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ABSTRACT

In this work we propose a novel approach for learning graph representation of the
data using gradients obtained via backpropagation. Next we build a neural network
architecture compatible with our optimization approach and motivated by graph
filtering in the vertex domain. We demonstrate that the learned graph has richer
structure than often used nearest neighbors graphs constructed based on features
similarity. Our experiments demonstrate that we can improve prediction quality for
several convolution on graphs architectures, while others appeared to be insensitive
to the input graph.

1 INTRODUCTION

Recently we have seen a rise in deep learning models, which can account for non-linearities and
fit a wide range of functions. Multilayer perceptron (MLP), a general purpose neural network, is a
powerful predictor, but requires too many parameters to be estimated and often faces the problem of
over-fitting, i.e. learns to almost exactly match training data and unable to generalize when it comes
to testing.

While MLPs treat all features equally, which partially is the cause of excessive number of parame-
ters, Convolutional Neural Networks (CNNs) have significantly fewer parameters and demonstrate
groundbreaking results when it comes to object recognition in images (Krizhevsky et al.,[2012). The
parameter reduction is due to utilizing convolutional operation: a window is sliding through the image
and applying same linear transformation of the pixels. The number of parameters then is proportional
to the size of the window rather than polynomial of the number of data features as in the case of the
MLPs.

Indeed images posses a specific structure, which can be encoded as a lattice graph, that makes the
sliding window procedure meaningful, but inapplicable outside of the image domain. In recent
years there have been multiple works (cf. Bronstein et al.|(2017) for an overview) on generalizing
convolution operation to a general domain, where graph is not a lattice. Citing [Defferrard et al.|(2016)
- "classification performance critically depends on the quality of the graph", nonetheless the problem
of learning the graph useful for prediction has not been addressed so far and the graph was either
known or pre-estimated only based on feature similarity in all of the prior work.

There are two major challenges when estimating the graph inside the neural network architecture.
First is the architecture itself - majority of the neural networks rely on gradient optimization methods,
but the graph is often used in such ways that it is not possible to obtain its gradient. In Section 3| we
define a novel neural network architecture which is differentiable with respect to the graph adjacency
matrix and built upon graph filtering in the vertex domain, extending the linear polynomial filters of
Sandryhaila & Moural (2013). Second problem is the series of constraints that are often imposed on
the graph and therefore its adjacency. In Section 2] we show how the three common graph properties,
undirected sparse edges with positive weights, can be enforced by only utilizing the gradient obtained
through backpropagation, therefore allowing us to utilize any of the modern deep learning libraries
for graph estimation. In Section ] we discuss other graph based neural networks and evaluate them
from the perspective of graph estimation. In Section 5| we analyze graph estimation and interpretation
for text categorization and time series forecasting. We conclude with a discussion in Section 6]
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2 GRAPH OPTIMIZATION BASED ON BACKPROPAGATION

In this section we provide an optimization procedure for learning adjacency matrix of a graph with
various properties of interest, assuming that we can obtain its derivative via backpropagation. In a
subsequent section we will present novel neural network architecture that will allow us to get the
derivative and utilize the graph in meaningful way.

Let data X € RV*D with N observation, D features and response Y € R (or Y € N for classifica-
tion). Graph G' among data features can be encoded as its adjacency matrix A € RP*P_ Our goal
is to estimate function Y := fw (X, A), where W are weight parameters, that minimize some loss
L := L(Y7 Y’). We assume that we are able to evaluate partial derivative g—j. In the most general
case, when edges of GG can be directed, have negative weights and G can be fully connected, we
perform the update A := A — G (g—f‘), where G(-) depends on the optimizer (e.g., identity function
for vanilla gradient descent) and -y 1s the step size. Nonetheless, in the majority of the applications, G
is desired to have some (or all) of the following properties:

e Undirected graph, in which case A is restricted to be symmetric.
e Have Positive edge weights, in which case A € Rf xD

e Be Sparsely connected, in which case A should contain small proportion of non-zero entries.

First two properties are necessary for the existence of the graph Laplacian, crucial for the vast amount
of neural networks on graphs architectures (e.g., Bruna et al.| (2013); |[Henaft et al.| (2015)); Defferrard
et al. (2016)). Third property greatly reduces computational complexity, helps to avoid overfitting
and improves interpretability of the learned graph. We proceed to present the Undirected Positive
Sparse UPS optimizer, that can deliver each of the three properties and can be easily implemented as
part of modern deep learning libraries.

