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Abstract

Applying Bayesian optimization in problems wherein the search space is unknown
is challenging. To address this problem, we propose a systematic volume expansion
strategy for the Bayesian optimization. We devise a strategy to guarantee that in
iterative expansions of the search space, our method can find a point whose function
value within ε of the objective function maximum. Without the need to specify
any parameters, our algorithm automatically triggers a minimal expansion required
iteratively. We derive analytic expressions for when to trigger the expansion and by
how much to expand. We also provide theoretical analysis to show that our method
achieves ε-accuracy after a finite number of iterations. We demonstrate our method
on both benchmark test functions and machine learning hyper-parameter tuning
tasks and demonstrate that our method outperforms baselines.

1 Introduction

Choosing where to search matters. A time-tested path in the quest for new products or processes
is through experimental optimization. Bayesian optimization offers a sample efficient strategy for
experimental design by optimizing expensive black-box functions [9–11]. But one problem is that
users need to specify a bounded region to restrict the search of the objective function extrema. When
tackling a completely new problem, users do not have prior knowledge, hence there is no guarantee
that an arbitrarily defined search space contains the global optimum. Thus application of the Bayesian
optimization framework when the search region is unknown remains an open challenge [16].

One approach is to use a regularized acquisition function such that its maximum can never be at
infinity - hence no search space needs to be declared and an unconstrained optimizer can be used [16].
Other approaches use volume expansion, i.e. starting from the user-defined region, the search space
is expanded during the optimization. The simplest strategy is to repeatedly double the volume of the
search space every several iterations [16]. Nguyen et al suggest a volume expansion strategy based on
the evaluation budget [12]. All these methods require users to specify critical parameters - as example,
regularization parameters [16], or growth rate, expansion frequency (volume doubling) [16] or budget
[12]. These parameters are difficult to specify in practice. Additionally, [12] is computationally
expensive and the user-defined search space needs to be close to the global optimum.

In this paper, we propose a systematic volume expansion strategy for the Bayesian optimization
framework wherein the search space is unknown. Without any prior knowledge about the objective
function argmax or strict assumptions on the behavior of the objective function, it is impossible to
guarantee the global convergence when the search space is continuously expanded. To circumvent
this problem, we consider the setting where we achieve the global ε-accuracy condition, that is, we
aim to find a point whose function value is within ε of the objective function global maximum.

Our volume expansion strategy is based on two guiding principles: 1) The algorithm can reach a
point whose function value is within ε of the objective function maximum in one expansion, and, 2)
the search space should be minimally expanded so that the algorithm does not spend unnecessary
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evaluations near the search space boundary. As the objective function is unknown, it is not possible
to compute this ideal expansion region. Using the GP-UCB acquisition function as a surrogate,
this region is computed as one that contains at least one point whose acquisition function value
is within ε of the acquisition function maximum. However, by using a surrogate to approximate
the objective function, there is no guarantee that we can achieve the global ε-accuracy within one
expansion. Hence multiple expansions are required, and a new expansion is triggered when the local
ε-accuracy is satisfied, i.e. when the algorithm can find a point whose function value is within ε
of the objective function maximum in the current search space. Analytical expressions for the size
of the new expansion space and when to trigger the expansion are derived. The guarantees for the
ε-accuracy condition, however, now lapses in the expanded region, and so we adjust the acquisition
function appropriately to maintain the guarantee. Finally, we provide theoretical analysis to show
that our proposed method achieves the global ε-accuracy condition after a finite number of iterations.

We demonstrate our algorithm on five synthetic benchmark functions and three real hyperparameter
tuning tasks for common machine learning models: linear regression with elastic net, multilayer
perceptron and convolutional neural network. Our experimental results show that our method achieves
better function values with fewer samples compared to state-of-the-art approaches. In summary, our
contributions are:

• Formalising the analysis for Bayesian optimization framework in an unknown search space
setting, and introducing ε-accuracy as a way to track the algorithmic performance;

• Providing analytic expressions for how far to expand the search space and when to expand
the search space to achieve global ε-accuracy;

• Deriving theoretical global ε-accuracy convergence; and,

• Demonstrating our algorithm on both synthetic and real-world problems and comparing it
against state-of-the-art methods.

