
Under review as a conference paper at ICLR 2020

EFFICIENT EXPLORATION VIA
STATE MARGINAL MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning agents need to explore their unknown environments to
solve the tasks given to them. The Bayes optimal solution to exploration is in-
tractable for complex environments, and while several exploration methods have
been proposed as approximations, it remains unclear what underlying objective
is being optimized by existing exploration methods, or how they can be altered
to incorporate prior knowledge about the task. Moreover, it is unclear how to
acquire a single exploration strategy that will be useful for solving multiple down-
stream tasks. We address these shortcomings by learning a single exploration
policy that can quickly solve a suite of downstream tasks in a multi-task setting,
amortizing the cost of learning to explore. We recast exploration as a problem
of State Marginal Matching (SMM), where we aim to learn a policy for which
the state marginal distribution matches a given target state distribution, which can
incorporate prior knowledge about the task. We optimize the objective by reducing
it to a two-player, zero-sum game between a state density model and a parametric
policy. Our theoretical analysis of this approach suggests that prior exploration
methods do not learn a policy that does distribution matching, but acquire a replay
buffer that performs distribution matching, an observation that potentially explains
prior methods’ success in single-task settings. On both simulated and real-world
tasks, we demonstrate that our algorithm explores faster and adapts more quickly
than prior methods.1

1 INTRODUCTION

Reinforcement learning (RL) algorithms must be equipped with exploration mechanisms to effectively
solve tasks with limited reward signals. These tasks arise in many real-world applications where
providing human supervision is expensive. The inability of current RL algorithms to adequately
explore limits their applicability to long-horizon control tasks.

A wealth of prior work has studied exploration for RL. While, in theory, the Bayes-optimal exploration
strategy is optimal, it is intractable to compute exactly, motivating work on tractable heuristics for
exploration. Exploration methods based on random actions have limited ability to cover a wide range
of states. More sophisticated techniques, such as intrinsic motivation, accelerate learning in the
single-task setting. However, these methods have two limitations. First, they do not explicitly define
an objective to quantify “good exploration,” but rather argue that exploration arises implicitly through
some iterative procedure. Lacking a well-defined optimization objective, it remains challenging
to understand what these methods are doing and why they work. Similarly, the lack of a metric
to quantify exploration, even if only for evaluation, makes it challenging to compare exploration
methods and assess progress in this area. The second limitation is that these methods target the
single-task setting. Because these methods aim to converge to the optimal policy for a particular task,
it is challenging to repurpose these methods to solve multiple tasks.

We address these shortcomings by considering a multi-task setting, where many different reward
functions can be provided for the same set of states and dynamics. Rather than exploring from scratch
for each task, we aim to learn a single, task-agnostic exploration policy that can be adapted to many
possible downstream reward functions, amortizing the cost of learning to explore. This exploration

1Videos and code: https://sites.google.com/view/smm-anonymous

1

https://sites.google.com/view/smm-anonymous

Under review as a conference paper at ICLR 2020

policy can be viewed as a prior on the policy for solving downstream tasks. Learning will consist of
two phases: during training, we acquire this task-agnostic exploration policy; during testing, we use
this exploration policy to quickly explore and maximize the task reward.

Learning a single exploration policy is considerably more difficult than doing exploration throughout
the course of learning a single task. The latter is done by intrinsic motivation (Pathak et al., 2017;
Tang et al., 2017; Oudeyer et al., 2007) and count-based exploration methods (Bellemare et al., 2016),
which can effectively explore to find states with high reward, at which point the agent can decrease
exploration and increase exploitation of those high-reward states. While these methods perform
efficient exploration for learning a single task, the policy at any particular iteration is not a good
exploration policy. For example, the final policy at convergence would only visit the high-reward
states discovered for the current task.

What objective should be optimized to obtain a good exploration policy? We recast exploration as
a problem of State Marginal Matching: given a desired state distribution, we learn a mixture of
policies for which the state marginal distribution matches this desired distribution. Without any prior
information, this objective reduces to maximizing the marginal state entropyH[s], which encourages
the policy to visit as many states as possible. The distribution matching objective also provides a
convenient mechanism to incorporate prior knowledge about the task, whether in the form of safety
constraints that the agent should obey; preferences for some states over other states; reward shaping;
or the relative importance of each state dimension for a particular task.

We also propose an algorithm to optimize the State Marginal Matching (SMM) objective. First,
we reduce the problem of SMM to a two-player, zero-sum game between a policy player and a
density player. We find a Nash Equilibrium for this game using fictitious play (Brown, 1951), a
classic procedure from game theory. Our resulting algorithm iteratively fits a state density model
and then updates the policy to visit states with low density under this model. Our analysis of this
approach sheds light on prior work on exploration. In particular, while the policy learned by existing
exploration algorithms does not perform distribution matching, the replay buffer does, an observation
that potentially explains the success of prior methods. On both simulated and real-world tasks, we
demonstrate that our algorithm explores more effectively and adapts more quickly to new tasks than
state-of-the-art baselines.

2 RELATED WORK

Most prior work on exploration has looked at exploration bonuses and intrinsic motivation. One
class of exploration methods uses prediction error of some auxiliary task as an exploration bonus,
which provides high (intrinsic) reward in states where the predictive model performs poorly (Pathak
et al., 2017; Oudeyer et al., 2007; Schmidhuber, 1991; Houthooft et al., 2016; Burda et al., 2018).
Another set of approaches (Tang et al., 2017; Bellemare et al., 2016; Schmidhuber, 2010) directly
encourage the agent to visit novel states. While all methods effectively explore during the course
of solving a single task (Taïga et al., 2019), the policy obtained at convergence is often not a good
exploration policy (see Section 4). In contrast, our method converges to a highly-exploratory policy
by maximizing state entropy in the training objective (Eq. 2).

Many exploration algorithms can be classified by whether they explore in the space of actions,
policy parameters, goals, or states. Common exploration strategies including ε-greedy and Orn-
stein–Uhlenbeck noise (Lillicrap et al., 2015), as well as standard MaxEnt RL algorithms (Ziebart,
2010; Haarnoja et al., 2018), explore in the action space. Recent work (Fortunato et al., 2017;
Plappert et al., 2017) shows that adding noise to the parameters of the policy can result in good
exploration. Most closely related to our work are methods that perform exploration in the space of
states or goals (Colas et al., 2018; Held et al., 2017; Nair et al., 2018; Pong et al., 2019; Hazan et al.,
2018). In fact, Hazan et al. (2018) consider the same State Marginal Matching objective that we
examine and propose a similar algorithm. In relation to Hazan et al. (2018), our main contributions
are (1) empirically showing that exploration based on state-entropy is competitive with existing
state-of-the-art exploration methods, and (2) explaining how existing exploration methods based on
prediction error are implicitly maximizing this state-entropy objective. In Appendix C.1, we also
discuss how goal-conditioned RL (Kaelbling, 1993; Schaul et al., 2015) can be viewed as a special
case of State Marginal Matching when the goal-sampling distribution is learned jointly with the
policy.

2

Under review as a conference paper at ICLR 2020

The problems of exploration and meta-reinforcement learning are tightly coupled. Meta-reinforcement
learning algorithms (Duan et al., 2016; Finn et al., 2017; Rakelly et al., 2019; Mishra et al., 2017) must
perform effective exploration if they hope to solve a downstream task. Some prior work has explicitly
looked at the problem of learning to explore (Gupta et al., 2018; Xu et al., 2018). Our problem
statement is similar to meta-learning, in that we also aim to learn a policy as a prior for solving
downstream tasks. However, whereas meta-RL requires a distribution of task reward functions, our
method will require only a single target state marginal distribution. Due to the simpler problem
assumptions and training procedure, our method may be easier to apply in real-world domains.