Remark When node classification is of interest, our approach can be applied to graph between
observations (e.g. social networks), then A € RN*N,

2.1 UNDIRECTED GRAPH

When G is desired to be undirected, its adjacency A is a symmetric matrix, hence A;; and A;; are
the same parameters. When backprop is used for gradient computation, this fact is not accounted for,
but can be adjusted via the gradient correction

oL oL OL
— = Z(i # j)——, fori,j7=1,...,D. 1
Correctness of this procedure can be easily verified. Note that for modern stochastic optimization
methods (e.g., Adam (Kingma & Bal 2014)) the corrected gradient U/ (g—f‘) should be used for

moment computations.

2.2 POSITIVE WEIGHTS

Restricting edge weights of the graph to be positive is necessary for the existence of the graph
Laplacian and can help with interpretability of the resulting graph. To achieve positive weights we
need to add an inequality constraint of the form A;; > 0 for¢,j = 1,..., D to our optimization task.
Constrained optimization has been widely studied and multiple techniques are available. Given that
we are building our optimization on top of the backprop, the most natural solution is the projected
gradient descent. This method has been previously shown to be effective even in the non-convex
setups (e.g., Nonnegative Matrix Factorization (Lin, 2007))). Projected gradient for positive weights
constraint acts as follows:

wm (120 (1 (22))) shre o) -0 0 o

Projection operator P is applied elementwise. Another option is to consider adding a barrier function
(i.e. elementwise logarithm of A) to the objective function, but we found projected gradient to be
simpler and better aligning with out next step.
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2.3  SPARSITY

Sparsity is perhaps the most crucial property for several reasons. In modern high dimensional
problems, it is almost never the case that graph is fully connected, hence adjacency A should contain
some zero entries. Sparsity greatly reduces computational complexity of any neural network relying
on the graph, especially when graph optimization is considered as in our work. Finally, sparse graphs
are much more interpretable. Variable selection is an active research area in a variety of domains (cf.
Fan & Lv|(2010)) and one of the dominant approaches is due to the L; penalty on the object that is
desired to be sparse, in our case penalty is gx(A4) = A >, ; [A;;], which is combined with the loss
L(X, A, W) to form a new objective function. It is known that L; norm is not differentiable at 0,
although, similar to gradient, subgradient descent optimization can be used. They key disadvantage of
such approach is that it does not actually obtain sparse solution. Instead we propose to use proximal
gradient method (cf. Section 4 of [Parikh et al.|(2014)), which again aligns well with backprop based
optimization. Proximal operator of the L, penalty gy (A) is the soft thresholding operation:

prox,, (z) := Sx(z) = (¥ — A) 4+ — (= — x)4, where 24 := max(0, z). 3)
Then our final, sparsifying, step is:

A= Sop (p (A—vg (u (gﬁ)))) )

Notice that we threshold by A scaled by the step size v and that soft thresholding operation can be
simplified for positive weights Syx () = (z — YA)+.

Remark Another graph property that is sometimes of interest is the presence of self connections.
If one wants to prohibit self connections, it can trivially be done by setting the diagonal of A to 0 and
not performing any updates on the diagonal. We do not enforce this since /PS can estimate what
self connections, if any, should be present in the graph via the proximal ] step.

3 GRAPH BASED NEURAL NETWORK ARCHITECTURES

The key assumption of the {PS optimizer is that we can evaluate the partial gradient of the adjacency
matrix. We propose a novel neural network architecture arising from the Graph Signal Processing
(GSP) literature that satisfies the assumption.

3.1 GRAPH FILTERING

A prominent way to improve the quality of features of X € R (we consider a single observation in
this section to simplify the notations) is to process it as a signal on graph among data features with
adjacency matrix A € RP*D GSP (see[Shuman et al. (2013)) for an overview) then allows us to do
filtering in the vertex domain as fOHOWS'

= > ox;, (5)

JEN (i,k)

where j € N (i, k) iff Afj # 0 and b( ) for i ,J =1,..., D are filtering coefficients. Equation
modifies signal at the :th feature by takmg into account signals at features reachable in exactly £
steps. By varying k = 1, ..., K we can extract new features that account for the graph structure in
the data and combine them into filtered graph signal f(X, A) € RP used for prediction.

