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ABSTRACT

We propose a novel method for compressed sensing recovery using untrained deep
generative models. Our method is based on the recently proposed Deep Image
Prior (DIP), wherein the convolutional weights of the network are optimized to
match the observed measurements. We show that this approach can be applied to
solve any differentiable linear inverse problem, outperforming previous unlearned
methods. Unlike various learned approaches based on generative models, our
method does not require pre-training over large datasets. We further introduce a
novel learned regularization technique, which incorporates prior information on
the network weights. This reduces reconstruction error, especially for noisy mea-
surements. Finally we prove that, using the DIP optimization approach, moder-
ately overparameterized single-layer networks trained can perfectly fit any signal
despite the nonconvex nature of the fitting problem. This theoretical result pro-
vides justification for early stopping.

1 INTRODUCTION

We consider the well-studied compressed sensing problem of recovering an unknown signal x∗ ∈
Rn by observing a set of noisy measurements y ∈ Rm of the form

y = Ax∗ + η. (1)

Here A ∈ Rm×n is a known measurement matrix, typically generated with random independent
Gaussian entries. Since the number of measurements m is smaller than the dimension n of the
unknown vector x∗, this is an under-determined system of noisy linear equations and hence ill-posed.
There are many solutions, and some structure must be assumed on x∗ to have any hope of recovery.
Pioneering research (Donoho, 2006; Candès et al., 2006; Candes & Tao, 2005) established that if x∗
is assumed to be sparse in a known basis, a small number of measurements will be provably sufficient
to recover the unknown vector in polynomial time using methods such as Lasso (Tibshirani, 1996).

Sparsity approaches have proven successful, but more complex models with additional structure
have been recently proposed such as model-based compressive sensing (Baraniuk et al., 2010) and
manifold models (Hegde et al., 2008; Hegde & Baraniuk, 2012; Eftekhari & Wakin, 2015). Bora
et al. (2017) showed that deep generative models can be used as excellent priors for images. They
also showed that backpropagation can be used to solve the signal recovery problem by performing
gradient descent in the generative latent space. This method enabled image generation with signif-
icantly fewer measurements compared to Lasso for a given reconstruction error. Compressed sens-
ing using deep generative models was further improved in very recent work (Tripathi et al., 2018;
Grover & Ermon, 2018a; Kabkab et al., 2018; Shah & Hegde, 2018; Fletcher & Rangan, 2017; Asim
et al., 2018). Additionally a theoretical analysis of the nonconvex gradient descent algorithm (Bora
et al., 2017) was proposed by Hand & Voroninski (2017) under some assumptions on the generative
model.

Inspired by these impressive benefits of deep generative models, we chose to investigate the appli-
cation of such methods for medical imaging, a canonical application of compressive sensing. A
significant problem, however, is that all these previous methods require the existence of pre-trained
models. While this has been achieved for various types of images, e.g. human faces of CelebA (Liu
et al., 2015) via DCGAN (Radford et al., 2015), it remains significantly more challenging for med-
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ical images (Wolterink et al., 2017; Schlegl et al., 2017; Nie et al., 2017; Schlemper et al., 2017).
Instead of addressing this problem in generative models, we found an easier way to circumvent it.

Surprising recent work by Ulyanov et al. (2017) proposed Deep Image Prior (DIP), which uses un-
trained convolutional neural networks. In DIP-based schemes, a convolutional neural network gen-
erator (e.g. DCGAN) is initialized with random weights; these weights are subsequently optimized
to make the network produce an output as close to the target image as possible. This procedure is
unlearned, using no prior information from other images. The prior is enforced only by the fixed
convolutional structure of the generator network.

Generators used for DIP are typically over-parameterized, i.e. the number of network weights is
much larger compared to the output dimension. For this reason DIP has empirically been found to
overfit to noise if run for too many iterations (Ulyanov et al., 2017). In this paper we theoretically
prove that this phenomenon occurs with gradient descent and justify the use of early stopping and
other regularization methods.

Our Contributions:

• In Section 3 we propose DIP for compressed sensing (CS-DIP). Our basic method is as fol-
lows. Initialize a DCGAN generator with random weights; use gradient descent to optimize
these weights such that the network produces an output which agrees with the observed
measurements as much as possible. This unlearned method can be improved with a novel
learned regularization technique, which regularizes the DCGAN weights throughout the
optimization process.

• In Section 4 we theoretically prove that DIP will fit any signal to zero error with gradient
descent. Our result is established for a network with a single hidden layer and sufficient
constant fraction over-parametrization. While it is expected that over-parametrized neural
networks can fit any signal, the fact that gradient descent can provably solve this non-
convex problem is interesting and provides theoretical justification for early stopping.

• In Section 5 we empirically show that CS-DIP outperforms previous unlearned methods
in many cases. While pre-trained or “learned” methods frequently perform better (Bora
et al., 2017), we have the advantage of not requiring a generative model trained over large
datasets. As such, we can apply our method to various medical imaging datasets for which
data acquisition is expensive and generative models are difficult to train.

2 BACKGROUND

2.1 COMPRESSED SENSING: CLASSICAL AND UNLEARNED APPROACHES

A classical assumption made in compressed sensing is that the vector x∗ is k-sparse in some basis
such as wavelet or discrete cosine transform (DCT). Finding the sparsest solution to an underdeter-
mined linear system of equations is NP-hard in general; however, if the matrixA satisfies conditions
such as the Restricted Eigenvalue Condition (REC) or Restricted Isometry Property (RIP) (Can-
des et al., 2006; Bickel et al., 2009; Donoho, 2006; Tibshirani, 1996), then x∗ can be recovered
in polynomial time via convex relaxations (Tropp, 2006) or iterative methods. There is extensive
compressed sensing literature regarding assumptions onA, numerous recovery algorithms, and vari-
ations of RIP and REC (Bickel et al., 2009; Negahban et al., 2009; Agarwal et al., 2010; Bach et al.,
2012; Loh & Wainwright, 2011).

Compressed sensing methods have found many applications in imaging, for example the single-pixel
camera (SPC) (Duarte et al., 2008). Medical tomographic applications include x-ray radiography,
microwave imaging, magnetic resonance imaging (MRI) (Winters et al., 2010; Chen et al., 2008;
Lustig et al., 2007). Obtaining measurements for medical imaging can be costly, time-consuming,
and in some cases dangerous to the patient (Qaisar et al., 2013). As such, an important goal is to
reduce the number of measurements while maintaining good reconstruction quality.