Related to our approach are standard maximum action entropy algorithms (Haarnoja et al., 2018;
Kappen et al., 2012; Rawlik et al., 2013; Ziebart et al., 2008; Theodorou & Todorov, 2012). While
these algorithms are referred to as MaxEnt RL, they are maximizing entropy over actions, not states.
These algorithms can be viewed as performing inference on a graphical model where the likelihood
of a trajectory is given by its exponentiated reward (Toussaint & Storkey, 2006; Levine, 2018;
Abdolmaleki et al., 2018). While distributions over trajectories induce distributions over states,
computing the exact relationship requires integrating over all possible trajectories, an intractable
problem for most MDPs. A related but distinct class of relative entropy methods use a similar
entropy-based objective to limit the size of policy updates (Peters et al., 2010; Schulman et al., 2015).

Finally, the idea of distribution matching has been employed successfully in imitation learning (Ziebart
et al., 2008; Ho & Ermon, 2016; Finn et al., 2016; Fu et al., 2017). Similar to some inverse RL
algorithms (Ho & Ermon, 2016; Fu et al., 2018), our method iterates between learning a policy and
learning a reward function, though our reward function is obtained via a density model instead of a
discriminator. While inverse RL algorithms assume access to expert trajectories, we instead assume
access to the density of the target state marginal distribution. In many realistic settings, such as
robotic control with many degrees of freedom, providing fully-specified trajectories may be much
more challenging than defining a target state marginal distribution. The latter only requires some
aggregate statistics about expert behavior, and does not even need to be realizable by any policy.

In summary, our work unifies prior exploration methods as performing approximate distribution
matching, and explains how state distribution matching can be performed properly. This perspective
provides a clearer picture of exploration, and this observation is useful particularly because many
of the underlying ingredients, such as adversarial games and density estimation, have seen recent
progress and therefore might be adopted to improve exploration methods.

3 STATE MARGINAL MATCHING

In this section, we propose the State Marginal Matching problem as a principled objective for
learning to explore, and offer an algorithm for optimizing it. We consider a parametric policy
πθ ∈ Π , {πθ | θ ∈ Θ} that chooses actions a ∈ A in a Markov Decision Process (MDP)M with
fixed episode lengths T , dynamics distribution p(st+1 | st, at), and initial state distribution p0(s).
The MDPM together with the policy πθ form an implicit generative model over states. We define
the state marginal distribution ρπ(s) as the probability that the policy visits state s:

ρπ(s) , E s1∼p0(S),
at∼πθ(A|st)

st+1∼p(S|st,at)

[
1

T

T∑
t=1

1(st = s)

]

We emphasize that ρπ(s) is not a distribution over trajectories, and is not the stationary distribution
of the policy after infinitely many steps, but rather the distribution over states visited in a finite-length
episode.2 We also note that any trajectory distribution matching problem can be reduced to a state
marginal matching problem by augmenting the current state to include all previous states.

We assume that we are given a target distribution p∗(s) over states s ∈ S that encodes our belief
about the tasks we may be given at test-time. For example, a roboticist might assign small values of
p∗(s) to states that are dangerous, regardless of the desired task. Alternatively, we might also learn
p∗(s) from data about human preferences (Christiano et al., 2017). For goal-reaching tasks, we can
analytically derive the optimal target distribution (Appendix C). Given p∗(s), our goal is to find a

2ρπ(s) approaches the policy’s stationary distribution in the limit as the episodic horizon T →∞.

3

Under review as a conference paper at ICLR 2020

Figure 1: State Marginal Matching: (Left) Our goal is to learn a policy whose distribution over states (blue
histogram) matches some target density (black line). Our algorithm iteratively increases the reward on states
visited too infrequently (green arrow) and decreases the reward on states visited too frequently (red arrow).
(Center) At convergence, these two distributions are equal. (Right) For complex target distributions, we use a
mixture of policies ρπ(s) =

∫
ρπz (s)p(z)dz. (See Appendix B.)

parametric policy that is “closest” to this target distribution, where we measure discrepancy using the
Kullback-Leibler (KL) divergence:

max
π∈Π
F(ρπ(s), p∗(s)) , max

π∈Π
−DKL(ρπ(s) ‖ p∗(s))

= max
π∈Π

Es∼ρπ(s) [log p∗(s)− log ρπ(s)] (1)

= max
π∈Π

Es∼ρπ(s)[log p∗(s)] +Hπ[s] (2)

This is the same objective as in Hazan et al. (2018). Note that we use the reverse-KL (Bishop, 2006),
which is mode-seeking (i.e., exploratory). We show in Appendix C that the policies obtained via
State Marginal Matching provide an optimal exploration strategy for a particular distribution over
reward functions. To gain intuition for the State Marginal Matching objective, we decomposed it
in two ways. In Equation 2, we see that State Marginal Matching is equivalent to maximizing the
reward function r(s) , log p∗(s) while simultaneously maximizing the entropy of states. Note that,
unlike traditional MaxEnt RL algorithms (Ziebart et al., 2008; Haarnoja et al., 2018), we regularize
the entropy of the state distribution, not the conditional distribution of actions given states, which
results in exploration in the space of states rather than in actions. Moreover, Equation 1 suggests that
State Marginal Matching maximizes a pseudo-reward r(s) , log p∗(s)− log ρπ(s), which assigns
positive utility to states that the agent visits too infrequently and negative utility to states visited too
frequently (see Figure 1). We emphasize that maximizing this pseudo-reward is not a RL problem
because the pseudo-reward depends on the policy.

3.1 OPTIMIZING THE STATE MARGINAL MATCHING OBJECTIVE

Optimizing Equation 1 to obtain a single exploration policy is more challenging than standard RL
because the reward function itself depends on the policy. To break this cyclic dependency, we
introduce a parametric state density model qψ(s) ∈ Q , {qψ | ψ ∈ Ψ} to approximate the policy’s
state marginal distribution, ρπ(s). We assume that the class of density models Q is sufficiently
expressive to represent every policy:
Assumption 1. For every policy π ∈ Π, there exists q ∈ Q such that DKL(ρπ(s) ‖ q(s)) = 0.

Under this assumption, optimizing the policy w.r.t. this approximate distribution q(s) will yield the
same solution as Equation 1 (see Appendix A for the proof):
Proposition 3.1. Let policies Π and density models Q satisfying Assumption 1 be given. For any
target distribution p∗, the following optimization problems are equivalent:

max
π

Eρπ(s)[log p∗(s)− log ρπ(s)] = max
π

min
q

Eρπ(s)[log p∗(s)− log q(s)] (3)

Solving the new max-min optimization problem is equivalent to finding the Nash equilibrium of a
two-player, zero-sum game: a policy player chooses the policy π while the density player chooses
the density model q. To avoid confusion, we use actions to refer to controls a ∈ A output by the
policy π in the traditional RL problem and strategies to refer to the decisions π ∈ Π of the policy
player and decisions q ∈ Q of the density player. The Nash existence theorem (Nash, 1951) proves
that such a stationary point always exists for such a two-player, zero-sum game.

