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ABSTRACT

Active matter consists of active agents which transform energy extracted from
surroundings into momentum, producing a variety of collective phenomena. A
model, synthetic active system composed of microtubule polymers driven by pro-
tein motors spontaneously forms a liquid-crystalline nematic phase. Extensile
stress created by the protein motors precipitates continuous buckling and folding
of the microtubules creating motile topological defects and turbulent fluid flows.
Defect motion is determined by the rheological properties of the material; how-
ever, these remain largely unquantified. Measuring defects dynamics can yield
fundamental insights into active nematics, a class of materials that include bacte-
rial films and animal cells. Current methods for defect detection lack robustness
and precision, and require fine-tuning for datasets with different visual quality. In
this study, we applied Deep Learning to train a defect detector to automatically
analyze microscopy videos of the microtubule active nematic. Experimental re-
sults indicate that our method is robust and accurate. It is expected to significantly
increase the amount of video data that can be processed.

1 INTRODUCTION

1.1 ACTIVE MATTER AND ACTIVE NEMATICS

Active materials encompass a broad range of systems that convert chemical energy into mechanical
work. These systems self-organize and exhibit structure on time and length scales that exceed that
of the constituent particles. One important class of active materials is active-nematics composed
of anisotropic particles that exert extensile or contractile stresses on neighboring particles. Natural
examples of active nematics include cultures of dividing E. coli and animal cells Doostmohammadi
et al. (2016); Segerer et al. (2015); Duclos et al. (2014; 2017). In active nematics, a single particle
does not impart a net force into the system and therefore does self-propel; however, the collective
motion of many particles create non-trivial material flows, Marchetti et al. (2013). Understanding
the fundamental physics of collective motion of nematics can yield insight wound healing, tumor
growth, and bacterial film dynamics, Doostmohammadi et al. (2018).

1.2 2D CONFINED ACTIVE NEMATICS AND TOPOLOGICAL DEFECTS

In this work we study a model quasi-2D active nematic system composed of microtubules (MT)
and motor proteins with tunable mechanical and dynamical properties developed by the Dogic
group Henkin et al. (2014); DeCamp et al. (2015). In this system, a suspension of microtubules
and motor proteins is sedimented to a surfactant-stabilized oil-water interface creating a dense,
liquid-crystalline nematic phase characterized by local orientational order. Motor proteins drive
neighboring MTs to slide anti-parallel to one another, creating extensile stresses.The extensile stress
makes the MT nematic inherently unstable to bend fluctuations. Undulations in the alignment of
the MTs therefore grow in time, eventually saturating into localized topological disclinations shown
in figure 1. The defects are characterized by their winding number Kamien (2002). Unlike defects
in passive liquid crystals, these defects create fluid flows. The comet-shaped +1/2 defects are self-
propelling while the three-fold symmetry of the -1/2 defects create active flows that result in to net
translation of the structure; active flows are shown by the yellow arrows in figure 1.
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Figure 1: (Left) Fluorescently labeled active microtubule suspension confined to a 300 µm diameter
well. + 1

2 and − 1
2 defects are labeled as magenta arrows and blue dots with three prongs, respec-

tively. Yellow arrow indicates the direction of net circulation in the sample. (Right) Schematic
representation of topological defects. Black lines indicate the director field, yellow arrows indicate
the active flow created by the collective motion of microtubules Doostmohammadi et al. (2018).

The hydrodynamic interactions between multiple defects create chaotic, turbulent-like flows. By
further confining the 2D nematic to microfluidic wells, these flows can be tamed into circulating
vortices Woodhouse & Goldstein (2012); Norton et al. (2018). Defect dynamics play a key role
in moderating the transition from bulk-like turbulence to regular circulation. Quantifying their dy-
namics will help develop a better understanding of the fluid dynamics governing the behavior of this
complex fluid and perhaps give insights into generic features of motile defects in biological systems.
This requires researchers to analyze a large volume of videos of the 2D confined active nematics.