Our method differs from previous works in that 1) our method does not require any algorithmic
parameters, automatically adjusting both when to trigger the expansion and by how much to expand,
and, 2) our approach is the only one to guarantee the global ε-accuracy condition. This is because
we guarantee the local ε-accuracy condition in each search space, thus eventually the global ε-
accuracy is achieved. Without this local guarantee, the suggested solution cannot be guaranteed to
reach global ε-accuracy. The regularization [16] and the filtering method [12] require the global
optimum to be within a bound constructed by either the user specified regularizer or the budget. The
volume doubling method [16] can continue to expand the search space to infinity, however, the local
ε-accuracy condition is not guaranteed in each search space.

The paper is organized as follows. Section 2 gives an overview of Bayesian optimization and
discusses some of the related work. Section 3 describes the problem setup. Section 4 proposes our
new expansion strategy for the Bayesian optimization framework when the search space is unknown.
A theoretical analysis for our proposed method is presented in Section 5. In Section 6, we demonstrate
the effectiveness of our algorithm by numerical experiments. Finally, Section 7 concludes the paper.

2 Background and Related Work

2.1 Background

Bayesian optimization is a powerful optimization method to find the global optimum of an unknown
objective function f(x) by sequential queries [9–11, 17, 18]. First, at time t, a surrogate model is
used to approximate the behaviour of f(x) using all the current observed data Dt−1 = {(xi, yi)}ni=1,
yi = f(xi) + ξi, where ξi ∼ N (0, σ2) is the noise. Second, an acquisition function is constructed
from the surrogate model that suggests the next point xitr to be evaluated. The objective function is
then evaluated at xitr and the new data point (xitr, yitr) is added to Dt−1. These steps are conducted
in an iterative manner to get the best estimate of the global optimum.

The most common choice for the surrogate model used in Bayesian optimization is the Gaussian
Process (GP) [14]. Assume the function f follows a GP with mean function m0(x) and covariance
function k(x, x′), the posterior distribution of f given the observed data Dt−1 = {(xi, yi)}ni=1 is a
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GP with the following posterior mean and variance,

µt−1(x) = m0(x) + k|Dt−1|(x)
T (K|Dt−1| + σ2I|Dt−1|)

−1y|Dt−1|,

σ2
t−1(x) = k(x, x)− k|Dt−1|(x)

T (K|Dt−1| + σ2I|Dt−1|)
−1k|Dt−1|(x),

(1)

where y|Dt−1| = [y1, . . . , y|Dt−1|]
T , k|Dt−1|(x) = [k(x, xi)]

|Dt−1|
i=1 , K|Dt−1| = [k(xi, xj)]i,j , I|Dt−1|

is the |Dt−1| × |Dt−1| identity matrix and |Dt−1| denotes the cardinality of Dt−1. To aid readability,
in the sequel we remove the notation that shows the dependence of k,K, I, y on |Dt−1|.
There are many existing acquisition functions [6, 7, 10, 11, 20] and in this paper, we focus only on
the GP-UCB acquisition function [1, 2, 5, 19]. The GP-UCB acquisition function is defined as,

αUCB(x;Dt−1) = µt−1(x) +
√
βtσt−1(x), (2)

where µt−1(x), σt−1(x) are the posterior mean and standard deviation of the GP given observed data
Dt−1 and βt ≥ 0 is an appropriate parameter that balances the exploration and exploitation. Given a
search domain, {βt} can be chosen as in [19] to ensure global convergence in this domain.

2.2 Related Work

All the work related to the problem of Bayesian optimization with unknown search space have been
described in Section 1. There is the work in [3] introduces the term ε-accuracy. However, their
purpose is to unify the Bayesian optimization and the Level-set estimation framework.

3 Problem Setup

We wish to find the global argmax xmax of an unknown objective function f : Rd 7→ R, whose
argmax is at a finite location, i.e.

xmax = argmaxx∈S∗ f(x), (3)

where S∗ is a finite region that contains the argmax of the function f(x). In practice, the region S∗
is not known in advance, so users need to identify a search domain Suser which is likely to contain
the argmax of f(x). This search domain can be set arbitrarily or based on limited prior knowledge.
Thus there is no guarantee that Suser contains the global optimum of the objective function. In the
trivial cases when the search space S∗ is known or when S∗ ⊂ Suser, the global convergence can be
guaranteed through classical analysis [4, 19]. Here, we consider the general case when S∗ may or
may not be a subset of Suser. Without any prior knowledge about S∗ or strict assumptions on the
behavior of the objective function, it is impossible to guarantee the global convergence. Therefore, in
this work, instead of solving Eq. (3), we consider the setting where we achieve the global ε-accuracy
condition. That is, for a small positive value ε, we find a solution xε which satisfies,

f(xmax)− f(xε) ≤ ε. (4)

4 Proposed Approach

We make some mild assumptions to develop our main results.