One common approach to saddle point games is to alternate between updating player A w.r.t. player
B, and updating player B w.r.t. player A. However, games such as Rock-Paper-Scissors illustrate
that such a greedy approach is not guaranteed to converge to a stationary point. A slight variant,

4

Under review as a conference paper at ICLR 2020

Algorithm 1 Learning to Explore via Fictitious Play

Input: Target distribution p∗(s)
Initialize policy π(a | s), density model q(s), and replay buffer B.
while not converged do

q(m) ← argmaxq Es∼B(m−1) [log q(s)]

π(m) ← argmaxπ Es∼ρπ(s) [r(s)] where r(s) , log p∗(s)− log q(m)(s)

B(m) ← B(m−1) ∪ {(st, at, st+1)}Tt=1 with new transitions {(st, at, st+1)}Tt=1 sampled from π(m)

return historical policies {π(1), · · · , π(m)}

Algorithm 1: An algorithm for optimizing the State Marginal Matching objective (Equation 1). The algorithm
iterates between (1) fitting a density model q(m) and (2) training the policy π(m) with a RL objective to optimize
the expected return w.r.t. the updated reward function r(s). The algorithm returns the collection of policies from
each iteration, which do distribution matching in aggregate.

fictitious play (Brown, 1951) does converge to a Nash equilibrium in finite time (Robinson, 1951;
Daskalakis & Pan, 2014). At each iteration, each player chooses their best strategy in response to the
historical average of the opponent’s strategies. In our setting, fictitious play alternates between fitting
the density model to the historical average of policies (Equation 4), and updating the policy with RL
to minimize the log-density of the state, using a historical average of the density models (Equation 5):

qm+1 ← arg max
q

Es∼ρ̄m(s)[log q(s)] where ρ̄(m)
π (s) ,

1

m

m∑
i=1

ρπi(s) (4)

πm+1 ← arg max
π

Es∼ρπ(s) [log p∗(s)− log q̄m(s)] where q̄m(s) ,
1

m

m∑
i=1

qi(s) (5)

Crucially, the exploration policy is not the last policy, πm+1, but rather the historical average policy:
Definition 3.1. A historical average policy π̄(a | s), parametrized by a collection of policies
π1, · · · , πm, is a policy that randomly samples one of the policy iterates πi ∼ Unif[π1, · · · , πm] at
the start of each episode and takes actions according to that policy for each step in the episode. A
new policy is sampled for the next episode.

We summarize the resulting algorithm in Algorithm 1. In practice, we can efficiently implement
Equation 4 and avoid storing the policy parameters from every iteration by instead storing sampled
states from each iteration.3 We cannot perform the same trick for Equation 5, and instead resort to
approximating the historical average of density models with the most recent iterate. Algorithm 1
looks similar to prior exploration methods based on prediction-error, suggesting that we might use
SMM to understand how these prior methods work.

4 WHY DOES PREDICTION-ERROR EXPLORATION WORK?

Exploration methods based on prediction error (Burda et al., 2018; Stadie et al., 2015; Pathak et al.,
2017; Schmidhuber, 1991; Chentanez et al., 2005) do not converge to an exploratory policy, even
in the absence of extrinsic reward. For example, consider the asymptotic behavior of ICM (Pathak
et al., 2017) in a deterministic MDP, such as the Atari games where it was evaluated. At convergence,
the predictive model will have zero error in all states, so the exploration bonus is zero – the ICM
objective has no effect on the policy at convergence. Similarly, consider the exploration bonus in
Pseudocounts (Bellemare et al., 2016): 1/n̂(s), where n̂(s) is the (estimated) number of times that
state s has been visited. In the infinite limit, each state has been visited infinitely many times, so
the Pseudocount exploration bonus also goes to zero — Pseudocounts has no effect at convergence.
Similar reasoning can be applied to other methods based on prediction error (Burda et al., 2018;
Stadie et al., 2015). More broadly, we can extend this analysis to stochastic MDPs, where we
consider an abstract exploration algorithm that alternates between computing some intrinsic reward
and performing RL (to convergence) on that intrinsic reward. Existing prediction-error exploration

3One approach is to maintain an infinite-sized replay buffer, and fit the density to the replay buffer at each
iteration. Alternatively, we can replace older samples in a fixed-size replay buffer less frequently such that
sampling from B is uniform over iterations.

5

Under review as a conference paper at ICLR 2020

Hall Length

Initial State
Goal

(a) Navigation environment

SAC SMM

3 Halls of length 10

(b) State visitation

73 5

60

0

Halls

100

80

40

20

(c) % Goals reached during training

Figure 2: Exploration in State Space (SMM) vs. Action Space (SAC) for Navigation: (a): A point-mass
agent is spawned at the center of m long hallways that extend radially outward, and the target state distribution
places uniform probability mass 1

m
at the end of each hallway. We can vary the length of the hallway and the

number of hallways to control the task difficulty. (b) A heatmap showing states visited by SAC and SMM
during training illustrates that SMM explores a wider range of states. (c) SMM reaches more goals than the
MaxEnt baseline. SM4 is an extension of SMM that incorporates mixture modelling with n > 1 skills (see
Appendix B), and further improves exploration of SMM.

methods are all special cases. At each iteration, the RL step solves a fully-observed MDP, which
always admits a deterministic policy as a solution (Puterman, 2014). Thus, any exploration algorithm
in this class cannot converge to a single, exploratory policy.

Despite these observations, prior methods do excel at solving hard exploration tasks. We draw an
analogy to fictitious play to explain their success. While these methods never acquire an exploratory
policy, over the course of training they will eventually visit all states. In other words, the historical
average over policies will visit a wide range of states. Since the replay buffer exactly corresponds to
this historical average over states, these methods will obtain a replay buffer with a diverse range of
experience, possibly explaining why they succeed at solving hard exploration tasks. Moreover, this
analysis suggests a surprisingly simple method for obtaining an exploration from these prior methods:
use a mixture of the policy iterates throughout training. The following section will not only compare
SMM against prior exploration methods, but also show that this historical averaging trick can be used
to improve existing exploration methods.

5 SIMULATED EXPERIMENTS

We used simulated control tasks to determine if SMM learns an exploratory policy, to compare SMM
to prior exploration methods, and to study the effect of historical averaging. More details can be
found in Appendix D, and code will be released upon publication.

Baselines and Implementation Details: We compare to a state-of-the-art off-policy MaxEnt RL
algorithm, Soft Actor-Critic (SAC) (Haarnoja et al., 2018); an inverse RL algorithm, Generative
Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016); and three exploration methods:

• Count-based Exploration (C), which discretizes states and uses − log π̂(s) as an exploration bonus.
• Pseudo-counts (PC) (Bellemare et al., 2016), which uses the recoding probability as a bonus.
• Intrinsic Curiosity Module (ICM) (Pathak et al., 2017), which uses prediction error as a bonus.

We used SAC as the base RL algorithm for all exploration methods (SMM, C, PC, ICM). To
implement SMM, we define the target distribution in terms of the extrinsic environment reward:
p∗(s) ∝ exp(renv(s)). We use a variational autoencoder (VAE) to model the density q(s) for
both SMM and Pseudocounts (PC). For the GAIL baseline, we generated synthetic expert data by
sampling expert states from the target distribution p∗(s) (see Appendix D.2 for details). Results for
all experiments are averaged over 4-5 random seeds.

We start with a sanity check: Is exploration in state space (as done by SMM) better than exploration
in action space (as done by MaxEnt RL, e.g., SAC)? To study this question, we implemented a 2D
Navigation environment, shown in Figure 2a. To evaluate each method, we counted the number of
hallways that the agent fully explored (i.e., reached the end) during training. Figure 2b shows the
state visitations for the three hallway environment, illustrating that SAC only explores one hallway,
whereas SMM explores all three. Figure 2c also shows that SMM consistently explores 60% of
hallways, whereas SAC rarely visits more than 20% of hallways.

The remaining simulated experiments used the Manipulation environment (Plappert et al., 2018),
shown in Figure 3a. Our first experiment evaluates whether the exploration policy acquired by
SMM allows us to solve downstream tasks more quickly. We defined the target distribution to be
uniform over the entire state space (joint + block configuration), with the constraints that we put

6

Under review as a conference paper at ICLR 2020

(a)

0 50 100
Episode #

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Su
cc

es
s R

at
e

SM4
SMM

SMM w/o HA
ICM

SAC
PC

(b) (c)

0 20 40

SAC
Count
SMM

KL Divergence

0 2 4

SAC
Count
SMM

TV Distance

(d)

Figure 3: Exploration for Manipulation. (a) Task: The robot agent controls a single gripper arm to move a
block object to a goal location on the table surface. The goal is not observed by the robot, thus requiring the robot
to explore by moving the block to different locations on the table. (b) Test-Time Exploration: At test-time,
we sample goal locations uniformly on the table, and plot the percentage of goals found within N episodes.
SMM and its mixture-model variant SM4 (Algorithm 2) both explore faster than the baselines, allowing it to
successfully find the goal in fewer episodes. (c) State Entropy: After training, we rollout the policy for 1e3
epochs, and record the entropy of the object and gripper positions. SMM achieves higher state entropy than
the other methods. Historical averaging also improves the exploration of prior methods. (d) Non-Uniform
Exploration: We measure the discrepancy between the state marginal distribution, ρπ(s), and a non-uniform
target distribution. SMM matches the target distribution better than SAC and is on par with Count. Error bars
show std. dev. across 4 random seeds.

low probability mass on states where the block has fallen off the table; that actions should be small;
and that the arm should be close to the object. As shown in Figure 3b, SMM adapts substantially
more quickly than other exploration methods, achieving a success rate 20% higher than the next best
method, and reaching the same level of performance of the next baseline (ICM) in 4x fewer episodes.
SMM without historical averaging attains similar performance as the next best baseline (ICM),
suggesting that historical averaging is the key ingredient, while the particular choice of prediction
error or VAE is less important. We provide further ablation studies of SMM in Appendix B.2.