Aside from the classical use of sparsity, recent work has used other priors to solve linear inverse
problems. Plug-and-play priors (Venkatakrishnan et al., 2013; Chan et al., 2017) and Regularization
by Denoising (Romano et al., 2017) have shown how image denoisers can be used to solve general
linear inverse problems. A key example of this is BM3D-AMP, which applies a Block-Matching
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and 3D filtering (BM3D) denoiser to an Approximate Message Passing (D-AMP) algorithm (Met-
zler et al., 2016; 2015). AMP has also been applied to linear models in other contexts (Schniter et al.,
2016). Another related algorithm is TVAL3 (Zhang et al., 2013; Li et al., 2009) which leverages aug-
mented Lagrangian multipliers to achieve impressive performance on compressed sensing problems.
In many different settings, we compare our algorithm to these prior methods: BM3D-AMP, TVAL3,
and Lasso.

2.2 COMPRESSED SENSING: LEARNED APPROACHES

While sparsity in some chosen basis is well-established, recent work has shown better empirical
performance when neural networks are used (Bora et al., 2017). This success is attributed to the
fact that neural networks are capable of learning image priors from very large datasets (Goodfellow
et al., 2014; Kingma & Welling, 2013). There is significant recent work on solving linear inverse
problems using various learned techniques, e.g. recurrent generative models (Mardani et al., 2017b)
and auto-regressive models (Dave et al., 2018). Additionally approximate message passing (AMP)
has been extended to a learned setting by Metzler et al. (2017).

Bora et al. (2017) is the closest to our set-up. In this work the authors assume that the unknown
signal is in the range of a pre-trained generative model such as a generative adversarial network
(GAN) (Goodfellow et al., 2014) or variational autoencoder (VAE) (Kingma & Welling, 2013). The
recovery of the unknown signal is obtained via gradient descent in the latent space by searching for
a signal that satisfies the measurements. This can be directly applied for linear inverse problems
and more generally to any differentiable measurement process. Recent work has built upon these
methods using new optimization techniques (Chang et al., 2017), uncertainty autoencoders (Grover
& Ermon, 2018b), and other approaches (Dhar et al., 2018; Kabkab et al., 2018; Mixon & Villar,
2018; Pandit et al., 2019; Rusu et al., 2018; Hand et al., 2018). The key point is that all this prior work
requires pre-trained generative models, in contrast to CS-DIP. Finally, there is significant ongoing
work to understand DIP and develop related approaches (Heckel et al., 2018; Dittmer et al., 2018).

3 PROPOSED ALGORITHM

Let x∗ ∈ Rn be the signal that we are trying to reconstruct, A ∈ Rm×n be the measurement
matrix, and η ∈ Rm be independent noise. Given the measurement matrix A and the observations
y = Ax∗ + η, we wish to reconstruct an x̂ that is close to x∗.

A generative model is a deterministic function G(z;w): Rk → Rn which takes as input a seed
z ∈ Rk and is parameterized by “weights” w ∈ Rd, producing an output G(z;w) ∈ Rn. These
models have shown excellent performance generating real-life signals such as images (Goodfellow
et al., 2014; Kingma & Welling, 2013) and audio (Van Den Oord et al., 2016). We investigate
deep convolutional generative models, a special case in which the model architecture has multiple
cascaded layers of convolutional filters (Krizhevsky et al., 2012). In this paper we apply a DC-
GAN (Radford et al., 2015) model and restrict the signals to be images.

3.1 COMPRESSED SENSING WITH DEEP IMAGE PRIOR (CS-DIP)

Our approach is to find a set of weights for the convolutional network such that the measurement
matrix applied to the network output, i.e. AG(z;w), matches the measurements y we are given.
Hence we initialize an untrained network G(z;w) with some fixed z and solve the following:

w∗ = arg min
w

‖y −AG(z;w)‖2. (2)

This is, of course, a non-convex problem becauseG(z;w) is a complex feed-forward neural network.
Still we can use gradient-based optimizers for any generative model and measurement process that
is differentiable. Generator networks such as DCGAN are biased toward smooth, natural images
due to their convolutional structure; thus the network structure alone provides a good prior for
reconstructing images in problems such as inpainting and denoising (Ulyanov et al., 2017). Our
finding is that this applies to general linear measurement processes. Furthermore, our method also
directly applies to any differentiable forward operator A. We restrict our solution to lie in the span
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of a convolutional neural network. If a sufficient number of measurements m is given, we obtain an
output such that x∗ ≈ G(z;w∗).

Note that this method uses an untrained generative model and optimizes over the network weights
w. In contrast previous methods, such as that of Bora et al. (2017), use a trained model and optimize
over the latent z-space, solving z∗ = arg minz ‖y − AG(z;w)‖2. We instead initialize a random z
with Gaussian i.i.d. entries and keep this fixed throughout the optimization process.

In our algorithm we leverage the well-established total variation regularization (Rudin et al., 1992;
Wang et al., 2008; Liu et al., 2018), denoted as TV (G(z;w)). We also propose an additional learned
regularization technique, LR(w); note that without this technique, i.e. when λL = 0, our method is
completely unlearned. Lastly we use early stopping, a phenomena that will be analyzed theoretically
in Section 4.

Thus the final optimization problem becomes

w∗ = arg min
w
‖y −AG(z;w)‖2 +R(w;λT , λL). (3)

The regularization term contains hyperparameters λT and λL for total variation and learned regular-
ization: R(w;λT , λL) = λTTV (G(z;w)) + λLLR(w). Next we discuss this LR(w) term.

3.2 LEARNED REGULARIZATION

Without learned regularization CS-DIP relies only on linear measurements taken from one unknown
image. We now introduce a novel method which leverages a small amount of training data to opti-
mize regularization. In this case training data refers to measurements from additional ground truth
of a similar type, e.g. other x-ray images.

To leverage this additional information, we pose Eqn. 3 as a Maximum a Posteriori (MAP) estima-
tion problem and propose a novel prior on the weights of the generative model. This prior then acts
as a regularization term, penalizing the model toward an optimal set of weights w∗.

For a set of weights w ∈ Rd, we model the likelihood of the measurements y = Ax, y ∈ Rm, and
the prior on the weights w as Gaussian distributions given by

p(y|w) =

exp

(
−‖y −AG(z;w)‖2

2λL

)
√

(2πλL)m
; p(w) =

exp
(
− 1

2 (w − µ)
T

Σ−1 (w − µ)
)

√
(2π)d|Σ|

,

where µ ∈ Rd and Σ ∈ Rd×d.