1.3 TRADITIONAL DEFECT DETECTING ALGORITHM AND LIMITATIONS

Remarkably utilizing the defining feature of a topological defect – its winding number, researchers
developed an image processing algorithm which first generates a direction field from each image
and then calculate the winding number at regions across the whole image to search for singulari-
ties. This algorithm performs reasonably well in detecting both +1/2 and -1/2 defects while being
limited by two factors: various visual quality and noises caused by imperfect experimental settings.
Parameters in the algorithm need to be fine-tuned for datasets with different visual qualities which
would require huge amount of human labor as well as knowledge of image processing. The tradi-
tional algorithm also suffers from noises in the data including overexposure in some region, slightly
unfocused image, materials exceeding above the 2D confinement plane, etc., which tend to ruin the
direction fields extracted from the images resulting poor detecting results. Aside from precision,
this algorithm involves intensive calculation when processing one image. Fine-tuning of parameters
and slow processing speed greatly limits the efficiency of data analysis in the experiments, while the
algorithm’s lack of robustness compromising the detecting results.

1.4 PROPOSAL OF SOLUTION

To address the problems existing in the traditional defect detecting algorithm, we propose to apply
deep learning, specifically deep convolutional neural network to replace the above defect detecting
algorithm that is based on traditional image processing techniques. Our tasks include:

• Label the positions of defects in representative experimental data.

• Train a YOLO network with bounding boxes generated according to the positions of the
labelled defects.

• Test the performance of the trained defect detection model on experimental data with vari-
ous visual qualities and sizes

The changing visual quality, which greatly challenges the the traditional algorithm, improves the
performance of our method. Adding more defects in various lighting conditions and image resolu-
tions improves both robustness and precision of our algorithm.

Apart from the visual quality, the diversity of the defects configuration causes troubles in traditional
detecting algorithm. However, with defects in different shapes, sizes, configuration, and sometimes
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occlusion, our algorithm is able to generalize its model better to fit in these various samples, com-
promising the effect of overfitting.

Another important advantage is our detection algorithms utilizes a unified, end-to-end neural net-
work which enables efficient training and testing process.

2 PATTERNS IN DATASET

The labeled dataset consists of 9 typical videos from different experimental settings. In each experi-
ment, active nematics are confined by a circular plate. Due to the constant input of energy, the active
nematics continuously flows in a turbulent-like manner. Figure 2 and 3 shows a snapshot from each
video. Specifically, the first testing dataset is from the same video as the first training dataset but are
separated by 500 frames so that the first image of testing dataset has completely different appearance
than the last image of the training dataset.

Figure 2: Snapshots from Each Training Dataset: fluorescently labelled microtubules in microfluidic
wells ranging from 300-500µm in diameter. The first image is from a dataset of 6000 images and
the rest each has 100 images.

Figure 3: Snapshots from Each Testing Dataset: fluorescently labelled microtubules in microfluidic
wells ranging from 300-500µm in diameter. The first image is from a dataset of 1500 images and
the rest each has 100 images.

Figure 4: Life of a +1/2 Defect: from top-left to bottom-right shows the moving trajectory of a +1/2
defect from nucleation to annihilation. +1/2 defects are labeled by green boxes; -1/2 defects are
labeled by red boxes; the nucleation process is labeled by magnum boxes; the annihilation process
is labeled by yellow box. The diameter of the microfluidic wells in this figure is 300µm.
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Figure 4 shows the moving trajectory of a typical +1/2 defect from nucleation to annihilation. In
the first frame, a pair of +1/2 and -1/2 defects nucleates with +1/2 defect moving away from -1/2
defects. In the next six frames, the +1/2 defect rotates around the center while being pushed outwards
by inner materials, encountering a -1/2 defects. In the last frame, the +1/2 and -1/2 defects annihilate
concurrently, balancing the topological charge of the region.