Assumption 4.1 The prior mean function m0(x) = 0.

This is done by subtracting the mean from all observations and is common practice.

Assumption 4.2 The kernel k(x, x′) satisfies, (1) when ‖x − x′‖2 → +∞, k(x, x′) → 0; (2)
k(x, x′) ≤ 1 ∀(x, x′) ; (3) k(x, x) = θ2, where θ ≥ 0 is the scale factor of the kernel function.

Various kernels satisfy Assumption 4.2, e.g. the Matérn kernel, the Square Exponential kernel. As
the function can always be re-scaled, condition 2 is met without loss of generality [15, 19].
Defining gk(γ): With these types of kernels, for all small positive γ, there always exists gk(γ) > 0,

∀x, x′ : ‖x− x′‖2 ≥ gk(γ), k(x, x′) ≤ γ. (5)

The value of gk(γ) can be computed from γ and the kernel covariance function k(x, x′) i.e. for
Squared Exponential kernel kSE(x, x′) = θ2exp(−‖x− x′‖22/(2l2)), gk(γ) will be

√
2l2log(θ2/γ).

Assumption 4.3 The kernel k(x, x′) is known in advance or can be learned from the observations.
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Figure 1: Expanded region (blue), when the GP-UCB acquisition function argmax is at (1) infinity ;
or (2) at a finite location and its function value is larger or equal

√
βtθ+ ε/2; or (3) at a finite location

and its function value is smaller than
√
βtθ + ε/2.

4.1 Proposed Expansion Strategy

The ideal expansion strategy should satisfy two characteristics: 1) The algorithm can reach the global
ε-accuracy condition in one expansion, and, 2) the search space should be minimally expanded so
that the algorithm does not spend unnecessary evaluations near the search space boundary. Since
we have a black-box objective function, it is not possible to compute the ideal expansion space
Sideal directly. Let the exploration-exploitation parameters {βt} be chosen to ensure the objective
function is upper bounded by the GP-UCB acquisition function with high probability. Then we
can estimate Sideal by a region S as a minimal region that contains at least one point whose
acquisition function value is within ε from the acquisition function maximum, i.e. ∃xu ∈ S :
|αUCB(xu;Dt−1)−maxx∈Rd αUCB(x;Dt−1)| ≤ ε. Due to the approximation, there is no guarantee
we can achieve the global ε-accuracy in one expansion. Thus we need multiple expansions sequential.
A new expansion is triggered when the local ε-accuracy is satisfied in the previous expansion. In the
following, we first derive the value of the GP-UCB acquisition function when x→∞ (Proposition
4.1), and then use this value to derive analytical expressions for the size of the expansion space S
(Theorem 4.1) and when to trigger a new expansion.

Proposition 4.1 When x→∞, the GP-UCB acquisition function αUCB(x;Dt−1)→
√
βtθ, where

βt is the exploration-exploitation parameter of the GP-UCB acquisition function and θ is the scale
factor of the kernel function k(x, x′).

Derivation of the expansion search space Our idea is to choose the region S such that S =
Rd \ A, where 1) A contains all the points x that are far from all the current observations, and, 2)
A := {x ∈ Rd : |αUCB(x;Dt−1)−

√
βtθ| < ε/2}. Here, we will show that with this choice of S,

there exists at least one point in S whose acquisition function value is within ε from the acquisition
function maximum, given ε < |

√
βtθ −minx∈Rd(αUCB(x;Dt−1))|. We consider three cases that

can happen to the GP-UCB acquisition function (See Figure 1):

• Case 1: The argmax of the GP-UCB acquisition function is at infinity. This means that
the GP-UCB acquisition function maximum is equal to

√
βtθ. As the GP-UCB acquisition

function is continuous and ε < |
√
βtθ −minx∈Rd(αUCB(x;Dt−1))|, hence, there exists a

point xu such that αUCB(xu) =
√
βtθ − ε/2. By the definition of S, it is straightforward

that xu belongs to S , thus proving that there exists a point in S whose GP-UCB acquisition
function value is within ε from the maximum of the acquisition function.