While historical averaging is necessary to guarantee convergence (§ 3.1), most prior exploration
methods do not employ historical averaging, raising the question of whether it is necessary in practice.
To answer this question, we compare SMM to three exploration methods. In Figure 3c, we compare
the policy obtained at convergence with the historical average of policy iterates over training for each
method. We measure how well each method explores by computing the marginal state entropy, which
we compute by discretizing the state space.4 The results show that SMM maximizes state entropy
at least as effectively as prior methods, if not better. While this comparison is somewhat unfair, as
we measure exploration using the objective that SMM maximizes, none of the methods we compare
against propose metrics for exploration that we could use instead. Furthermore, we see that historical
averaging is not only beneficial to SMM, but also improves the exploration of prior methods.

In our final simulated experiment, we check whether prior knowledge injected via the target distribu-
tion is reflected in the policy obtained from State Marginal Matching. Using the same Manipulation
environment as above, we modified the target distribution to assign larger probability to states where
the block was on the left half of the table than on the right half. In Figure 3d, we measure whether
SMM is able to achieve the target distribution by measuring the discrepancy between the block’s
horizontal coordinate and the target distribution. Compared to the SAC baseline, SMM and the
Count baseline are half the distance to the target distribution. No method achieves zero discrepancy,
suggesting that future methods could be better at matching state marginals.

6 REAL-WORLD EXPERIMENTS

While almost all research on exploration focus on simulated domains, attributes of the real world such
as partial observability, nonstationarity, and stochasticity may make the exploration more challenging.
The aim of this section is to see if SMM explores effectively on a real-world robotic control task.
We used the D’Claw (Ahn et al., 2019) robotic manipulator, which is a 3-fingered hand positioned
vertically above a handle that it can turn. For all experiments on the D’Claw, we used a target
distribution that places uniform mass over all object angles [−180◦, 180◦].

4Discretization is used only for evaluation, no policy has access to it (except for Count).

7

Under review as a conference paper at ICLR 2020

(a) D’Claw (b) Sim2Real (1e6 training env. steps) (c) Training on Real Robot

Figure 4: Real-World Exploration: (a) D’Claw is a 9-DoF robotic hand (Ahn et al., 2019) that is trained
to turn a valve object. (b) Sim2Real: We trained each algorithm in simulation, and then measured how far
the trained policy rotated the knob on the hardware robot. We also measured the maximum angle that the
agent turned the knob in the clockwise and counter-clockwise directions within one episode. (c) Training on
Hardware: We trained SAC and SMM on the real robot for 1e5 environment steps (about 9 hours in real time),
and measured the maximum angle turned throughout training. We see that SMM moves the knob more and visits
a wider range of states than SAC. All results are averaged over 4-5 seeds.

In a first experiment, we trained SMM and other baselines in simulation, and then evaluated the
acquired exploration policy on the real robot using two metrics: the total number of rotations (in either
direction), and the maximum radians turned (in both directions). For each method, we computed the
average metric across 100 evaluation episodes. We repeated this process for 5 independent training
runs. Figure 4b shows that SMM turns the knob more than the baselines, and it turns the knob to a
wider range of angles. To test for statistical significance, we used a 1-sided Student’s t-test to test the
hypothesis that SMM turned the knob more and to a wider range of angles than SAC. The p-values
were all less than 0.05: p = 0.046 for number of rotations, p = 0.019 for maximum clockwise angle,
and p = 0.001 for maximum counter-clockwise angle.

In our second experiment, we investigated whether it was possible to learn an exploration policy
directly in the real world, without the need for a simulator. Learning to explore in the real world
is quite important, as building faithful simulators of complex systems is challenging. The physical
constraints of the real robot make data efficiency paramount, suggesting that learning to explore will
require an effective exploration strategy. In Figure 4c, we plot the range of angles that the policy
explores throughout training. Not only does SMM explore a wider range of angles than SAC, but its
ability to explore increases throughout training, suggesting that the SMM objective is correlated with
real-world metrics of exploration.

In summary, the results in this section suggests that exploration techniques may actually be useful in
the real world, which may encourage future work to study exploration methods on real-world tasks.

7 DISCUSSION

In this paper, we introduced a formal objective for exploration. While it is often unclear what existing
exploration algorithms will converge to, our State Marginal Matching objective has a clear solution:
at convergence, the policy should visit states in proportion to their density under a target distribution.
Not only does this objective encourage exploration, it also provides human users with a flexible
mechanism to bias exploration towards states they prefer and away from dangerous states. Upon
convergence, the resulting policy can thereafter be used as a prior in a multi-task setting, amortizing
exploration and enabling faster adaptation to new, potentially sparse, reward functions. The algorithm
we proposed looks quite similar to previous exploration methods based on prediction error, suggesting
that those methods are also performing some form of distribution matching. However, by deriving
our method from first principles, we note that these prior methods omit a crucial historical averaging
step, without which the algorithm is not guaranteed to converge. Experiments on both simulated and
real-world tasks demonstrated how SMM learns to explore, enabling an agent to efficiently explore in
new tasks provided at test time.

In future work, we aim to study connections between inverse RL, MaxEnt RL and state marginal
matching, all of which perform some form of distribution matching. Empirically, we aim to scale to
more complex tasks by parallelizing the training of all mixture components simultaneously. Broadly,
we expect the state distribution matching problem formulation to enable the development of more
effective and principled RL methods that reason about distributions rather than individual states.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin Riedmiller.
Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920, 2018.

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery algorithms.
arXiv preprint arXiv:1807.10299, 2018.

David Barber Felix Agakov. The im algorithm: a variational approach to information maximization. Advances
in Neural Information Processing Systems, 16:201, 2004.

Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte, Abhishek Gupta, Sergey Levine, and VIKASH
KUMAR. ROBEL: RObotics BEnchmarks for Learning with low-cost robots. In Conference on Robot
Learning (CoRL), 2019.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos. Unifying
count-based exploration and intrinsic motivation. In Advances in Neural Information Processing Systems, pp.
1471–1479, 2016.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

G. Brown. Iterative solution of games by fictitious play. Activity Analysis of Production and Allocation, 1951.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation.
arXiv preprint arXiv:1810.12894, 2018.

Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. Intrinsically motivated reinforcement learning.
In Advances in neural information processing systems, pp. 1281–1288, 2005.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement
learning from human preferences. In Advances in Neural Information Processing Systems, pp. 4299–4307,
2017.

John D Co-Reyes, YuXuan Liu, Abhishek Gupta, Benjamin Eysenbach, Pieter Abbeel, and Sergey Levine.
Self-consistent trajectory autoencoder: Hierarchical reinforcement learning with trajectory embeddings. arXiv
preprint arXiv:1806.02813, 2018.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. Curious: Intrinsically motivated multi-task, multi-goal
reinforcement learning. arXiv preprint arXiv:1810.06284, 2018.

Constantinos Daskalakis and Qinxuan Pan. A counter-example to karlin’s strong conjecture for fictitious play.
In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pp. 11–20. IEEE, 2014.