3 METHODS

When dealing with defects detection, the most intuitive way is to find the characteristics of a de-
fect which differ it from its neighborhood area and make use of these characteristics to locate the
regions containing defects. The defining difference between a defect region and a non-defect one
is the topological winding number. A region containing a defect has a winding number of +1/2 or
-1/2 around its boundary while the winding number associated to a non-defect region is strictly 0.
Previously, researchers made use of this definition and developed an effective algorithm by find-
ing the direction field – the “grains” of an image, and calculating the winding number of different
regions. As a result, this algorithm requires preprocessing to extract the direction field from the orig-
inal image. Meanwhile, the performance of the detecting results relies heavily on the quality of the
direction field extracted from the original image. Due to the imperfections and noises in the images,
preprocessing is challenging. In some cases, the defects are occluded by overexposure area or are
unfocused, leading to a problematic direction field near the defect. In addition, in the experimental
video, materials such as hairs and dirts are observed which sometimes causes false detection.

To resolve these problems, we propose to treat this task as an object detection task where we con-
sider defects as the objects we are trying to detect in an image. We train a convolutional neural
network with images containing defects whose locations are provided. During detection, our model
generates a bounding box around defects as detecting results. In this method, the problems in the
previous paragraph, namely increasing the size of dataset from various visual quality, diversity of
defects configuration and size, help our model generalize a defect’s features better. Compared to the
traditional algorithm which requires fine-tuning for different datasets, our method could efficiently
provide reliable detecting results on data across various visual quality.

3.1 DATA COLLECTION

To create a training dataset, we manually labeled the positions of positive defects and negative
defects in 8800 images. In an image, we labeled a comet-like (+1/2) defect at the point where
materials change orientation most sharply. For a trefoil-like (-1/2) defect, we labeled them at the
center of the triangular material-devoid region. Figure 5a is an example of labeled image with +1/2
defects labeled by red stars and -1/2 defects labeled by green circles.

3.2 SUB-CLASSIFICATION FOR +1/2 DEFECTS

The experimental datasets we work on are challenging to perform object detection. One main chal-
lenge is the varying sizes of +1/2 defects. In Figure 5b, there are 4 +1/2 defects by definition but
defect 1 looks drastically different from defect 2, 3, and 4. We call +1/2 defects similar to defect
1 “hollow” +1/2 defects. Assigning bounding boxes with the same size for all four defects in this
image is problematic. A small bounding box cannot include enough local information to recognize
defect 1 as +1/2 defect, while big bounding boxes might include features of other defects which
confuse the model. For defect 3 and 4, big bounding boxes will include the -1/2 defects next to
them. To resolve this issue, since hollow +1/2 defects are commonly seen in the video, we created
a separate class for these defects when we labeled the data and assigned slightly bigger bounding
boxes for this class.

After labeling all the data, we assigned a bounding box to each labeled position. Since more contex-
tual information is needed to detect hollow +1/2 defect than to detect normal +1/2 or -1/2 defects,
we assigned the sizes of the bounding boxes with a ratio of 3:3:4 for +1/2, -1/2, hollow +1/2, respec-
tively.
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(a) Labeled Image (b) +1/2 Defects

Figure 5: Experimental Data: fluorescently labelled microtubules in microfluidic wells with 400µm
in diameter.(Left: sample image with +1/2 and -1/2 defects labeled; Right: sample image containing
+1/2 defects with 2 drastically different configurations and sizes.)

3.3 IMAGE AUGMENTATION

Aside from normal image augmentation such as jitter and scaling, we added a random flipping and
random rotation to the training images. Since the region of a defect is anisotropic, rotating the image
effectively increase the robustness of the model.

3.4 COMPUTER VISION PIPELINE

In recent years, after the wide application of convolutional neural network in computer vision, the
state-of-the-art object detection algorithm can be divided into two main categories. In the first
category, input images are first processed by a method named selective search Uijlings et al. (2013)
which generates thousands of region proposals that are likely to contain an object. These region
proposals along with the input images will be passed to a CNN which performs feature extractions
and image re-sampling. The results will eventually be generated by a classifier. This category
of algorithms is the first to combine a selective search method with deep CNN where selective
search perform the task of object localization and CNN performs the task of classification. RCNN
series (including R-CNN Girshick et al. (2014), Fast R-CNN Girshick (2015), and Faster R-CNN
Ren et al. (2015)) belongs to this catogary. The second category is YOLO Redmon et al. (2016),
which implements an end-to-end deep neural network that performs classification and localization
all at once. The input images are first separated by 13 by 13 grid cells where each grid cell is
responsible for detecting the object falling into it. The output of the network is forced to be a tensor
which includes the coordinates of bounding boxes and a confidence value. YOLO outperforms its
counterpart in speed but lack in average precision.