• Case 2: The argmax of the GP-UCB acquisition function x′max is at a finite location
and its acquisition function value is larger or equal

√
βtθ + ε/2. It is straightforward

to see that the argmax x′max belongs to the region S and this is the point that satisfies
|αUCB(x′max;Dt−1)−maxx∈Rd αUCB(x;Dt−1)| ≤ ε.

• Case 3: The GP-UCB acquisition function argmax is at a finite location and the acquisition
function maximum is smaller than

√
βtθ + ε/2. As the GP-UCB acquisition function is

continuous and ε < |
√
βtθ − minx∈Rd(αUCB(x;Dt−1))|, there exists a point xu ∈ S :

αUCB(xu;Dt−1) =
√
βtθ − ε/2. As maxx∈Rd αUCB(x;Dt−1) <

√
βtθ + ε/2, it follows

directly that |αUCB(xu;Dt−1)−maxx∈Rd αUCB(x;Dt−1)| ≤ ε.

Theorem 4.1 now formally derives an analytical expression for one way to define region S.
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Algorithm 1 Bayesian optimization with unknown search space (GPUCB-UBO)
1: Input: Gaussian Process (GP)M, acquisition functions αUCB , αLCB , initial observationsDinit,

initial search space Suser, function f , positive small threshold ε, evaluation budget T .
2: Output: Point xε : max f(x)− f(xε) ≤ ε.
3: Initialize D0 = Dinit, S = Suser, β1, tk = 0. Update the GP using D0.
4: for t = 1, 2, . . . , T do
5: Set tlocal = t− tk
6: Compute xm = argmaxx∈S αUCB(x;Dt−1)
7: Set xt = xm, yt = f(xt). Update Dt = Dt−1 ∪ (xt, yt).
8: /∗ Compute the expansion trigger, the regret upper bound ∗/
9: Compute rb = αUCB(xt;Dt−1)−maxx∈Dt

αLCB(x;Dt−1) + 1/t2local
10: /∗ If expansion triggered, expand the search space ∗/
11: if (rb <= ε) | (t == 1) then
12: Compute the new search space S as defined in Theorem 4.1
13: Set tk = tk + tlocal
14: end if
15: /∗ Adjust the βt based on the search space ∗/
16: Compute βt following Theorem 5.1
17: Update the GP using Dt.
18: end for

Theorem 4.1 Consider the GP-UCB acquisition function αUCB(x;Dt−1). Let us define the region
S =

⋃|Dt−1|
i=1 Si, Si = {x : ‖x − xi‖2 ≤ dε}, xi ∈ Dt−1, |Dt−1| is the cardinality of Dt−1,

dε = gk(min(
√

(
√
βtθε/2− ε2/16)/(|Dt−1|λmax)/

√
βt, 0.25ε/max(

∑
zj≤0−zj ,

∑
zj≥0 zj)))

with gk(.) as in Eq. (5), λmax be the largest singular value of (K + σ2I)−1, and zj be the jth

element of (K + σ2I)−1y. Given ε < |
√
βtθ −minx∈Rd(αUCB(x;Dt−1))|, then there exists at least

one point in S whose acquisition function value is within ε from the acquisition function maximum,
i.e. ∃xu ∈ S : |αUCB(xu;Dt−1)−maxx∈Rd αUCB(x;Dt−1)| ≤ ε.

Acquisition function adaption Let us denote Sk as the kth expansion search space (k ≥ 1).
In each Sk, the parameter {βt} of the GP-UCB acquisition function needs to be valid to ensure
the algorithm achieves the local ε-accuracy condition. Hence, a new {βt} is adjusted after each
expansion. Details on how to compute the new {βt} are in Theorem 5.1.

Triggering the next expansion To guarantee the global ε-accuracy condition, in each search space
Sk, we aim to find an iteration Tk which satisfies rSk(Tk) = (maxx∈Sk f(x)−maxxi∈DTk

f(xi)) ≤
ε before the next expansion. As we do not have maxx∈Sk f(x) and {f(xi)}, we bound rSk(t) by
rb,Sk(t) = maxx∈Sk αUCB(x;Dt−1)+1/t2−maxx∈Dt

αLCB(x;Dt−1), where αLCB(x;Dt−1) =
µt−1(x)−

√
βtσt−1(x). The next expansion is triggered when rb,Sk(t) reaches ε.