In this setting we want to find a set of weights w∗ that maximizes the posterior on w given y, i.e.,

w∗ = arg max
w

p(w|y) ≡ arg min
w

‖y −AG(z;w)‖2 + λL (w − µ)
T

Σ−1 (w − µ) . (4)

This gives us the learned regularization term

LR(w) = (w − µ)
T

Σ−1 (w − µ) , (5)

where the coefficient λL in Eqn. 4 controls the strength of the prior.

Our motivation for assuming a Gaussian distribution on the weights is to build upon the proven
success of `2 regularization, which also makes this assumption. Notice that when µ = 0 and Σ =
Id×d, this regularization term is equivalent to `2-regularization. Thus this method can be thought of
as an adaptive version of standard weight decay. Further, because the network weights are initialized
Gaussian i.i.d., we assumed the optimized weights would also be Gaussian. Previous work has
shown evidence that the convolutional weights in a trained network do indeed follow a Gaussian
distribution (Ma et al., 2018).
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3.2.1 LEARNING THE PRIOR PARAMETERS

In the previous section, we introduced the learned regularization term LR(w) defined in Eqn. 5.
However we have not yet learned values for parameters (µ,Σ) that incorporate prior knowledge of
the network weights. We now propose a way to estimate these parameters.

Assume we have a set of measurements SY = {y1, y2, · · · , yQ} from Q different images SX =
{x1, x2, · · · , xQ}, each obtained with a different measurement matrix A. For each measurement
yq, q ∈ {1, 2, ..., Q}, we run CS-DIP to solve the optimization problem in Eqn. 3 and obtain an
optimal set of weights W ∗ = {w∗1 , w∗2 , · · · , w∗Q}. Note that when optimizing for the weights W ∗,
we only have access to the measurements SY , not the ground truth SX .

The number of weights d in deep networks tends to be very large. As such, learning a distribution
over each weight, i.e. estimating µ ∈ Rd and Σ ∈ Rd×d, becomes intractable. We instead use
a layer-wise approach: with L network layers, we have µ ∈ RL and Σ ∈ RL×L. Thus each
weight within layer l ∈ {1, 2, ..., L} is modeled according to the same N (µl, Σll) distribution. For
simplicity we assume Σij = 0 ∀ i 6= j, i.e. that network weights are independent across layers. The
process of estimating statistics (µ,Σ) from W ∗ is described in Algorithm 1 of the appendix.

We use this learned (µ,Σ) in the regularization term LR(w) from Eqn. 5 for reconstructing mea-
surements of images. We refer to this technique as learned regularization. While this may seem
analogous to batch normalization (Ioffe & Szegedy, 2015), note that we only use (µ,Σ) to penalize
the `2-norm of the weights and do not normalize the layer outputs themselves.

3.2.2 DISCUSSION OF LEARNED REGULARIZATION

The proposed CS-DIP does not require training if no learned regularization is used, i.e. if λL = 0
in Eqn. 3. This means that CS-DIP can be applied only with measurements from a single image and
no prior information of similar images in a dataset.

Our next idea, learned regularization, utilizes a small amount of prior information, requiring access
to measurements from a small number of similar images (roughly 5 − 10). In contrast, other pre-
trained models such as that of Bora et al. (2017) require access to ground truth from a massive
number of similar images (tens of thousands for CelebA). If such a large dataset is available, and
if a good generative model can be trained on that dataset, we expect that pre-trained models would
outperform our method. Our approach is instead more suitable for reconstructing problems where
large amounts of data or good generative models are not readily available.

4 THEORETICAL RESULTS

In this section we provide theoretical evidence to highlight the importance of early stopping for DIP-
based approaches. Here we focus on denoising a noisy signal y ∈ Rn by optimizing over network
weights. This problem takes the form:

min
w
L(w) := ‖y −G(z;w)‖2. (6)

This is a special instance of Eqn. 2 with the measurement matrix A = I corresponding to denoising.
We focus on generators consisting of a single hidden-layer ReLU network with k inputs, d hidden
units, and n outputs. Using w = (W,V ) the generator model in this case is given by

G(z;W,V ) = V · ReLU(Wz), (7)

where z ∈ Rk is the input, W ∈ Rd×k the input-to-hidden weights, and V ∈ Rn×d the hidden-
to-output weights. We assume V is fixed at random and train over W using gradient descent. With
these formulations in place, we are now ready to state our theoretical result.
Theorem 4.1. Consider fitting a generator of the form W 7→ G(z;W,V ) = V · ReLU (Wz) to a
signal y ∈ Rn with z ∈ Rk, W ∈ Rd×k, V ∈ Rn×d, and ReLU(z) = max(0, z). Furthermore,
assume V is a random matrix with i.i.d.N (0, ν2) entries with ν = 1√

dn

‖y‖
‖z‖ . Starting from an initial

weight matrix W0 selected at random with i.i.d.N (0, 1) entries, we run gradient descent updates of
the form Wτ+1 = Wτ − η∇L(Wτ ) on the loss

L(W ) =
1

2
‖V · ReLU (Wz)− y‖2 ,
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with step size η = η̄
‖y‖2

8n
4n+d where η̄ ≤ 1. Assuming that

d ≥ Cn,
with C a fixed numerical constant, then

‖V · ReLU (Wτz)− y‖ ≤ 3

(
1− η̄

8(4n+ d)

)τ
‖y‖

holds for all τ with probability at least 1− 5e−n/2 − e−d/2 − e−4d
2
3 n

1
3 .

Our theoretical result shows that after many iterative updates, gradient descent will solve this non-
convex optimization problem and fit any signal y, if the generator network is sufficiently wide. This
occurs as soon as the number of hidden units d exceeds the signal size n by a constant factor. In our
theorem we have focused on the case where the measurement matrix is the identity (A = I). We
note however that our theorem directly applies to many compressed sensing measurement matrices,
in particular any matrix obtained by subsampling the rows of an orthonormal matrix (e.g. sub-
sampling a Fourier matrix). This is possible as for any such matrix, AV has the same distribution
as a Gaussian matrix with i.i.d. entries. Therefore, our theorem directly applies in this setting
by replacing V with AV . This result demonstrates that early stopping is necessary for DIP-based
methods to be successful; otherwise the network can fit any signal, including one that is noisy.

