.4]

6 EXPERIMENTS

6.1 DATASETS

For evaluating the effectiveness of ConfGCN, we evaluate on several semi-supervised classification
benchmarks. Following the experimental setup of (Kipf & Welling}[2016;|Liao et al., 2018)), we eval-
uate on Cora, Citeseer, and Pubmed datasets (Sen et al.,|2008)). The dataset statistics is summarized
in Table[I] Label mismatch denotes the fraction of edges between nodes with different labels in the
training data. The benchmark datasets commonly used for semi-supervised classification task have
substantially low label mismatch rate. In order to examine models on datasets with more heteroge-
neous neighborhoods, we also evaluate on Cora-ML dataset (Bojchevski & Gnnemannl 2018b)).

All the four datasets are citation networks, where each document is represented using bag-of-words
features in the graph with undirected citation links between documents. The goal is to classify
documents into one of the predefined classes. We use the data splits used by (Yang et al.,[2016) and
follow similar setup for Cora-ML dataset. Following (Kipf & Welling], 2016)), additional 500 labeled
nodes are used for hyperparameter tuning.
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Dataset Nodes  Edges Classes Features Label Mismatch %

Cora 2,708 5,429 7 1,433 0.002 0.052
Cora-ML 2,995 8,416 7 2,879 0.046 0.166
Citeseer 3,327 4,372 6 3,703 0.003 0.036
Pubmed 19,717 44,338 3 500 0.0 0.003

Table 1: Details of the datasets used in the paper. Please refer Section for more details.

Method Citeseer Cora Pubmed Cora ML
LP (Zhu et al.,|2003a) 45.3 68.0 63.0 -
ManiReg (Belkin et al., 2006)) 60.1 59.5 70.7 -
SemiEmb (Weston et al., [2008)) 59.6 59.0 71.1 -
Feat (Yang et al.,[2016) 57.2 57.4 69.8 -
DeepWalk (Perozzi et al., |2014) 43.2 67.2 65.3 -
GGNN (Li et al., 2015]) 68.1 77.9 77.2 -
Planetoid (Yang et al.,|2016)) 64.9 75.7 75.7 -
Kipf-GCN (Kipf & Welling, 2016) 70.3 81.5 79.0 51.6
G-GCN (Marcheggiani & Titovl, [2017) 71.1 82.0 77.3 50.4
GPNN (Liao et al.| 2018) 69.7 81.8 79.3 60.6
GAT (Velickovic et al., [2018) 72.5 83.0 79.0 54.9
ConfGCN (this paper) 73.9 83.5 80.7 80.9

Table 2: Performance comparison of several methods for semi-supervised node classification on
multiple benchmark datasets. ConfGCN performs consistently better across all the datasets. Base-
line method performances on Citeseer, Cora and Pubmed datasets are taken from|Liao et al.| (2018));
Velickovi€ et al.|(2018). We consider only the top performing baseline methods on these datasets
for evaluation on the Cora-ML dataset. Please refer Section|7.1|for details.

Hyperparameters: We use the same data splits as described in (Yang et al., 2016), with a test set
of 1000 labeled nodes for testing the prediction accuracy of ConfGCN and a validation set of 500
labeled nodes for optimizing the hyperparameters. The model is trained using Adam (Kingma &
Bal[2014) with a learning rate of 0.01. The weight matrices along with  are initialized using Xavier
initialization (Glorot & Bengio), 2010) and ¥ matrix is initialized with identity.

6.2 BASELINES

For evaluating ConfGCN, we compare against the following baselines:

o Feat (Yang et al 2016)) takes only node features as input and ignores the graph structure.

e ManiReg (Belkin et al., [2006) is a framework for providing data-dependent geometric regular-
ization.

o SemiEmb (Weston et al.l |2008) augments deep architectures with semi-supervised regularizers
to improve their training.

e LP (Zhu et all 2003a) is an iterative iterative label propagation algorithm which propagates a
nodes labels to its neighboring unlabeled nodes according to their proximity.

o DeepWalk (Perozzi et al., |2014)) learns node features by treating random walks in a graph as the
equivalent of sentences.

o Planetoid (Yang et al.|[2016) provides a transductive and inductive framework for jointly predict-
ing class label and neighborhood context of a node in the graph.

o GCN (Kipf & Welling) 2016) is a variant of convolutional neural networks used for semi-
supervised learning on graph-structured data.

e G-GCN (Marcheggiani & Titov,[2017) is a variant of GCN with edge-wise gating to discard noisy
edges during aggregation.

e GGNN (L1 et al, 2015) is a generalization of RNN framework which can be used for graph-
structured data.
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Figure 2: Plots of node classification accuracy vs. (a) node entropy and (b) node degree. On z-
axis we have quartiles of (a) node entropy and (b) degree, i.e., each bin has 25% of the samples in
sorted order. Overall, we observe that the performance of Kipf-GCN and GAT degrades with the
increase in node entropy and degree. In contrast, ConfGCN is able to avoid such degradation due to
its estimation and use of confidence scores. Refer Section[7.2{for details.

e GPNN is a graph partition based algorithm which propagates information after
partitioning large graphs into smaller subgraphs.

e GAT (Velickovic et al.|[2018)) is a graph attention based method which provides different weights
to different nodes by allowing nodes to attend to their neighborhood.