Search space optimization The theoretical search space developed in Theorem 4.1 is the union of
|Dt−1| balls. To suit optimizer input, this region is converted to an encompassing hypercube using,

minxi∈Dt−1(x
k
i )− dε ≤ xk ≤ maxxi∈Dt−1(x

k
i ) + dε, k = 1, d. (6)

Further refinement of the implementation is provided in the supplementary material.

Algorithm 1 describes the proposed Bayesian optimization with unknown search space algorithm.

5 Theoretical Analysis

First, to ensure the validity of our algorithm, we prove that for a wide range of kernels, for any search
space Sk and any positive ε, with a proper choice of {βt}, our trigger for expansion condition occurs
with high probability. When this happens, the algorithm achieves the local ε-accuracy condition.

Proposition 5.1 For any d-dimensional domain Sk with side length rk, for the kernel classes: finite
dimensional linear, Squared Exponential and Matérn, suppose the kernel k(x, x′) satisfies the follow-
ing condition on the derivatives of GP sample paths f : ∃ak, bk > 0, Pr{supx∈Sk |∂f/∂xj | >
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L} ≤ ak exp
−(L/bk)2 , j = 1, d. Pick δ ∈ (0, 1), and define βt = 2 log(t22π2/(3δ)) +

2d log(t2dbkrk
√

log(4dak/δ)), then ∀ε > 0, with probability larger than 1 − δ, there ∃Tk : ∀t ≥
Tk,maxx∈Sk αUCB(x;Dt−1) − maxx∈Dt

αLCB(x;Dt−1) ≤ ε − 1/t2; and ∀t that satisfies the
previous condition, maxx∈Sk f(x)−maxx∈Dt

f(x) ≤ ε.

Second, we prove that with a proper choice of {βt} and for a wide range class of kernels, after a finite
number of iterations, our algorithm achieves the global ε-accuracy condition with high probability.

Theorem 5.1 Denote {Sk} as the series of the expansion search space suggested by our algorithm
(k ≥ 1). In each Sk, let Tk be the smallest number of iterations that satisfies our expansion triggered
condition, i.e. rb,Sk(Tk) ≤ ε. Suppose the kernel k(x, x′) belong to the kernel classes listed in
Proposition 5.1 and it satisfies the following condition on the derivatives of GP sample paths f :
∃ak, bk > 0, Pr{supx∈Sk |∂f/∂xj | > L} ≤ ak exp

−(L/bk)2 , j = 1, d. Pick δ ∈ (0, 1), and
define, βt = 2 log((t−

∑
j≤k−1 Tj)

22π2/(3δ)) + 2d log((t−
∑
j≤k−1 Tj)

2dbkrk
√

log(4dak/δ)),∑
j≤k−1 Tj + 1 ≤ t ≤

∑
j≤k Tj , k = 1, 2, .... Then running the proposed algorithm with the above

choice of βt for a sample f of a GP with mean function zero and covariance function k(x, x′), after
a finite number of iterations, we achieve global ε-accuracy with at least 1− δ probability, i.e.

Pr{f(xmax)− f(xsuggest) ≤ ε} ≥ 1− δ,

where xsuggest is the algorithm recommendation and xmax is the objective function global argmax.

Discussion The difference between our method and previous works is that we guarantee the local
ε-accuracy condition in each search space, eventually achieving the global ε-accuracy. Previous
methods do not give this guarantee, and thus their final solution may not reach global ε-accuracy.

6 Experimental Evaluation
We evaluate our method on five synthetic benchmark functions and three hyperparameter tuning tasks
for common machine learning models. For problems with dimension d, the optimization evaluation
budget is 10d (excluding initial 3d points following a latin hypercube sampling [8]). The experiments
were repeated 30 and 20 times for the synthetic functions and machine learning hyperparameter
tuning tasks respectively. For all algorithms, the Squared Exponential kernel is used, the GP models
are fitted using the Maximum Likelihood method and the output observations {yi} are normalized
yi ∼ N (0, 1). As with previous GP-based algorithms that use confidence bounds [3, 19], our
theoretical choice of {βt} in Theorem 5.1 is typically overly conservative. Hence, following the
suggestion in [19], for any algorithms that use the GP-UCB acquisition, we scale βt down by a factor
of 5. Finally, for the synthetic functions, ε is set at 0.05 whist for the machine learning models, ε is
set at 0.02 as we require higher accuracy in these cases.