Our proof builds on theoretical ideas from Oymak & Soltanolkotabi (2019) which provide a general
framework for establishing global convergence guarantees for overparameterized nonlinear learning
problems based on various properties of the Jacobian mapping along the gradient descent trajectory.
Related literature can be found in Du et al. (2018); Oymak & Soltanolkotabi (2018). We combine
tools from empirical process theory, random matrix theory, and matrix algebra to show that, starting
from a random initialization, the Jacobian mapping across all iterates has favorable properties with
high probability, hence facilitating convergence to a global optima.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Measurements: We evaluate our algorithm using two different measurements processes, i.e. matri-
ces A ∈ Rm×n. First we set the entries of A to be Gaussian i.i.d. such that Ai,j ∼ N (0, 1

m ). Recall
m is the number of measurements, and n is the number of pixels in the ground truth image. This
measurement process is standard practice in compressed sensing literature; hence we use it on each
dataset. Additionally we use a Fourier measurement process common in MRI applications (Mardani
et al., 2018; 2017a; Hammernik et al., 2018; Lehtinen et al., 2018; Lustig et al., 2008).

Datasets: We use our algorithm to reconstruct both grayscale and RGB images. For grayscale we
use the first 100 images in the test set of MNIST (LeCun et al., 1998) and also 60 random images
from the Shenzhen Chest X-Ray Dataset (Jaeger et al., 2014), downsampling a 512x512 crop to
256x256 pixels. For RGB we use retinopathy images from the STARE dataset (Hoover et al., 2000)
with 512x512 crops downsized to 128x128 pixels.

Table 1: Evaluating the benefits of learned regularization (LR) on x-ray images with varying levels
of noise and number of measurements. Table values are percent decrease in error, e.g. at σ2

η = 0

and m = 500, LR reduces MSE by 9.9%. The term σ2
η corresponds to variance of the noise vector

η in Eqn. 1, i.e. each entry of η is drawn independently N (0,
σ2
η

m ). These results indicate that LR
tends to provide greater benefit with noisy signals and with fewer measurements.

Measurements, m
σ2
η 500 1000 2000 4000 8000

0 9.9% 2.9% 0.2% 2.0% 0.6%
10 11.6% 4.6% 4.5% 2.4% 1.0%
100 14.9% 19.2% 5.0% 3.9% 2.8%
1000 37.4% 30.6% 19.8% 3.0% 6.2%
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Figure 1: Per-pixel reconstruction error (MSE) vs. number of measurements. Vertical bars indicate
95% confidence intervals. BM3D-AMP frequently fails to converge for fewer than 4000 measure-
ments on x-ray images, as denoted by error values far above the vertical axis.

Baselines: We compare our algorithm to state-of-the-art unlearned methods such as BM3D-
AMP (Metzler et al., 2016; 2015), TVAL3 (Li, 2011; Li et al., 2009; Zhang et al., 2013), and Lasso
in a DCT basis (Ahmed et al., 1974). We also evaluated the performance of Lasso in a Daubechies
wavelet basis (Daubechies, 1988; Wasilewski, 2010) but found this performed worse than Lasso -
DCT on all datasets. Thus hereon we refer to Lasso - DCT as “Lasso” and do not include results of
Lasso - Wavelet.

Metrics: To quantitatively evaluate the performance of our algorithm, we use per-pixel mean-
squared error (MSE) between the reconstruction x̂ and true image x∗, i.e. ‖x̂−x∗‖2

n . Note that
because these pixels are over the range [−1, 1], it’s possible for MSE to be greater than 1.

Implementation: To find a set of weights w∗ that minimize Eqn. 3, we use PyTorch (Paszke et al.,
2017) with a DCGAN architecture. For baselines BM3D-AMP and TVAL3, we use the repositories
provided by the authors Metzler et al. (2018) and Li et al., respectively. For baseline reconstructions
Lasso, we use scikit-learn (Pedregosa et al., 2011). Section A in the appendix provides further details
on our experimental procedures, e.g. choosing hyperparameters. The supplementary material also
contains our code repository for these experiments.

5.2 EXPERIMENTAL RESULTS

5.2.1 RESULTS: LEARNED REGULARIZATION

We first evaluate the benefits of learned regularization by comparing our algorithm with and without
learned regularization, i.e. λL = 100 and λL = 0, respectively. The latter setting is an unlearned
method, as we are not leveraging (µ,Σ) from a specific dataset. In the former setting we first learn
(µ,Σ) from a particular set of x-ray images; we then evaluate on a different set of x-ray images. We
compare these two settings with varying noise and across different number of measurements.

Our results in Table 1 show that learned regularization does indeed provide benefit. This bene-
fit tends to increase with more noise or fewer measurements. Thus we can infer that assuming a
learned Gaussian distribution over weights is useful, especially when the original signal is noisy or
significantly compressed.

5.2.2 RESULTS: UNLEARNED CS-DIP

For the remainder of this section, we evaluate our algorithm in the noiseless case without learned
regularization, i.e. when η = 0 in Eqn. 1 and λL = 0 in Eqn. 3. Hence CS-DIP is completely
unlearned; as such, we compare it to other state-of-the-art unlearned algorithms on various datasets
and with different measurement matrices.
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Figure 2: Reconstruction results on x-ray images for m = 2000 measurements (of n = 65536 pixels)
and MNIST for m = 75 measurements (of n = 784 pixels). From top to bottom row: original
image, reconstructions by our algorithm, then reconstructions by baselines BM3D-AMP, TVAL3,
and Lasso. For x-ray images the number of measurements obtained are 3% the number of pixels
(i.e. mn = .03), for which BM3D-AMP often fails to converge.

MNIST: In Figure 1b we plot reconstruction error with varying number of measurements m of n
= 784. This demonstrates that our algorithm outperforms baselines in almost all cases. Figure 2b
shows reconstructions for 75 measurements, while remaining reconstructions are in the appendix.

Chest X-Rays: In Figure 1a we plot reconstruction error with varying number of measurements m
of n = 65536. Figure 2a shows reconstructions for 2000 measurements; remaining reconstructions
are in the appendix. On this dataset we outperform all baselines except BM3D-AMP for higher m.
However for lower m, e.g. when the ratio m

n ≤ 3%, BM3D-AMP often doesn’t converge. This
finding seems to support the work of Metzler et al. (2015): BM3D-AMP performs well on higher
m, e.g. mn ≥ 10%, but recovery at lower sampling rates is not demonstrated.

Retinopathy: We plot reconstruction error with varying number of measurements m of n = 49152
in Figure 3a of the appendix. On this RGB dataset we quantitatively outperform all baselines except
BM3D-AMP on higher m; however, even at these higher m, patches of green and purple pixels
corrupt the image reconstructions as seen in Figure 10. Similar to x-ray for lower m, BM3D-AMP
often fails to produce anything sensible. All retinopathy reconstructions are located in the appendix.