In this project, we chose to implement YOLO because it is fast and easy to optimize due to its end-
to-end design. While implementing the YOLO algorithm, we mainly used the original setting in its
paper except for some changes in the pipeline:

• Changed the number of filter in the last convolutional layer to fit in our dataset.

• Decreased the jitter value from 0.3 to 0.05 to avoid occlusion or missing of defects located
near the boundary

• Since our objects-defects are relatively smaller than objects in the PASCAL VOC dataset,
we increased the non-object coefficient from 0.5 to 0.8 to increase the loss from confidence
predictions for boxes that do not contain objects
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• Took out the image augmentation regarding hue, exposure, and saturation since our images
are binary

4 RESULTS

4.1 DETECTING RESULTS COMPARISON

Table 1: Detecting Results of Traditional Image Processing Algorithm

Traditional Overall Dataset 1 Dataset 2 Dataset 3

Precision of + 1/2 defects 0 6156 0 6105 0 8796 0 5521
Precision of + 1/2 defects 0 3649 0 3477 0 6022 0 3957

Precision Overall 0 5212 0 5142 0 7904 0 4816

Recall of + 1/2 defects 0 9037 0 9366 0 8317 0 7461
Recall of + 1/2 defects 0 7724 0 8533 0 5533 0 6095

Recall Overall 0 8649 0 9145 0 7404 0 6888

Fscore of + 1/2 defects 0.7323 0 7392 0 855 0 6346
Fscore of + 1/2 defects 0.4956 0 4941 0 5767 0 4799

Fscore Overall 0.6505 0 6583 0 7646 0 5669

Table 2: Detecting Results of YOLO

YOLO Overall Dataset 1 Dataset 2 Dataset 3

Precision of + 1/2 defects 0 7969 0 8222 0 8042 0 6655
Precision of + 1/2 defects 0 3813 0 4368 0 3581 0 3216

Precision Overall 0 6608 0 7295 0 6095 0 469

Recall of + 1/2 defects 0 7836 0 7971 0 6708 0 7645
Recall of + 1/2 defects 0 412 0 3399 0 3909 0 635

Recall Overall 0 6334 0 6345 0 5118 0 6893

Fscore of + 1/2 defects 0.7902 0 8095 0 7314 0 7116
Fscore of + 1/2 defects 0.3960 0 3823 0 3738 0 4271

Fscore Overall 0.6568 0 6787 0 5564 0 5583

Table 1 and 2 displays the evaluation results for +1/2 defects, -1/2 defects, and the combination of
two classes for both traditional method and YOLO on three testing datasets separately and altogether.
The evaluation results include precision, recall, and F1-score values. Total testing dataset contains
1700 images, with 1500 from dataset 1, 100 from dataset 2, and 100 from dataset 3.

When evaluating the results, we consider a prediction to be correct if there is a defect located inside
the bounding box generated. Based on this criterion, we evaluated our model with precision, recall,
and F1-score. Overall, we achieved an overall F1-score of 0.6568, 0.7902 for +1/2 defects, and
0.3960 for -1/2 defects. In comparison, the traditional image processing defect detecting algorithm
obtains 0.6505 for overall F1-score and 0.7323, 0.4956 for +1/2 and -1/2 defects, respectively. This
shows that our method is currently performing as good as the traditional method overall. As ob-
served, the detecting results for -1/2 defects are particularly poor. For this matter, we believe two
factors explain the week detecting results of -1/2 defects:

• -1/2 defects are more complicated in geometric configuration. The fact that the tradi-
tional method also performs worse for -1/2 defects than for +1/2 ones also proves that -1/2
defects are harder to detect.