We compare our proposed method, GPUCB-UBO, with seven baselines: (1) EI-Vanilla: the vanilla
Expected Improvement (EI); (2) EI-Volx2: the EI with the search space volume doubled every 3d
iterations [16]; (3) EI-H: the Regularized EI with a hinge-quadratic prior mean where β = 1 and R
is the circumradius of the initial search space [16]; (4) EI-Q: the Regularized EI with a quadratic
prior mean where the widths w are set to those of the initial search space [16]; (5) GPUCB-Vanilla:
the vanilla GP-UCB; (6) GPUCB-Volx2: the GP-UCB with the search space volume doubled every
3d iterations [16]; (7) GPUCB-FBO: the GP-UCB with the fitering expansion strategy in [12].

6.1 Visualization

We visualize our theoretical expansion search spaces derived in Theorem 4.1 on the Beale test function
(Figure 2). We show the contour plots of the GP-UCB acquisition functions, and show both the
observations (red stars) and the recommendation from the algorithm that correspond the acquisition
function maximum (cyan stars). The initial user-defined search space (black rectangle) is expanded
as per theoretical search spaces developed in Theorem 4.1 (yellow rectangles). Here we use Eq. (6)
to plot the expansion search spaces, however, the spaces developed in Theorem 4.1 are tighter. The
figure illustrates that when the argmax of the objective function is outside of the user-defined search
space, with our search space expansion strategy, this argmax can be located within a finite number of
expansions.
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Figure 2: Expansion search spaces using Theorem 4.1 for Beale function in two cases when the
global ε-accuracy is achieved within (a) one expansion; or (b) two expansions. The black rectangle is
the user-defined search space and the yellow rectangles are the theoretical expansion search spaces.
The contour plots of the acquisition function are also displayed with observations (red stars) and the
recommendation at that iteration (cyan star). Global optimum of Beale function is the magenta star.

6.2 Synthetic Benchmarks

We compare our method with seven baselines on five benchmark test functions: Beale, Eggholder,
Levy 3, Hartman 3 and Hartman 6. We use the same experiment setup as in [16]. The length of the
initial user-defined search space is set to be 20% of the length of the function domain - e.g. if the
function domain is the unit hypercube [0, 1]d, then the initial search space has side length of 0.2. The
center of this initial search space is placed randomly in the domain of the objective function.

For each test function and algorithm, we run the experiment 30 times, and each time the initial
search space will be placed differently. We plot the mean and the standard error of the best found
values maxi=1,n f(xi) of each test function. Figure 3 shows that for most test functions, our method
GPUCB-UBO achieves both better function values and in less iterations than other methods. For most
test functions, our method is better than other six state-of-the-art approaches (except GPUCB-FBO)
by a high margin. Compared with GPUCB-FBO, our method is better on the test functions Hartman3
and Hartman6 while performing similar on other three test functions. Note that the computation time
of GPUCB-FBO is 2-3 times slower than our method and other approaches (see Table 1) because it
needs an extra step to numerically solve several optimization problems to construct the new search
space. Since we derive the expansion search spaces analytically, our method, in contrast, can optimize
the acquisition function within these spaces without any additional computation.

Figure 3: Best found values of various synthetic benchmark test functions using different algorithms.
Plotting mean and standard error over 30 repetitions. (Best seen in color)
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Table 1: The average runtime (seconds) of selecting the next input of different methods. All the time
measurements were taken when evaluating the methods on a Ubuntu 18.04.2 server with Intel Xeon
CPU E5-2670 2.60GHz 128GB RAM. All the source codes are written in Python 3.6.