Fourier Measurement Process: All previous experiments used a measurement matrixA containing
Gaussian i.i.d. entries. We now consider the case where the measurement matrix is a subsampled
Fourier matrix, as discussed in Section A of the appendix. Our algorithm outperforms baselines on
the x-ray dataset, as shown in the appendix Figure 3b.

Additional Experiments, Appendix A: In Figure 4a we compare our algorithm against the learned
approach of Bora et al. (2017). In Figure 4b we compare our algorithm against baselines in the
presence of noise, i.e. when η 6= 0 in Eqn. 1. We also demonstrate runtimes for all algorithms on
the x-ray dataset in Table 2.

6 CONCLUSION

We demonstrate how Deep Image Prior (DIP) can be generalized to solve any differentiable linear
inverse problem. We further propose a learned regularization method which, with a small amount of
prior information, reduces reconstruction error for noisy or compressed measurements. Lastly we
prove that the DIP optimization technique can fit any signal given a sufficiently wide single-layer
network. This provides theoretical justification for regularization methods such as early stopping.
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A ADDITIONAL EXPERIMENTS, DETAILS, AND INSIGHTS

Hyperparameters: Our algorithm CS-DIP is implemented in PyTorch using the RMSProp opti-
mizer (Tieleman & Hinton, 2012) with learning rate 10−3, momentum 0.9, and 1000 update steps
for every set of measurements. These parameters are the same across all datasets. We initialize one
random measurement matrix A for each image in all experiments. Further we set the TV hyperpa-
rameter λT = 0.01, and found that high frequency components of the image were not reconstructed
as sharply with λT = 0.

Dataset-specific design choices: On larger images such as x-ray (n = 65536) and retinopathy
(n = 49152), we found no difference using random restarts of the initial seed z. However for smaller
vectors such as MNIST (n = 784), restarts did provide some benefit. As such our experiments utilize
5 random restarts for MNIST and one initial seed (no restarts) for x-ray and retinopathy images. For
choosing hyperparameter λL in Eqn. 3, we used a standard grid search and selected the best one.
We used a similar grid search procedure for choosing dataset-specific hyperparameters in baseline
algorithms BM3D-AMP, TVAL3, and Lasso.

Learned Regularization: For learned regularization, 10 x-ray images are used to learn µ and Σ.
The results are then evaluated, i.e. averaged over x∗, on 50 additional x-ray images.

Network Architecture: Our network has depth 7 and uses convolutional layers with ReLU activa-
tions. The initial seed z in Eqn. 3 is initialized with random Gaussian i.i.d. entries and then held
fixed as we optimize over network weights w. We found negligible difference when varying the
dimension of z (within reason), as this only affects the number of channels in the network’s first
layer. Hence we set the dimension of z to be 128, a standard choice for DCGAN architectures.

Stopping Criterion: We stop after 1000 iterations in all experiments. We did not optimize this
hyperparameter, so admittedly there could be room for improvement. We further note that the “Error
vs. Iterations” curve of CS-DIP with RMSProp did not monotonically decrease for some learning
rates, even though error gradually decreased in all cases. As such we implemented a stopping
condition which chooses the reconstruction with least error over the last 20 iterations. Note we
choose this reconstruction based off measurement loss and do not look at the ground truth image.

Fourier Sampling: The measurements are obtained by sampling Fourier coefficients along radial
lines as demonstrated in Figure 13. For a 2D image x and a set of indices Ω, the measurements
we receive are given by y(i,j) = [F(x)](i,j), (i, j) ∈ Ω, where F is the 2D Fourier transform. We
choose Ω to be indices along radial lines, as shown in Figure 13 of the appendix; this choice of Ω
is common in literature (Candès et al., 2006) and MRI applications (Mardani et al., 2017a; Lustig
et al., 2008; Eksioglu & Tanc, 2018). While Fourier subsampling is common in MRI applications,
we use it here on images of x-rays simply to demonstrate that our algorithm performs well with
different measurement processes.

We compare our algorithm to baselines on the x-ray dataset for {3, 5, 10, 20} radial lines in the
Fourier domain, which corresponds to {381, 634, 1260, 2500} Fourier coefficients, respectively. We
plot reconstruction error with varying number of Fourier coefficients in Figure 3b, outperforming
baselines. Reconstructions be found in Figure 14.

Table 2: Runtime (seconds) for each algorithm with varying number of measurements. Note that
our algorithm was run on a NVIDIA GTX 1080-Ti GPU, while baselines only leverage CPU. Thus
our goal here is not to compare runtimes; instead we demonstrate that our algorithm can run in a
reasonable amount of time, which is an issue with other DIP methods.

Algorithm 1000 2000 4000 8000
CS-DIP 15.6 17.1 20.4 29.9
BM3D-AMP 51.1 54.0 67.8 71.2
TVAL3 13.8 22.1 31.9 56.7
Lasso DCT 27.1 33.0 52.2 96.4
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(b) MSE - Chest X-ray with Fourier measurements

Figure 3: Per-pixel reconstruction error (MSE) vs. number of measurements. Vertical bars indi-
cate 95% confidence intervals. Unfortunately an RGB version of TVAL3 does not currently exist,
although related TV algorithms such as FTVd perform similar denoising tasks (Wang et al., 2008).
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(a) Reconstruction error (MSE) on MNIST for
varying number of measurements. As expected, the
trained algorithm of Bora et al. (CSGM) outper-
forms our method for fewer measurements; how-
ever, CSGM saturates after 75 measurements, as its
output is constrained to the range of the generator.
This saturation is discussed in Bora et al., Section
6.1.1.
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Figure 4

Algorithm 1 Estimate (µ, Σ) for a distribution of optimal network weights W ∗

Input: Set of optimal weights W ∗ = {w∗1 , w∗2 , · · · , w∗Q} obtained from L-layer DCGAN run over
Q images; number of samples S; number of iterations T .
Output: Mean vector µ ∈ RL; covariance matrix Σ ∈ RL×L.

1: for t = 1 toT do
2: Sample q uniformly from {1, ..., Q}
3: for l = 1 toL {for each layer} do
4: Get v ∈ RS , a vector of S uniformly sampled weights from the lth layer of w∗q
5: Mt[l, :]← vT where Mt[l, :] is the lth row of matrix Mt ∈ RL×S

6: µt[l]← 1
S

∑S
i=1 vi

7: end for
8: Σt ← 1

SMtM
T
t − µtµTt

9: end for
10: µ← 1

T

∑T
t=1 µt

11: Σ← 1
T

∑T
t=1 Σt
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B PROOF OF SECTION 4: THEORETICAL JUSTIFICATION FOR EARLY
STOPPING

In this section we prove our theoretical result in Theorem 4.1. We begin with a summary of some
notations we use throughout in Section B.1. Next, we state some preliminary calculations in Section
B.2. Then, we state a few key lemmas in Section B.3 with the proofs deferred to Appendix C.
Finally, we complete the proof of Theorem 4.1 in Section B.4.