• Unbalanced training dataset. Due to the topological constraint, each image is required to
have 2 more +1/2 defects than -1/2 defects. Therefore, within the 8800 images which we
labeled, there are 58536 +1/2 defects and 24518 -1/2 defects.
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4.2 DETECTION RESULTS ACROSS DIFFERENT REGIONS

As shown in Figure 6, for both methods, the detection performances become worse as it approaches
the boundary of the system. We believe there are three factors causing the imbalance of detecting
results in our method:

• Defects appear more frequently at the central regions than near the boundary. In
the testing dataset, there are 1734, 3383, and 2750 +1/2 and -1/2 defects located at outer,
middle, inner regions respectively. Since the outer region is the largest in area but contains
the least number of defects, the lower detection performance is to be expected.

• The nucleation and annihilation happens most often near the boundary. A nucleation
or annihilation process is gradual, usually taking a few frames to transition from defect to
non-defect or the other way around. In these frames, it is hard even for researchers to define
the boundary between defect and non-defect.

• Defects are smaller in size near the boundary and have more various configurations.
Defects in the central region are usually well-defined and clear while the defects near the
boundary are usually small in size and vague in definition. Figure 7 shows the examples of
+1/2 defects located near the boundary.

(a) YOLO (b) Traditional

Figure 6: F1-Score Over Different Region: the detecting results evaluated on 1500 images from
testing dataset. The three numbers represent the overall F1-score of all the detecting results made
located within the marked region. The boundaries are set to be the 1/3 and 2/3 of the radius.

Figure 7: Examples of +1/2 Defects Near the Boundary

4.3 DETECTION RATE

Table 3: Detection Rates Comparison

Method Detection Rate(fps)

YOLO 90.72
Trational 0.053
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We evaluated the processing rate of YOLO and traditional method with 1500 testing images. Table
3 shows the detection rates for the two methods. The traditional method is executed with a Desk-
top equipped with RAM: 16GB; CPU: Intel Core i5-2400 @ 3.1 Ghz; GPU: NVIDEA GeForce
GTS 450. We perform our data processing, model training, and detection on a machine equipped
with RAM: 128GB; CPU: 2×Intel(R) Xeon(R) CPU E5-2637 v3 @ 3.50GHz; GPU: NVIDIA Cor-
poration GP102 [TITAN X]. Although our method is operated by a machine with much stronger
computational ability, our method’s significant advantage in speed is still obvious.

5 ALGORITHM DISCUSSION

While YOLO is the state-of-the-art object detection algorithms in images, it is not designed specifi-
cally for video. In other words, YOLO is not able to make detection decisions based on information
from previous and next frames. One set of data in the active nematics experiments is usually a video
containing up to twenty thousand frames. Typically, defects positions do not drastically change
among consecutive frames, and the active system as a whole move relatively smoothly. Therefore,
improving the design of YOLO to utilize the connection between frames will be expected to im-
prove the detecting results. This intuition is supported by research carried out by Kang et al. (2017),
who developed ”tubelets“ with R-CNN to incorporate temporal and contextual information into the
decision making process. The method, named T-CNN is a successful design which has boosted the
detecting results generated under R-CNN framework. Therefore, as our next step, we will incor-
porate the temporal and contextual information into YOLO’s pipeline in a similar way in order to
improve the detecting results in our dataset.

6 CONCLUSION

Based on experimental results, our method has been shown to be the state-of-the-art in defects de-
tection algorithms. Our method’s advantages include significantly faster processing rate, higher F1-
score on detecting results, and straightforward execution that could be operated by any researchers
with simple python skills.

We have shown the viability of deep learning’s application in soft matter. Most of experiments in the
field of soft matter involve experimental data in the form of images or videos and object detection
is one of the most common tasks physicists face. We hope this paper could provide an effective
alternative for physicists when they try to tackle similar tasks.
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