7 RESULTS

In this section, we attempt to answer the following questions:

Q1. How does ConfGCN compare against the existing methods semi-supervised node classifi-
cation task? (Section [7.1))

Q2. How does the performance of methods vary with increasing node degree and label mis-
match? (Section[7.2))

Q3. What is the effect of ablating different terms in ConfGCN’s loss function? (Section@)

Q4. How does increasing the number of layers effects ConfGCN’s performance? (Section[7.3)

7.1 NODE CLASSIFICATION

The evaluation results for semi-supervised node classification are summarized in Table 2} Results of
all other baseline methods on Cora, Citeseer and Pubmed datasets are taken from
Velickovi¢ et al} 2018) directly. Overall, we find that ConfGCN outperforms all existing approaches
consistently across all the datasets. We observe that on the more noisy and challenging Cora-ML
dataset, ConfGCN performs considerably better, giving nearly 20% absolute increase in accuracy
compared to the previous state-of-the-art method. This can be attributed to ConfGCN’s ability to
model nodes’ label distribution along with the confidence scores which subdues the effect of noisy
nodes during neighborhood aggregation. The lower performance of G-GCN compared to Kipf-
GCN on Cora-ML shows that calculating edge-wise gating scores using the hidden representation
of nodes is not much helpful in suppressing noisy neighborhood nodes as the representations lack
label information or are over averaged or unstable. Similar reasoning holds for GAT for its poor
performance on Cora-ML.

7.2 EFFECT OF NODE ENTROPY AND DEGREE ON PERFORMANCE

In this section, we provide an analysis of the performance of Kipf-GCN, GAT and ConfGCN for
node classification on Cora-ML dataset which has higher label mismatch rate. We use neighborhood
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Figure 3: Evaluation of Kipf~GCN and Con-

fGCN on the citeseer dataset with increasing Figure 4:  Performance comparison of different
number of GCN layers. Overall, ConfGCN ablated version of ConfGCN on citeseer dataset.
outperforms Kipf-GCN, and while both meth- These results justify inclusion of the different terms
ods’ performance degrade with increasing lay- in ConfGCN’s loss function. Please see Section[7.4]
ers, ConfGCN’s degradation is more gradual for details.

than Kipf-GCN'’s abrupt drop. Please see Sec-

tion[7.3]for details.

label entropy to quantify label mismatch, which for a node w is defined as follows.
L
NeighborLabelEnttropy(u) = — Zpul log pui; where, py = v e N(ﬁwz};l‘al(v) — l}|
=1
Here, label(v) is the true label of node v. The neighborhood label entropy of a node increases with
label mismatch amongst its neighbors. The problem of node classification becomes difficult with
increase in node degree, therefore, we also evaluate the performance of methods with increasing
node degree. The results are summarized in Figures[2aland[2b] We find that the performance of both
Kipf-GCN and GAT decreases with increase in node entropy and degree. On the contrary, Con-
fGCN'’s performance remains consistent and does not degrade with increase in entropy or degree.
This shows that ConfGCN is able to use the label distributions and confidence effectively to subdue
irrelevant nodes during aggregation.

7.3 EFFECT OF INCREASING CONVOLUTIONAL LAYERS

Recently, highlighted an unusual behavior of Kipf-GCN where its performance de-
graded significantly with increasing number of layers. For comparison, we evaluate the performance
of Kipf-GCN and ConfGCN on citeseer dataset with increasing number of convolutional layers. The
results are summarized in Figure 3] We observe that Kipf-GCN’s performance degrades drastically
with increasing number of layers, whereas ConfGCN'’s decrease in performance is more gradual.
We also note that ConfGCN outperforms Kipf-GCN at all layer levels.

7.4 ABLATION RESULTS

In this section, we evaluate the different ablated version of ConfGCN by cumulatively eliminating
terms from its objective function as defined in Section[5} The results on citeseer dataset are sum-
marized in Figure 4| Overall, we find that ConfGCN performs best when all the terms in its loss
function (Equation [5)) are included.

8 CONCLUSION

In this paper we present ConfGCN, a confidence based Graph Convolutional Network which es-
timates label scores along with their confidences jointly in GCN-based setting. In ConfGCN, the
influence of one node on another during aggregation is determined using the estimated confidences
and label scores, thus inducing anisotropic behavior to GCN. We demonstrate the effectiveness of
ConfGCN against recent methods for semi-supervised node classification task and analyze its per-
formance in different settings. We make ConfGCN’s source code available.
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