Sandryhaila & Moural (2013)) proposed linear polynomial graph filter of the form:
H(A):wOID+w1A+...+wKAK,bo,...,bKER. (6)

Then the filtered signal is obtained via matrix multiplication f(X, A) = X H(A) and is a special
case of filtering in the vertex domain'

f(X5,A) = Zwkf Zwk Z (AF)i; Xjfori=1,...,Dand A := Ip. (7)
k=0 JEN (i,k)
Filtering in Eq. l can be used for graph optimization with /PS8, but it possesses several limitations.

Filtered signals f(*)(X;) are combined in linear way and choice of filtering coefficients bg? = (Ak);;
might lack flexibility.
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GPS(X1,A) = wosw"X1)) & wioW\PARXs + ..+ wA1sXs) B wao(WPApAwXe + ... + WA Az 11 X11)

Figure 1: Example of GPS of a vertex X;. Dashed grey circles and lines are the inactive vertices and
edges. Green solid circles and lines are the active ones. Note that vertices inside dashed red cloud
can be active if graph has self connections — a decision made by UPS.

3.2 GRAPH POLYNOMIAL SIGNAL NEURAL NETWORK

Neural networks are known to be much more effective than linear models and hence we address
the two shortcomings of graph filter [7] with the following Graph Polynomial Signal (GPS) neural
network:

GPS(X;, A) = Zwka F®(x Zwka S w Al x| (8)
JEN (i,k)

GPS directly utilizes filtered signals based on vertex neighborhoods of varying degree k& and allows
for non-linear feature mappings. GPS example is given in Fig. [T] Last step is to build a mapping
from the GPS features into the response Y. This can be done via linear fully connected layer or a
more complex neural network can be built on top of the GPS features. Our architecture can be easily
implemented using modern deep learning libraries and backprop can be used to obtain the partial
derivative of the adjacency A, required by the UPS optimizer.

Role of weights w( ), j=1...,D,k =1,...,K is two fold — firstly, they scale the graph
adjacency, which i 1s crucial for pr0x1mal optlmlzatlonl 4] For inducing sparsity in the adjacency A
ideally we would penalize number of nonzero elements (L norm) in A, but such penalty is known to
be NP-hard for optimization, hence the L; is always used instead. The drawback of this choice is
that we penalize nonzero edge weights A;; by their magnitude |A;;| which might be detrimental for
the prediction. To avoid disagreement between L; penalty term and prediction quality, re-scaling
with weights is helpful.

Second role of weights has the nature of weight sharing of classical CNN on images. For image data,
objects are often considered to be location invariant, hence CNN shares same set of weights across
the whole image. For a general data type considered in our work, there is no reason to make location
invariance assumption. Instead we assume that weights should be shared among neighboring graph
regions. In particular, observe that L{PS can decide to partition the graph into multiple connected
components, then GPS will enforce weight sharing inside each component by construction.

3.3 OTHER GRAPH ADJACENCY BASED NEURAL NETWORKS

GPS was designed to perform graph filtering based on its adjacency matrix in a way, that UPS
optimizer can be used to learn the adjacency. There are few other architectures that require a graph
be given, but can be combined with the /PS for graph learning. [Scarselli et al.| (2009) proposed
Graph Neural Network (GNN) — a rather general framework for utilizing graph neighborhoods
information. Some of the recent works on neural networks on graphs can be viewed as a special
case of it (Bronstein et al., 2017). GNN does not utilize adjacency directly in the architecture, but
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its modern variation Graph Convolutional Network (GCN) (Kipf & Welling}, 2016) does so for the
case of graph among observations. Their architecture can be modified for graph among features via
stacking layers of the form:

D
XFE = [ S A; x| fori=1,...,D, 9)
j=1

where X := X € RP is an observation and A = D2 (A+T D)D_% to enforce self connections,
Dii = 1+Zinj is a degree of vertex 1. w§k) eRforj=1,...,D,k=0,...,K — 1 are the
trainable parameters. Notice that since data in the applications we consider does not have multiple
input channels, we modified the architecture to have different weights across the graph for every
layer. Kipf & Welling| (2016) show that this architecture does 1-hop filtering inside each layer. When
multiple layers are stacked, resulting expression gets very complex due to non-linearities and can
not be considered as filtering of higher degree in the sense of Graph Signal Processing as in Eq. [5]
It is possible to use UPS with GCN for graph learning if we use A instead of A in Eq. El, but the
connection to graph filtering would be lost.