METHODS Beale Eggholder Hartman3 Levy3 Hartman6

GPUCB-UBO 2.8 ± 0.2 2.8 ± 0.3 3.1 ± 0.5 3.7 ± 0.5 5.0 ± 0.9
EIH 3.4 ± 0.2 1.0 ± 0.01 1.2 ± 0.03 4.9 ± 0.2 1.4 ± 0.02
EIQ 5.6 ± 0.4 2.9 ± 0.02 3.3 ± 0.03 5.8 ± 0.3 5.7 ± 0.1
EI-Vol2 3.2 ± 0.2 0.9 ± 0.01 1.2 ± 0.1 5.1 ± 0.2 1.7 ± 0.1
GPUCB-Vol2 3.5 ± 0.4 1.6 ± 0.05 9.4 ± 0.7 2.9 ± 0.1 12.0 ± 1.1
GPUCB-FBO 5.6 ± 0.4 5.4 ± 0.2 8.3 ± 1.1 8.6 ± 0.3 18.8 ± 2.9

6.3 Hyperparameter Tuning for Machine Learning Models

Next we apply our method on hyperparameter tuning of three machine learning models on the MNIST
dataset: elastic net, multilayer perceptron and convolutional neural network. With each model, the
experiments are repeated 20 times and each time the initial search space will be placed differently.

Elastic Net Elastic net is a regularized regression method that utilizes the L1 and L2 regularizers. In
the model, the hyperparameter α > 0 determines the magnitude of the penalty and the hyperparameter
l (0 ≤ l ≤ 1) balances between the L1 and L2 regularizers. We tune α in the normal space while l is
tuned in an exponent space (base 10). The initial search space of α and l is randomly placed in the
domain [−3,−1]× [0, 1] with side length to be 20% of the domain size length. We implement the
Elastic net model using the function SGDClassifier in the scikit-learn package [13].

Multilayer Perceptron (MLP) We construct a 2-layer MLP with 512 neurons/layer. We optimize
three hypeparameters: the learning rate l and the L2 norm regularization hyperparameters lr1 and
lr2 of the two layers. All the hyperparameters are tuned in the exponent space (base 10). The initial
search space is a randomly placed unit cube in the cube [−6,−1]3. The model is implemented using
tensorflow. The model is trained with the Adam optimizer in 20 epochs and the batch size is 128.

Convolutional Neural Network (CNN) We consider a CNN with two convolutional layers. The
CNN architecture (e.g. the number of filters, the filter shape, etc.) is chosen as the standard architec-
ture published on the official GitHub repository of tensorflow 1. We optimize three hyperparameters:
the learning rate l and the dropout rates rd1, rd2 in the pooling layers 1 and 2. We tune rd1, rd2 in the
normal space while l is tuned in an exponent space (base 10). The initial search space of rd1, rd2, l is
randomly placed in the domain [0, 1]× [0, 1]× [−5,−1] with side length to be 20% of this domain
size length. The network is trained with the Adam optimizer in 20 epochs and the batch size is 128.

Figure 4: Prediction accuracy of different machine learning models on MNIST dataset using different
algorithms. Mean and standard error over 20 repetitions are shown. (Best seen in color)

Given a set of hyperparameters, we train the models with this hyperparameter setting using the
MNIST train dataset (55000 patterns) and then test the model on the MNIST test dataset (10000
patterns). Bayesian optimization method then suggests a new hyperparameter setting based on the

1https://github.com/tensorflow/tensorflow
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prediction accuracy on the test dataset. This process is conducted iteratively until the evaluation
budget (10d evaluations) is depleted. We plot the prediction accuracy in Figure 4. For the Elastic
net model, our method GPUCB-UBO performs similar to GPUCB-FBO while outperforming the
other six approaches significantly. For the MLP model, GPUCB-UBO performs far better than other
approaches. To be specific, after only 12 iterations, it achieves a prediction accuracy of 97.8% whilst
other approaches take more than 24 iterations to get to this level. For the CNN model, GPUCB-UBO
also outperforms other approaches by a high margin. After 30 iterations, it can provide a CNN model
with prediction accuracy of 98.7%.

7 Conclusion

We propose a novel Bayesian optimization framework when the search space is unknown. We
guarantee that in iterative expansions of the search space, our method can find a point whose function
value within ε of the objective function maximum. Without the need to specify any parameters,
our algorithm automatically triggers a minimal expansion required iteratively. We demonstrate our
method on both synthetic benchmark functions and machine learning hyper-parameter tuning tasks
and demonstrate that our method outperforms state-of-the-art approaches.

Our source code is publicly available at https://github.com/HuongHa12/BO_unknown_searchspace.
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