B.1 NOTATION

In this section we gather some notation used throughout the proofs. We use φ(z) =ReLU(z) =
max(0, z) with φ′(z) = I{z≥0}. For two matrices/vectors x and y of the same size we use x� y to
denote the entrywise Hadamard product of these two matrices/vectors. We also use x⊗ y to denote
their Kronecker product. For two matrices B ∈ Rn×d1 and C ∈ Rn×d2 , we use the Khatrio-Rao
product as the matrix A = B ∗ C ∈ Rn×d1d2 with rows Ai given by Ai = Bi ⊗ Ci. For a matrix
M ∈ Rm×n we use vect(M) ∈ Rmn to denote a vector obtained by aggregating the rows of the
matrix M into a vector, i.e. vect(M) = [M1 M2 . . . Mm]

T . For a matrix X we use σmin(X)
and ‖X‖ denotes the minimum singular value and spectral norm of X . Similarly, for a symetric
matrix M we use λmin(M) to denote its smallest eigenvalue.

B.2 PRELIMINARIES

In this section we carryout some simple calculations yielding simple formulas for the gradient and
Jacobian mappings. We begin by noting we can rewrite the gradient descent iterations in the form

vect (Wτ+1) = vect (Wτ )− ηvect (∇L (Wτ )) .

Here,

vect (∇L (Wτ )) = J T (Wτ )r (Wτ ) ,

where

J (W ) =
∂

∂vect (W )
f(W ) and

is the Jacobian mapping associated to the network and

r (W ) = φ (V φ (Wz))− y.

is the misfit or residual vector. Note that

∂

∂vect (W )
vTφ (Wz) =

[
v1φ
′ (wT1 z)xT v2φ

′ (wT2 z)xT . . . vkφ
′ (wTk z)xT ]

= (v � φ′ (Wx))
T ⊗ xT

Thus

J (W ) = (V diag (φ′(Wz))) ∗
(
1zT

)
,

This in turn yields

J (W )J T (W ) =
(
V diag (φ′(Wz)) diag (φ′(Wz))V T

)
�
(
‖z‖2 11T

)
= ‖z‖2 V diag (φ′(Wz)� φ′(Wz))V T (8)

B.3 LEMMAS FOR CONTROLLING THE SPECTRUM OF THE JACOBIAN AND INITIAL MISFIT

In this section we state a few lemmas concerning the spectral properties of the Jacobian mapping,
its perturbation and initial misfit of the model with the proofs deferred to Appendix C.
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Lemma B.1 (Minimum singular value of the Jacobian at initialization). Let V ∈ Rn×d and W ∈
Rd×k be random matrices with i.i.d.N (0, ν2) andN (0, 1) entries and define the Jacobian mapping
J (W ) = (V diag (φ′(Wz))) ∗

(
1zT

)
. Then as long as d ≥ 3828n,

σmin (J (W )) ≥ 1

2
ν
√
d ‖z‖ .

holds with probability at least 1− 2e−n.

Lemma B.2 (Perturbation lemma). Let V ∈ Rn×d be a matrix with i.i.d. N (0, ν2) entries, W ∈
Rd×k, and define the Jacobian mapping J (W ) = (V diag (φ′(Wz))) ∗

(
1zT

)
. Also let W0 be a

matrix with i.i.d. N (0, 1) entries. Then,

‖J (W )− J (W0)‖ ≤ ν ‖z‖

2
√
n+

√√√√6 (2dR)
2
3 log

(
d

3 (2dR)
2
3

) ,

holds for all W ∈ Rd×k obeying ‖W −W0‖ ≤ R with probability at least 1− e−n/2 − e−
(2dR)

2
3

6 .

Lemma B.3 (Spectral norm of the Jacobian). Let V ∈ Rn×d be a matrix with i.i.d.N (0, ν2) entries,
W ∈ Rd×k, and define the Jacobian mapping J (W ) = (V diag (φ′(Wz))) ∗

(
1zT

)
. Then,

‖J (W )‖ ≤ ν
(√

d+ 2
√
n
)
‖z‖ ,

holds for all W ∈ Rd×k with probability at least 1− e−n/2.

Lemma B.4 (Initial misfit). Let V ∈ Rn×d be a matrix with i.i.d. N (0, ν2) entries with ν =
1√
dn

‖y‖
‖z‖ . Also let W ∈ Rd×k be a matrix with i.i.d. N (0, 1) entries. Then

‖V φ (Wz)− y‖ ≤ 3 ‖y‖ ,

holds with probability at least 1− e−n/2 − e−d/2.

B.4 PROOF OF THEOREM 4.1

Consider a nonlinear least-squares optimization problem of the form

min
θ∈Rp

L(θ) :=
1

2
‖f(θ)− y‖2 ,

with f : Rp 7→ Rn and y ∈ Rn. Suppose the Jacobian mapping associated with f obeys the
following three assumptions.

Assumption 1. Fix a point θ0. We have that σmin (J (θ0)) ≥ 2α.

Assumption 2. Let ‖ · ‖ denote a norm that is dominated by the Euclidean norm i.e. ‖θ‖ ≤ ‖θ‖
holds for all θ ∈ Rp. Fix a point θ0 and a number R > 0. For any θ satisfying ‖θ − θ0‖ ≤ R, we
have that ‖J (θ0)− J (θ)‖ ≤ α/3.

Assumption 3. For all θ ∈ Rp, we have that ‖J (θ)‖ ≤ β.

Under these assumptions we can state the following theorem from Oymak & Soltanolkotabi (2019).

Theorem B.5 (Non-smooth Overparameterized Optimization). Given θ0 ∈ Rp, suppose Assump-
tions 1, 2, and 3 hold with

R =
5 ‖y − f(θ0)‖

α
.

Then, picking constant learning rate η ≤ 1
β2 , all gradient iterations obey the followings

‖y − f(θτ )‖ ≤ (1− ηα2

4
)τ ‖y − f(θ0)‖ (9)

α

5
‖θτ − θ0‖+ ‖y − f(θτ )‖ ≤ ‖y − f(θ0)‖ . (10)
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We shall apply this theorem to the case where the parameter is W and the nonlinear mapping is
given by V φ (Wz) and φ = ReLU . All that is needed to be able to apply this theorem is check that
the assumptions hold. Per the assumptions of the theorem we use

ν =
1√
dn

‖y‖
‖z‖

.