Maria Dimakopoulou and Benjamin Van Roy. Coordinated exploration in concurrent reinforcement learning.
arXiv preprint arXiv:1802.01282, 2018.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2̂: Fast reinforcement
learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need: Learning
skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control via policy
optimization. In International Conference on Machine Learning, pp. 49–58, 2016.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1126–
1135. JMLR. org, 2017.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves, Vlad
Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for exploration. arXiv preprint
arXiv:1706.10295, 2017.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse reinforcement
learning. arXiv preprint arXiv:1710.11248, 2017.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse reinforcement
learning. In International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=rkHywl-A-.

9

https://openreview.net/forum?id=rkHywl-A-
https://openreview.net/forum?id=rkHywl-A-

Under review as a conference paper at ICLR 2020

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-reinforcement
learning of structured exploration strategies. In Advances in Neural Information Processing Systems, pp.
5302–5311, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

Elad Hazan, Sham M Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. arXiv preprint arXiv:1812.02690, 2018.

David Held, Xinyang Geng, Carlos Florensa, and Pieter Abbeel. Automatic goal generation for reinforcement
learning agents. arXiv preprint arXiv:1705.06366, 2017.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural Information
Processing Systems, pp. 4565–4573, 2016.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime: Variational
information maximizing exploration. In Advances in Neural Information Processing Systems, pp. 1109–1117,
2016.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, pp. 1094–1099. Citeseer, 1993.

Hilbert J Kappen, Vicenç Gómez, and Manfred Opper. Optimal control as a graphical model inference problem.
Machine learning, 87(2):159–182, 2012.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review. arXiv
preprint arXiv:1805.00909, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

Nancy A Lynch. Distributed algorithms. Elsevier, 1996.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-learner. arXiv
preprint arXiv:1707.03141, 2017.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual reinforcement
learning with imagined goals. In Advances in Neural Information Processing Systems, pp. 9191–9200, 2018.

John Nash. Non-cooperative games. Annals of mathematics, pp. 286–295, 1951.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for autonomous mental
development. IEEE transactions on evolutionary computation, 11(2):265–286, 2007.

Emilio Parisotto, Soham Ghosh, Sai Bhargav Yalamanchi, Varsha Chinnaobireddy, Yuhuai Wu, and Ruslan
Salakhutdinov. Concurrent meta reinforcement learning. arXiv preprint arXiv:1903.02710, 2019.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-
supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 16–17, 2017.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Twenty-Fourth AAAI
Conference on Artificial Intelligence, 2010.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen, Tamim
Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration. arXiv preprint
arXiv:1706.01905, 2017.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell, Jonas Schneider,
Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforcement learning: Challenging robotics
environments and request for research. arXiv preprint arXiv:1802.09464, 2018.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit: State-
covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019.

Martin L Puterman. Markov Decision Processes.: Discrete Stochastic Dynamic Programming. John Wiley &
Sons, 2014.

10

Under review as a conference paper at ICLR 2020

Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine. Efficient off-policy meta-
reinforcement learning via probabilistic context variables. arXiv preprint arXiv:1903.08254, 2019.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and reinforcement
learning by approximate inference. In Twenty-Third International Joint Conference on Artificial Intelligence,
2013.

Julia Robinson. An iterative method of solving a game. Annals of mathematics, pp. 296–301, 1951.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators. In
International conference on machine learning, pp. 1312–1320, 2015.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural controllers.
In Proc. of the international conference on simulation of adaptive behavior: From animals to animats, pp.
222–227, 1991.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE Transactions
on Autonomous Mental Development, 2(3):230–247, 2010.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International conference on machine learning, pp. 1889–1897, 2015.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement learning with
deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Adrien Ali Taïga, William Fedus, Marlos C Machado, Aaron Courville, and Marc G Bellemare. Benchmarking
bonus-based exploration methods on the arcade learning environment. arXiv preprint arXiv:1908.02388,
2019.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schulman, Filip
DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for deep reinforcement
learning. In Advances in neural information processing systems, pp. 2753–2762, 2017.

Evangelos A Theodorou and Emanuel Todorov. Relative entropy and free energy dualities: Connections to path
integral and kl control. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 1466–1473.
IEEE, 2012.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033. IEEE, 2012.

Marc Toussaint and Amos Storkey. Probabilistic inference for solving discrete and continuous state markov
decision processes. In Proceedings of the 23rd international conference on Machine learning, pp. 945–952.
ACM, 2006.

Dan Xie, Sinisa Todorovic, and Song-Chun Zhu. Inferring "dark matter" and "dark energy" from videos. In The
IEEE International Conference on Computer Vision (ICCV), December 2013.

Tianbing Xu, Qiang Liu, Liang Zhao, and Jian Peng. Learning to explore with meta-policy gradient. arXiv
preprint arXiv:1803.05044, 2018.

Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash Kumar. Dexterous manipulation
with deep reinforcement learning: Efficient, general, and low-cost. In International Conference on Robotics
and Automation, ICRA 2019, Montreal, QC, Canada, May 20-24, 2019, pp. 3651–3657, 2019. doi: 10.1109/
ICRA.2019.8794102. URL https://doi.org/10.1109/ICRA.2019.8794102.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal entropy. 2010.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse reinforcement
learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

Brian D Ziebart, Nathan Ratliff, Garratt Gallagher, Christoph Mertz, Kevin Peterson, J Andrew Bagnell, Martial
Hebert, Anind K Dey, and Siddhartha Srinivasa. Planning-based prediction for pedestrians. In 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 3931–3936. IEEE, 2009.

11

https://doi.org/10.1109/ICRA.2019.8794102

Under review as a conference paper at ICLR 2020

A PROOFS

Proof of Proposition 3.1. Note that

Eρπ(s)[log p∗(s)− log q(s)] = Eρπ(s)[log p∗(s)− log ρπ(s)] +DKL(ρπ(s) ‖ q(s)). (6)

By Assumption 1, DKL(ρπ(s) ‖ q(s)) = 0 for some q ∈ Q, so we obtain the desired result:

max
π

(
min
q

Eρπ(s)[log p∗(s)− log q(s)]

)
= max

π

(
Eρπ(s)[log p∗(s)− log ρπ(s)] + min

q
DKL(ρπ(s) ‖ q(s))

)
= max

π
Eρπ(s)[log p∗(s)− log ρπ(s)].

B BETTER MARGINAL MATCHING WITH MIXTURES OF MIXTURES

This section introduces an extension of SMM, SM4, that incorporates mixure modelling. Given the
challenging problem of exploration in large state spaces, it is natural to wonder whether we can
accelerate exploration by automatically decomposing the potentially-multimodal target distribution
into a mixture of “easier-to-learn” distributions and learn a corresponding set of policies to do
distribution matching for each component. Note that the mixture model we introduce here is
orthogonal to the historical averaging step discussed before. Using ρπz (s) to denote the state
distribution of the policy conditioned on the latent variable z ∈ Z , the state marginal distribution of
the mixture of policies is

ρπ(s) =

∫
Z
ρπz (s)p(z)dz = Ez∼p(z) [ρπz (s)] , (7)

where p(z) is a latent prior. As before, we will minimize the KL divergence between this mixture
distribution and the target distribution. Using Bayes’ rule to re-write ρπ(s) in terms of conditional
probabilities, we obtain the following optimization problem:

max
(πz)z∈Z

E z∼p(z)
s∼ρπz (s)

log
p∗(s)

ρπz (s)p(z)
p(z|s)

 = E z∼p(z)
s∼ρπz (s)

log p∗(s)︸ ︷︷ ︸
(a)

− log ρπz (s)︸ ︷︷ ︸
(b)

+ log p(z | s)︸ ︷︷ ︸
(c)

− log p(z)︸ ︷︷ ︸
(d)

(8)

Intuitively, this says that the agent should go to states (a) with high density under the target state
distribution, (b) where this agent has not been before, and (c) where this agent is clearly distinguishable
from the other agents. The last term (d) says to explore in the space of mixture components z. This
decomposition bears a resemblance to the mutual-information objectives in recent work (Achiam
et al., 2018; Eysenbach et al., 2018; Co-Reyes et al., 2018). Thus, one interpretation of our work is as
explaining that mutual information objectives almost perform distribution matching. The caveat is
that prior work omits the state entropy term − log ρπz (s) which provides high reward for visiting
novel states, possibly explaining why these previous works have failed to scale to complex tasks.