4 RELATED WORK

Deep learning on graphs has recently become an active area of research, but all of the prior work
assumes the graph be given or estimated prior to model fitting, using, for example, kNN graph based
on a feature similarity metric of choice. Henaff et al.|(2015) formulated a supervised graph estimation
procedure, but this again is done prior to their model fitting by training an MLP and utilizing first
layer features for KNN graph construction. Another popular direction, motivated by the success of
word embedding (Mikolov et al.,|2013)) in the NLP domain, is learning latent feature representations
of the graph (Perozzi et al., 2014} |Grover & Leskovec, |[2016; [Rossi et al.,[2017). Here graph is also
required as an input.

When it comes to architecture design involving graphs two approaches are usually distinguished —
spatial and spectral (cf. Bronstein et al.|(2017) for an overview). GPS is a spatial approach utilizing
graph adjacency as building block in a suitable for graph optimization manner. We have already
discussed two existing spatial approaches that can be combined with graph optimization. Next we
discuss some other spatial and spectral approaches from the perspective of graph learning.

4.1 SPATIAL ARCHITECTURES

Niepert et al.| (2016) proposed creating receptive fields using graph labeling and then applying a
1D convolution. [Hechtlinger et al.| (2017) suggested building CNN type architecture by considering
neighborhoods of fixed degree using powers of the transition matrix. Graph node sequencing and
neighborhood search are not differentiable and hence not compatible with the /PS optimization.
Diffusion-Convolutional Neural Networks (DCNN) (Atwood & Towsley, [2016) use power series
of the transition matrix and combine it with a set of trainable weights to do graph, node and edge
classifications. Transition matrix requires positive weights and is restricted to be stochastic, which
would complicate the optimization. DCNN pre-computes powers of the transition matrix and stores
them as a tensor, which is not suitable for graph learning.

4.2 SPECTRAL ARCHITECTURES

Idea behind spectral architectures is to utilize eigenvector basis of the graph Laplacian to do filtering
in the Fourier domain:

D-1
FOXG) = (X u)h(A)ws, (10)
1=0
where u;, \; I = 0,...,D — 1 are the eigenvectors and eigenvalues of the graph Laplacian £

of A. Key choice one has to make when using spectral approach is the functional form of filter
h(\;). [Bruna et al.|(2013); Henaff et al.| (2015) proposed to use nonparametric filters h(\;) = wy,
where w;,l = 0,..., D — 1 are trainable parameters. When graph learning comes into play, such
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approach becomes inefficient since we would need to optimize for the eigenvectors of the graph
Laplacian, which are not sparse even for sparse graphs and have to be constrained to be orthonormal.
Additionally, they proposed to use hierarchical graph clustering for pooling, which one would have to
redo on every iteration of the graph optimization as the graph changes.

Defferrard et al./(2016) utilized another filtering function i (\;) = Z,f;l a® Xk which is appealing
as it can be shown (Shuman et al., 2013) to perform filtering in the vertex domain [5| with filtering

coefficients b( ) = a(k)ﬁk They also utilized a Chebyshev polynomial approximation to the graph
filter to bypass the necess1ty for computing the eigen decomposition of the Laplacian (Hammond
et al., 2011). In the architecture design, they used graph coarsening and pooling based on node
rearrangement, which, as discussed before, are non-differentiable operations. As in the case of
transition matrix, optimizing for graph Laplacian would complicate the optimization, especially in
the presence of Chebyshev polynomials.

5 EXPERIMENTS

In the experimental section our goal is to show that graph learned using PS graph optimizer based
on the GPS architecture can give additional insights about the data and can be utilized by other graph
based neural networks.

5.1 EXPERIMENTAL SETUP

We fit the GPS architecture using UPS optimizer for varying degree of the neighborhood of the
graph. Resulting graphs are then used to train ChebNet (Defferrard et al., 2016}, ConvNet (Henaff
et al.| 2015), GCN (Kipf & Welling| 2016)) as in Eq. E]and Graph CNN (Hechtlinger et al.,[2017). We
also consider standard graph initialization using kNN graph, random graph and kNN graph based on
the MLP features as in (Henaff et al.,[2015]) for all the above architectures and for the GPS without
graph optimization. We used Adam (Kingma & Bal, 2014) for weight optimization and as a stochastic
optimizer G for the PS in Eq. [T} 2} {4}