To this aim note that using Lemma B.1 Assumption 1 holds with

α =
1

4
ν
√
d ‖z‖ =

1

4
√
n
‖y‖ ,

with probability at least 1− 2e−n. Furthermore, by Lemma B.3 Assumption 3 holds with

β =
‖y‖√

8n

√
4n+ d ≥ 1

2

(√
d

4n
+ 1

)
‖y‖ = ν

(√
d+ 2

√
n
)
‖z‖ .

with probability at least 1 − e−n/2. All that remains for applying the theorem above is to verify
Assumption 2 holds with high probability

R = 60
√
n = 15

‖y‖
α
≥ 5

α
‖V φ (Wz)− y‖

In the above we have used Lemma B.4 to conclude that ‖V φ (Wz)− y‖ ≤ 3 ‖y‖ holds with proba-
bility at least 1− e−n/2 − e−d/2. Thus, using Lemma B.2 all that remains is to show that

1√
dn
‖y‖

2
√
n+

√√√√6 (2dR)
2
3 ln

(
d

3 (2dR)
2
3

) ≤ α

3
=

1

12
√
n
‖y‖ ,

holds with R = 60
√
n and with probability at least 1 − e−n/2 − e−

(120)
2
3

6 d
2
3 n

1
3 ≥ 1 − e−n/2 −

e−4d
2
3 n

1
3 . The latter is equivalent to

2
√
n+

√√√√6
(
120d

√
n
) 2

3 ln

(
d

3 (120d
√
n)

2
3

)
≤
√
d

12
,

which can be rewritten in the form

2

√
n

d
+

√√√√6 (120)
2
3 3

√
n

d
ln

(
1

3(120)
2
3 3
√

n
d

)
≤ 1

12
,

which holds as long as d ≥ 4.3×1015n. Thus with d ≥ Cn then Assumptions 1, 2, and 3 holds with

probability at least 1−5e−n/2−e−d/2−e−4d
2
3 n

1
3 . Thus, Theorem B.5 holds with high probability.

Applying Theorem B.5 completes the proof.

C PROOF OF LEMMAS FOR THE SPECTRAL PROPERTIES OF THE JACOBIAN

C.1 PROOF OF LEMMA B.1

We prove the result for ν = 1, the general result follows from a simple re-scaling. Define the vectors
a` = V`φ

′ (〈w`, z〉) ∈ Rn,
with V` the `th column of V . Using equation 8 we have

J (W )J T (W ) = ‖z‖2 V diag (φ′(Wz)� φ′(Wz))V T ,

= ‖z‖2
(

d∑
`=1

a`a
T
`

)
,

=d ‖z‖2
(

1

d

d∑
`=1

a`a
T
`

)
. (11)

To bound the minimum eigenvalue we state a result from Oliveira (2013).
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Theorem C.1. Assume A1, . . . , Ad ∈ Rn×n are i.i.d. random positive semidefinite matrices whose
coordinates have bounded second moments. Define Σ := E[A1] (this is an entry-wise expectation)
and

Σ̂d =
1

d

d∑
`=1

A`.

Let h ∈ (1,+∞) be such that
√
E
[

(uTA1u)
2 ] ≤ huTΣu for all u ∈ Rn. Then for any δ ∈ (0, 1)

we have

P

{
∀u ∈ Rn : uT Σ̂ku ≥

(
1− 7h

√
n+ 2 ln(2/δ)

d

)
uTΣu

}
≥ 1− δ

We shall apply this theorem withA` := a`a
T
` . To do this we need to calculate the various parameters

in the theorem. We begin with Σ and note that for ReLU we have

Σ :=E[A1]

=E
[
a1a

T
1

]
=Ew∼N (0,Ik)

[
(φ′(〈w, z〉))2 ]Ev∼N (0,In)[vv

T ]

=Ew∼N (0,Ik)

[ (
φ′(wT z)

)2 ]
In

=Ew∼N (0,Ik)

[
I{wT z≥0}

]
In

=
1

2
In.

To calculate h we have√
E
[

(uTA1u)
2 ] ≤√E

[ (
aT1 u

)4 ]
≤
√

Ew∼N (0,Ik)

[
I{wT z≥0}

]
· Ev∼N (0,In)

[
(vTu)

4
]

≤
√

3

2
‖u‖4

≤
√

3√
2
‖u‖2

=
√

6uT
(

1

2
In

)
u

=
√

6 · uTΣu.

Thus we can take h =
√

6. Therefore, using Theorem C.1 with δ = 2e−n we can conclude that

λmin

(
1

d

d∑
`=1

a`a
T
`

)
≥ 1

4

holds with probability at least 1− 2e−n as long as

d ≥ 3528 · n.
Plugging this into equation 11 we conclude that with probability at least 1− 2e−n

σmin (J (W )) ≥ 1

2

√
d ‖z‖ .

C.2 PROOF OF LEMMA B.2

We prove the result for ν = 1, the general result follows from a simple rescaling. Based on equa-
tion 8 we have

(J (W )− J (W0)) (J (W )− J (W0))
T

= ‖z‖2 V diag ((φ′(Wz)− φ′(W0z))� (φ′(Wz)− φ′(W0z)))V
T .
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Thus

‖J (W )− J (W0)‖ ≤‖z‖ ‖V diag (φ′(Wz)− φ′(W0z))‖ c (12)

= ‖z‖
∥∥V diag

(
I{Wz≥0} − I{W0z≥0}

)∥∥
≤‖z‖

∥∥VS(W )

∥∥ , (13)

where S(W ) ⊂ {1, 2, . . . , d} is the set of indices where Wz and W0z have different signs
i.e. S(W ) := {` : sgn(eT` Wz) 6= sgn(eT` W0z)} and VS(W ) is a submatrix V obtained by pick-
ing the columns corresponding to S(W ).

To continue further note that by Gordon’s lemma we have

sup
|S|≤s

‖VS‖ ≤
√
n+

√
2s log(d/s) + t,

with probability at least 1− e−t2/2. In particular using t =
√
n we conclude that

sup
|S|≤s

‖VS‖ ≤ 2
√
n+

√
2s log(d/s), (14)

with probability at least 1 − e−n/2. To continue further we state a lemma controlling the size of
|S(W )| based on the size of the radius R.