B.1 ALGORITHMIC SUMMARY

We summarize the resulting procedure in Algorithm 2, which we refer to as SM4 (State Marginal
Matching with Mixtures of Mixtures). The algorithm (1) fits a density model q(m)

z (s) to approximate
the state marginal distribution for each policy πz; (2) learns a discriminator d(m)(z | s) to predict
which policy πz will visit state s; and (3) uses RL to update each policy πz to maximize the expected
return of its corresponding reward function rz(s) , log p∗(s)− log ρπz (s) + log p(z | s)− log p(z)
derived in Equation 8.

The only difference from Algorithm 1 is that we learn a discriminator d(z | s), in addition to updating
the density models qz(s) and the policies πz(a | s). Jensen’s inequality tells us that maximizing the
log-density of the learned discriminator will maximize a lower bound on the true density (see Agakov
(2004)):

Es∼ρπz (s),z∼p(z)[log d(z | s)] ≤ Es∼ρπz (s),z∼p(z)[log p(z | s)]

12

Under review as a conference paper at ICLR 2020

Algorithm 2 State Marginal Matching with Mixtures of Mixtures (SM4)

Input: Target distribution p∗(s)
Initialize policy πz(a | s), density model qz(s), discriminator d(z | s), and replay buffer B.
while not converged do

for z = 1, · · · , n do . (1) Update density model for each policy πz .
q

(m)
z ← arg maxq E{s|(z′,s)∼B(m−1),z′=z} [log q(s)]

d(m) ← arg maxd E(z,s)∼B(m−1) [log d(z | s)] . (2) Update discriminator.
for z = 1, · · · , n do

r
(m)
z (s) , log p∗(s)− log q

(m)
z (s) + log d(m)(z | s)− log p(z)

π
(m)
z ← arg maxπ Eρπ(s)

[
r

(m)
z (s)

]
. (3) Update each policy πz .

Sample latent skill z(m) ∼ p(z)
Sample transitions {(st, at, st+1)}Tt=1 with π(m)

z (a | s)
B(m) ← B(m−1) ∪ {(z(m), st, at, st+1)}Tt=1

return {{π(1)
1 , · · · , π(1)

n }, · · · , {π(m)
1 , · · · , π(m)

n }}

Algorithm 2. An algorithm for learning a mixture of policies π1, π2, · · · , πn that do state marginal matching
in aggregate. The algorithm (1) fits a density model q(m)

z (s) to approximate the state marginal distribution
for each policy πz; (2) learns a discriminator d(m)(z | s) to predict which policy πz will visit state s; and (3)
uses RL to update each policy πz to maximize the expected return of its corresponding reward function derived
in Equation 8: rz(s) , log p∗(s)− log ρπz (s) + log p(z | s)− log p(z). In our implementation, the density
model qz(s) is a VAE that inputs the concatenated vector {s, z} of the state s and the latent skill z used to
obtain this sample s; and the discriminator is a feedforward MLP. The algorithm returns the historical average of
mixtures of policies (a total of n ·m policies).

In our implementation, the density model qz(s) is a VAE that inputs the concatenated vector {s, z}
of the state s and the latent skill z used to obtain this sample s; and the discriminator is a feedforward
MLP. The algorithm returns the historical average of mixtures of policies (a total of n ·m policies).
Our implementation uses a uniform categorical distribution for the prior p(z), and does not implement
the update for p(z).

Note that the updates for each z can be conducted in parallel. A distributed implementation would
emulate broadcast-collect algorithms (Lynch, 1996), with each worker updating the policy indepen-
dently, and periodically aggregating results to update the discriminator d(z | s). Such a distributed
implementation has the appealing property that each compute node would explore a different part of
the state space. While there has been some work on multi-agent coordinated exploration (Parisotto
et al., 2019) and concurrent exploration (Dimakopoulou & Van Roy, 2018), it remains a fairly un-
explored area (pun intended) and we believe that SMM with Mixtures of Mixtures offers a simple
approach to this problem.

B.2 ABLATION STUDY

To understand the relative contribution of each component in the SM4 objective (Equation 8),
we compare SM4 to baselines that lack conditional state entropy Hπz [s] = − log ρπz (s), latent
conditional action entropy log p(z | s), or both (i.e, SAC). In Figure 5a, we plot the training time
performance on the Navigation task with 3 halls of length 50. We see that SM4 relies heavily on both
key differences from SAC.

In Figure 5b, we study the effect of mixture modelling on test-time exploration in the Manipulation
environment. After running SMM/SM4 with a uniform distribution, we count the number of episodes
required to find an (unknown) goal state. We run each method for the same number of environment
transitions; a mixture of three policies does not get to take three times more transitions. We find that
increasing the number of mixture components increases the agents success. However, the effect was
smaller when using historical averaging. Taken together, this result suggests that efficient exploration
requires either historical averaging or mixture modelling, but might not need both.

13

Under review as a conference paper at ICLR 2020

0 20 40 60 80 100
Epoch

0

10

20

30

40

50

60

Re
tu

rn

Length 50 Hallway
Ours
w/o H[s|z]
w/o H[z|s]
SAC

(a) Train-time Performance on Navigation (b) Test-time Performance on Manipulation

Figure 5: Ablation Analysis of State Marginal Matching with Mixtures of Mixtures (SM4). (a):
On the Navigation task, we compare SM4 (with three mixture components) against ablation baselines
that lack conditional state entropy, latent conditional action entropy, or both (i.e., SAC) in the SM4
objective (Equation 8). We see that both terms contribute heavily to the exploration ability of SM4,
but the state entropy term is especially critical. (b): We compare SMM/SM4 with different numbers
of mixtures, and with vs. without historical averaging. We found that increasing the number of latent
mixture components n ∈ {1, 2, 4} accelerates exploration, as does historical averaging. Error bars
show std. dev. across 4 random seeds.

C CHOOSING p∗(s) FOR GOAL-REACHING TASKS

In general, the choice of the target distribution p∗(s) will depend on the distribution of test-time tasks.
In this section, we consider the special case where the test-time tasks correspond to goal-reaching
derive the optimal target distribution p∗(s). We consider the setting where goals g ∼ pg(g) are
sampled from some known distribution. Our goal is to minimize the number of episodes required to
reach that goal state. We define reaching the goal state as visiting a state that lies within an ε ball of
the goal, where both ε > 0 and the distance metric are known.

We start with a simple lemma that shows that the probability that we reach the goal at any state in a
trajectory is at least the probability that we reach the goal at a randomly chosen state in that same
trajectory. Defining the binary random variable zt , 1(‖st − g‖ ≤ ε) as the event that the state at
time t reaches the goal state, we can formally state the claim as follows:
Lemma C.1.

p

(
T∑
t=1

zt > 0

)
≥ p(zt) where t ∼ Unif [1, · · · , H] (9)

Proof. We start by noting the following implication:

zt = 1 =⇒
T∑
t=1

zt > 0 (10)

Thus, the probability of the event on the RHS must be at least as large as the probability of the event
on the LHS:

p(zt) ≤ p

(
T∑
t=1

zt > 0

)
(11)

Next, we look at the expected number of episodes to reach the goal state. Since each episode is
independent, the expected hitting time is simply

HITTINGTIME(s) =
1

p(some state reaches s)
=

1

p
(∑T

t=1 zt > 0
) ≤ 1

p(zt)
(12)

Note that we have upper-bounded the hitting time using Lemma C.1. Since the goal g is a random
variable, we take an expectation over g:

Es∼pg(s) [HITTINGTIME(s)] ≤ Es∼p(s)
[

1

p(zt)

]
(13)

14

Under review as a conference paper at ICLR 2020

We can rewrite the RHS using p∗(s) to denote the target state marginal distribution:

Es∼p∗(s) [HITTINGTIME(s)] ≤ Es∼pg(s)

[
1∫

p∗(s̃)1(‖s− s̃‖ ≤ ε)ds̃

]
, F(p∗) (14)

We will minimize F , an upper bound on the expected hitting time.