5.2 TEXT CATEGORIZATION

In this experiment we provide thorough evaluation of various graph convolutional architectures using
20news groups data set. We keep the 1000 most common words, remove documents with less than
5 words and use bag-of-words as features. Training size is 9924 and testing is 6695. Results are
presented in Table[I] We see that GPS with optimized graph can achieve good results, but fails
when the graph is random or pre-estimated. Interestingly, ChebNet and ConvNet do not appear to
be sensitive to the graph being used. This might be due to high number of trainable parameters in
the respective architectures. GCN did poorly overall, but showed a relative improvement when the
estimated graphs were used.

Next we compare the learned graph versus a kNN graph often used for initialization of various
graph neural networks. We estimated the graph using A/PS and GPS, architecture and used nested
stochastic block model for visualization. Note that nested stochastic block model selects number of
levels and blocks on each level of the hierarchy to minimize the description length of the graph (cf.
Peixoto| (2014a)) and references therein). GPS, utilizes graph neighborhoods up to 4th degree and we
see in Fig. [2a[that there are 4 levels in between the input dimensions and the endpoint. Additionally
note that intermediate levels have 18 and 5 blocks, which is roughly similar to 20 classes and 6 super
classes (more general groupings of the news categories) of the 20news groups data, which is possibly
due to the supervised nature of the graph. For comparison, we also provide a hierarchical structure of
the 100NN graph in Fig. [2b] which is very poorly structured and only has two intermediate levels.

5.3 TIME SERIES FORECASTING

We use a dataset consisting of time series of visits to a popular website across 100 cities in the US.
Visits counts were normalized by standard deviation. The task is to predict the average number of
visits across cities for tomorrow. 3 years of daily data is used for training and testing is done on
consecutive 200 days. Results are reported in Table[2] GPS demonstrated very good performance and
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Table 1: Classification accuracy for different graphs and convolution architectures

GPS[8] ChebNet ConvNet GCN;Eq.[9] Graph CNN

100NN 26.14 56.77 56.77 36 56.34
Random  48.66 56.8 56.92 48.1 55.52
MLP 49.63 57.15 56.91 46 56.86
GPS;, 57.79 56.31 56.4 50.3 54.46
GPS» 57.1 56.98 56.55 49.6 57.1
GPS3 56.6 56.67 55.44 45.9 57.1
(a) GPS4 word hierarchy with blocks (b) 100NN word hierarchy with blocks
1000 - 56 - 18 5 —-2 — 1 1000 8 -3 —1

Figure 2: 20news hierarchical word relationships visualization using graph-tools (Peixoto, [2014b).

we can see noticeable improvement of the GCNj3 result when graph was learned for the neighborhood
degree of 3 and higher. For ChebNet we report the best score instead of final one as it was overfitting
severely. Nonetheless the best score appears to improve when the trained graph is used.

Table 2: MSE for different graphs and convolution architectures

GPS[8] ChebNet ConvNet GCN3[9] Graph CNN

10NN 0.27 0.31 0.32 0.276 0.41
Random 0.38 0.28 0.34 0.27 0.29
MLP 0.251 0.27 0.29 0.226 0.32
GPS2 0.211 0.3 0.33 0.24 0.31
GPS3 0.204 0.26 0.34 0.19 0.32
GPS4 0.198 0.24 0.32 0.202 0.32

6 DISCUSSION

In this work, motivated by the rising attention to convolution on graphs neural networks, we developed
a procedure and a novel architecture for graph estimation that can account for neighborhoods of
varying degree in a graph. We showed that resulting graph has more structure then a commonly used
kNN graph and demonstrated good performance of our architecture for text categorization and time
series forecasting.
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The worrisome observation is the insensitivity of some of the modern deep convolution networks
on graphs to the graph being used. Out of the considered architectures, only GPS and GCN showed
noticeable performance improvement when a better graph was used. These architectures stand out as
they have much fewer trainable parameters and are more likely to suffer from a badly chosen graph.
We think that a deep network utilizing the graph should not be able to produce any sensible result
when the random graph is used.

When doing convolution on images, pooling is one of the important steps that helps to reduce the
resolution of filters. It is unclear so far how to incorporate pooling into the GPS, while maintaining
the ability to extract the gradient. This is one of the limitations of our approach and is of interest for
further investigation.
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