Lemma C.2 (sign changes in local neighborhood). Let W0 ∈ Rd×k be a matrix with i.i.d. N (0, 1)
entries. Also for a matrix W ∈ Rd×k define S(W ) := {` : sgn(eT` Wz) 6= sgn(eT` W0z)}. Then for
any W ∈ Rd×k obeying ‖W −W0‖ ≤ R

|S(W )| ≤ 2d(2dR)
2
3 e

holds with probability at least 1− e−
(2dR)

2
3

6 .

Combining equation 12 together with equation 14 (using s = 3 (2dR)
2
3 ) and Lemma C.2 we con-

clude that

‖J (W )− J (W0)‖ ≤ ‖z‖

2
√
n+

√√√√6 (2dR)
2
3 log

(
d

3 (2dR)
2
3

)
holds with probability at least 1− e−n/2 − e−

(2dR)
2
3

6 .

C.3 PROOF OF LEMMA C.2

To prove this result we utilize two lemmas from Oymak & Soltanolkotabi (2019). In these lemmas
we use |v|m− to denote themth smallest entry of v after sorting its entries in terms of absolute value.

Lemma C.3. (Oymak & Soltanolkotabi, 2019, Lemma C.2) Given an integer m, suppose

‖W −W0‖ ≤
√
m
|W0z|m−
‖z‖

,

then

|S(W )| ≤ 2m.

Lemma C.4. (Oymak & Soltanolkotabi, 2019, Lemma C.3) Let z ∈ Rk. Also let W0 ∈ Rd×k be a
matrix with i.i.d. N (0, 1) entries. Then, with probability at least 1− e−m6 ,

|W0z|m−
‖z‖

≥ m

2d
.
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Combining the latter two lemmas with m = d(2dR)
2
3 e we conclude that when

‖W −W0‖ ≤R

≤m
3
2

2d

≤
√
m
m

2d

≤
√
m
|W0z|m−
‖z‖

,

then with probability at least 1− e−
(2dR)

2
3

6 we have

|S(W )| ≤ 2m ≤ 2d(2dR)
2
3 e.

C.4 PROOF OF LEMMA B.3

We prove the result for ν = 1, the general result follows from a simple rescaling. Using equation 8
we have

J (W )J T (W ) = ‖z‖2 V diag (φ′(Wz)� φ′(Wz))V T

Thus

‖J (W )‖ ≤‖z‖ ‖V diag (φ′(Wz))‖
≤‖z‖ ‖V ‖

The proof is complete by using standard concentration results for the spectral norm of a Gaussian
matrix that allow us to conclude that

‖V ‖ ≤
√
d+ 2

√
n,

holds with probability at least 1− e−n/2.

C.5 PROOF OF LEMMA B.4

By the triangular inequality we have

‖V φ (Wz)− y‖ ≤ ‖V φ (Wz)‖+ ‖y‖ (15)

To continue further let us consider one entry of V φ (Wz) and note that it has the same distribution
as

V φ (Wz) ∼ ν ‖φ(Wz)‖ g,

where g ∈ Rd is random Gaussian vectors with distribution g ∼ N (0, Id). Thus

‖V φ (Wz)‖ ∼ ν ‖φ(Wz)‖ ‖g‖ ≤
√

2nν ‖φ(Wz)‖ ≤
√

2nν ‖Wz‖ , (16)

with probability at least 1− e−n/2. Furthermore, note that

Wz ∼ ‖z‖ g̃,

where g̃ ∈ Rd is random Gaussian vectors with distribution g̃ ∼ N (0, Id). Combining the latter
with equation 16 we conclude that

‖V φ (Wz)‖ ≤ 2
√
ndν ‖z‖ = 2 ‖y‖ ,

holds with probability at least 1−e−n/2−e−d/2. Combining the latter with equation 15 we conclude
that

‖V φ (Wz)− y‖ ≤ 3 ‖y‖ ,

holds with probability at least 1− e−n/2 − e−d/2.
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D RECONSTRUCTIONS
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(b) 50 measurements

Figure 5: Reconstruction results on MNIST for m = 25, 50 measurements respectively (of n = 784
pixels). From top to bottom row: original image, reconstructions by our algorithm, then reconstruc-
tions by baselines BM3D-AMP, TVAL3, and Lasso.
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(a) 100 measurements
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(b) 200 measurements

Figure 6: Reconstruction results on MNIST for m = 100, 200 measurements respectively (of n
= 784 pixels). From top to bottom row: original image, reconstructions by our algorithm, then
reconstructions by baselines BM3D-AMP, TVAL3, and Lasso.
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(a) 500 measurements
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(b) 1000 measurements

Figure 7: Reconstruction results on x-ray images for m = 500, 1000 measurements respectively (of
n = 65536 pixels). From top to bottom row: original image, reconstructions by our algorithm, then
reconstructions by baselines BM3D-AMP, TVAL3, and Lasso.
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(a) 4000 measurements
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(b) 8000 measurements

Figure 8: Reconstruction results on x-ray images for m = 4000, 8000 measurements respectively (of
n = 65536 pixels). From top to bottom row: original image, reconstructions by our algorithm, then
reconstructions by baselines BM3D-AMP, TVAL3, and Lasso.
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Figure 9: Reconstruction results on retinopathy images for m = 500, 1000 measurements respec-
tively (of n = 49152 pixels). From top to bottom row: original image, reconstructions by our algo-
rithm, then reconstructions by baselines BM3D-AMP and Lasso.
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Figure 10: Reconstruction results on retinopathy images for m = 2000 measurements (of n = 49152
pixels). From top to bottom row: original image, reconstructions by our algorithm, then recon-
structions by baselines BM3D-AMP and Lasso. In this case the number of measurements is much
smaller than the number of pixels (roughly 4% ratio), for which BM3D-AMP fails to converge, as
demonstrated by erroneous green and purple pixels. We recommend viewing in color.
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Figure 11: Reconstruction results on retinopathy images for m = 4000 (of n = 49152 pixels). From
top to bottom row: original image, reconstructions by our algorithm, then reconstructions by base-
lines BM3D-AMP and Lasso.
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Figure 12: Reconstruction results on retinopathy images for m = 8000 (of n = 49152 pixels). From
top to bottom row: original image, reconstructions by our algorithm, then reconstructions by base-
lines BM3D-AMP and Lasso.
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Figure 13: A radial sampling pattern of coefficients Ω in the Fourier domain. The measurements are
obtained by sampling Fourier coefficients along these radial lines.
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Figure 14: Reconstruction results on x-ray images for m = 1260 Fourier coefficients (of n = 65536
pixels). From top to bottom row: original image, reconstructions by our algorithm, then reconstruc-
tions by baselines BM3D-AMP and TVAL3.
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