Lemma C.2. The state marginal distribution p∗(s) ∝
√
p̃(s) minimizes F(p∗), where

p̃(s) ,
∫
pg(s̃)1(‖s− s̃‖ ≤ ε)ds̃ is a smoothed version of the target density.

Before presenting the proof, we provide a bit of intuition. In the case where ε→ 0, the optimal target
distribution is p∗(s) ∝

√
pg(s). For non-zero ε, the policy in Lemma C.2 is equivalent to convolving

pg(s) with a box filter before taking the square root. In both cases, we see that the optimal policy
does distribution matching to some function of the goal distribution. Note that p̃(·) may not sum to
one and therefore is not a proper probability distribution.

Proof. We start by forming the Lagrangian:

L(p∗) ,
∫

pg(s)∫
p∗(s̃)1(‖s− s̃‖ ≤ ε)ds̃

ds+ λ

(∫
p∗(s̃)ds̃− 1

)
(15)

The first derivative is

dL
dp∗(s̃)

=

∫
−pg(s)1(‖s− s̃‖ ≤ ε)

p∗2(s̃)
ds+ λ = 0 (16)

Note that the second derivative is positive, indicating that this Lagrangian is convex, so all stationary
points must be global minima:

d2L
dp∗(s̃)2

=

∫
2pg(s)1(‖s− s̃‖ ≤ ε)

p∗3(s̃)
ds > 0 (17)

Setting the first derivative equal to zero and rearranging terms, we obtain

π(s̃) ∝

√∫
pg(s)1(‖s− s̃‖ ≤ ε)ds (18)

Renaming s̃↔ s, we obtain the desired result.

C.1 CONNECTIONS TO GOAL-CONDITIONED RL

Goal-Conditioned RL (Kaelbling, 1993; Nair et al., 2018; Held et al., 2017) can be viewed as a special
case of State Marginal Matching when the goal-sampling distribution is learned jointly with the policy.
In particular, consider the State Marginal Matching with a mixture policy (Algorithm 2), where
the mixture component z maps bijectively to goal states g. In this case, we learn goal-conditioned
policies of the form π(a | s, g). We start by swapping g for z in the SMM objective with Mixtures of
Policies (Equation 8):

DKL(ρπ(s) ‖ p∗(s)) = E g∼π(g)
s∼π(s|g)

[log p∗(s) + log p(g | s)− log ρπ(s | g)− log π(g)] (19)

The second term p(g | s) is an estimate of which goal the agent is trying to reach, similar to objectives
in intent inference (Ziebart et al., 2009; Xie et al., 2013). The third term π(s | g) is the distribution
over states visited by the policy when attempting to reach goal g. For an optimal goal-conditioned
policy in an infinite-horizon MDP, both of these terms are Dirac functions:

π(g | s) = ρπ(s | g) = 1(s = g) (20)

In this setting, the State Marginal Matching objective simply says to sample goals g ∼ π(g) with
probability equal to the density of that goal under the target distribution.

DKL(ρπ(s) ‖ p∗(s)) = E g∼π(g)
s∼π(s|g)

[log p∗(s)− log π(g)] (21)

15

Under review as a conference paper at ICLR 2020

Whether goal-conditioned RL is the preferable way to do distribution matching depends on (1) the
difficulty of sampling goals and (2) the supervision that will be provided at test time. It is natural to
use goal-conditioned RL in settings where it is easy to sample goals, such as when the space of goals
is small and finite or otherwise low-dimensional. If a large collection of goals is available apriori, we
could use importance sampling to generate goals to train the goal-conditioned policy (Pong et al.,
2019). However, many real-world settings have high-dimensional goals, which can be challenging to
sample. While goal-conditioned RL is likely the right approach when we will be given a test-time
task, a latent-conditioned policy may explore better in settings where the goal-state is not provided at
test-time.

D ADDITIONAL EXPERIMENTS & EXPERIMENTAL DETAILS

D.1 ENVIRONMENT DETAILS

We summarize the environment parameters for Navigation (Figures 2, 5a), Manipulation (Fig-
ures 3, 5b, 7, 8, 9, 10), and D’Claw (Figure 4) in Table 1.

Navigation: Episodes have a maximum time horizon of 100 steps. The environment reward is

renv(s) =

{
pi if ‖srobot − gi‖22 < ε for any i ∈ [n]

0 otherwise

where sxy is the xy-position of the agent. We used a uniform target distribution over the end of all m
halls, so the environment reward at training time is renv(s) = 1

m if the robot is close enough to the
end of any of the halls.

We used a fixed hall length of 10 in Figures 2b and 2c, and length 50 in Figure 5a. All experiments
used m = 3 halls, except in Figure 2c where we varied the number of halls {3, 5, 7}.
Manipulation. We used the simulated Fetch Robotics arm5 implemented by Plappert et al. (2018)
using the MuJoCo simulator Todorov et al. (2012). The state vector s ∈ R28 includes the xyz-
coordinates sobj, srobot ∈ R3 of the block and the robot gripper respectively, as well as their velocities,
orientations, and relative position sobj − srobot. At the beginning of each episode, we spawn the object
at the center of the table, and the robot gripper above the initial block position. We terminate each
episode after 50 environment steps, or if the block falls off the table.

We considered two target state marginal distributions. In Manipulation-Uniform, the target density is
given by

p∗(s) ∝ exp (α1rgoal(s) + α2rrobot(s) + α3raction(s))

where α1, α2, α3 > 0 are fixed weights, and the rewards

rgoal(s) := 1− 1(sobj is on the table surface)

rrobot(s) := 1(‖sobj − srobot‖22 < 0.1)

raction(s) := −‖a‖22
correspond to (1) a uniform distribution of the block position over the table surface (the agent receives
+0 reward while the block is on the table), (2) an indicator reward for moving the robot gripper close
to the block, and (3) action penalty, respectively. The environment reward is a weighted sum of the
three reward terms: renv(s) , 20rgoal(s) + rrobot(s) + 0.1raction(s). At test-time, we sample a goal
block location g ∈ R3 uniformly on the table surface, and the goal is not observed by the agent.

In Manipulation-Half, the target state density places higher probability mass to states where the block
is on the left-side of the table. This is implemented by replacing rgoal(s) with a reward function that
gives a slightly higher reward +0.1 for states where the block is on the left-side of the table.

D’Claw. The D’Claw robot (Ahn et al., 2019; Zhu et al., 2019)6 controls three claws to rotate a
valve object. The environment consists of a 9-dimensional action space (three joints per claw) and a
12-dimensional observation space that encodes the joint angles and object orientation. We fixed each

5https://fetchrobotics.com/
6www.roboticsbenchmarks.org

16

https://fetchrobotics.com/
www.roboticsbenchmarks.org

Under review as a conference paper at ICLR 2020

Table 1: Environment parameters specifying the observation space dimension |S|; action space
dimension |A|; max episode length T ; the environment reward, related to the target distribution by
exp{renv(s)} ∝ p∗(s), and other environment parameters.

Environment |S| |A| T Env Reward (log p∗(s)) Other Parameters Figure

Navigation 2 2 100 Uniform over all m
halls

Halls: 3, 5, 7
Hall length: 10 2

Uniform over all m
halls

Halls: 3
Hall length: 50 5a

Manipulation 25 4 50 Uniform block pos.
over table surface

3b, 3c, 5b

More block pos. density
on left-half of table

3d

D’Claw 12 9 50 Uniform object angle
over [−180◦, 180◦]

4

episode at 50 timesteps, which is about 5 seconds on the real robot. In the hardware experiments,
each algorithm was trained on the same four D’Claw robots to ensure consistency.

We defined the target state distribution to place uniform probability mass over all object angles in
[−180◦, 180◦]. It also incorporates reward shaping terms that place lower probability mass on states
with high joint velocity and on states with joint positions that deviate far from the initial position
(see (Zhu et al., 2019)).

D.2 GAIL

GAIL assumes access to expert demonstrations, which SMM and the other exploration methods
do not require. To compare GAIL with the exploration methods on a level footing, we sampled
synthetic states from p∗(s) to train GAIL, and restricted the GAIL discriminator input to states only
(no actions).

For D’Claw (Fig. 4), we sampled the valve object angle uniformly in [−180◦, 180◦]. For
Manipulation-Uniform (Fig. 3c), we sampled object positions sobject uniformly on the table sur-
face, and tried two different sampling distributions for the gripper position srobot (see Fig. 6). For
both environments, all other state dimensions were sampled uniformly in [−10, 10], and used 1e4
synthetic state samples to train GAIL.

Since the state samples from p∗(s) may not be reachable from the initial state, the policy may not
be able to fool the discriminator. To get around this problem, we also tried training GAIL with the
discriminator input restricted to only the state dimensions corresponding to the object position or
gripper position (Manipulation), or the object angle (D’Claw). We summarize these GAIL ablation
experiments in Fig. 6. In our experiments, we used the best GAIL ablation model to compare against
the exploration baselines in Figures 3c and 4.

D.3 VAE DENSITY MODEL

In our SMM implementation, we estimated the density of data x as p(x) ≈ decoder(x̂ = x|z =
encoder(x)). That is, we encoded x to z, reconstruction x̂ from z, and then took the likelihood of
the true data x under a unit-variance Gaussian distribution centered at the reconstructed x̂. The
log-likelihood is therefore given by the mean-squared error between the data x and the reconstruction
x̂, plus a constant that is independent of x: log q(x) = 1

2‖x− x̂‖
2
2 + C.

D.4 COMPUTATIONAL COMPLEXITY

We compare the wall-clock time of each exploration method in Table 2. The computational cost of
our method is comparable with prior work.

17

Under review as a conference paper at ICLR 2020

(a) GAIL ablations on Manipulation (b) GAIL ablations on D’Claw

Figure 6: GAIL Ablation Study: We studied the effect of restricting the GAIL discriminator input
to fewer state dimensions. (a) Manipulation: We trained the GAIL discriminator on the entire state
vector s; on the object and gripper positions {sobject, srobot} only; or on the object position sobject only.
We also varied the sampling distribution for the gripper position, p∗(srobot): we compare using a
normal distribution, N (sobject, I3), to sample gripper positions closer to the object, versus a uniform
distribution, Uniform[−10, 10], for greater entropy of the sampled gripper positions. We observe that
sampling gripper positions closer to the object position improves the entropy of the object position
Hπ[sobject], but hurts the entropy of the gripper position Hπ[srobot]. (b) D’Claw: We restricted the
discriminator to the entire state vector s, or to the object angle and position sobject. Analysis: In both
domains, we observe that restricting the discriminator input to fewer state dimensions (e.g., to sobject)
makes the discriminator less capable of distinguishing between expert and policy states (orange and
green curves). On the other hand, training on the entire state vector s causes the discriminator loss
to approach 0 (i.e., perfect classification), partly because some of the “expert” states sampled from
p∗(s) are not reachable from the initial state, and the policy is thus unable to fool the discriminator.

Table 2: Per-epoch wall-clock time on the Manipulation environment. One epoch is 1e3 env. steps.

SAC ICM Count SMM (ours) PseudoCounts
17.95s (+0%) 22.74s (+27%) 25.24s (+41%) 25.82s (+44%) 33.87s (+89%)

D.5 ALGORITHM HYPERPARAMETERS

We summarize hyperparameter settings in Table 3. All algorithms were trained for 1e5 steps on
Navigation, 1e6 steps on Manipulation, 1e6 steps on D’Claw Sim2Real, and 1e5 steps on D’Claw
hardware.

Loss Hyperparameters. For each exploration method, we tuned the weights of the different loss
components. SAC reward scale controls the weight of the action entropy reward relative to the extrinsic
reward. Count coeff controls the intrinsic count-based exploration reward w.r.t. the extrinsic reward
and SAC action entropy reward. Similarly, Pseudocount coeff controls the intrinsic pseudocount
exploration reward. SMM coeff for H[s | z] and H[z | s] control the weight of the different loss
components (state entropy and latent conditional entropy) of the SMM objective in Equation 8.

Historical Averaging. In the Manipulation experiments, we tried the following sampling strategies
for historical averaging: (1) Uniform: Sample policies uniformly across training iterations. (2)
Exponential: Sample policies, with recent policies sampled exponentially more than earlier ones.
(3) Last: Sample the N latest policies uniformly at random. We found that Uniform worked less
well, possibly due to the policies at early iterations not being trained enough. We found negligible
difference in the state entropy metric between Exponential vs. Last, and between sampling 5 vs. 10
historical policies, and we also note that it is unnecessary to keep checkpoints from every iteration.

Network Hyperparameters. For all algorithms, we use a Gaussian policy with two hidden layers
with Tanh activation and a final fully-connected layer. The Value function and Q-function each
are a feedforward MLP with two hidden layers with ReLU activation and a final fully-connected
layer. Each hidden layer is of size 300 (SMM, SAC, ICM, C, PC) or 256 (GAIL). The same network
configuration is used for the SMM discriminator, d(z | s), and the GAIL discriminator, but with
different input and output sizes. The SMM density model, q(s), is modeled by a VAE with encoder
and decoder networks each consisting of two hidden layers of size (150, 150) with ReLU activation.
The same VAE network configuration is used for Pseudocount.

18

Under review as a conference paper at ICLR 2020

GAIL Hyperparameters: The replay buffer is filled with 1e4 random actions before training, for
training stability. We perform one discriminator update per SAC update. For both Manipulation
and D’Claw, we used 1e4 states sampled from p∗(s). Other hyperparameter settings, such as batch
size for both discriminator and policy updates, are summarized in Table 3. We observed that GAIL
training is more unstable compared to the exploration baselines. Thus, for GAIL, we did not take the
final iterate (e.g., policy at convergence) but instead used early termination (e.g., take the best iterate
according to the state entropy metric).

D.6 VISUALIZING THE MANIPULATION ENVIRONMENT

We visualize where different methods push the block in the Manipulation environment. More
precisely, we visualize the log state marginal log ρπz (s) over block XY-coordinates s = (x, y) in
Figures 7 and 8. In Figure 9, we plot goals sampled at test-time, colored by the number of episodes
each method required to push the block to that goal location. Blue dots indicate that the agent found
the goal quickly. We observe that SMM has the most blue dots, indicating that it succeeds in exploring
a wide range of states at test-time.

Figure 7: The log state marginal log ρπ(s) over block XY-coordinates, averaged over 1e3 epochs.

Figure 8: SM4 with Eight Mixture Components. The log state marginal log ρπz (s) over block
XY-coordinates for each latent skill z ∈ {0, . . . , 7}, averaged over 1000 epochs.

SAC

0

20

40

60

80

100

Ep

iso
de

s T
ill

Su
cc

es
sICM

0

20

40

60

80

100

Ep

iso
de

s T
ill

Su
cc

es
sPC

0

20

40

60

80

100

Ep

iso
de

s T
ill

Su
cc

es
sSMM w/o HA

0

20

40

60

80

100

Ep

iso
de

s T
ill

Su
cc

es
sSMM

0

20

40

60

80

100

Ep

iso
de

s T
ill

Su
cc

es
s

Figure 9: Goals sampled uniformly on the table surface, colored by the number of episodes until the
policy finds the goal. Red (100 episodes) indicates failure. The block always starts at the center.

19

Under review as a conference paper at ICLR 2020

(a) Average Return vs. Epoch (b) Latent action & state entropies for
SM4 with n ∈ {2, 4, 8, 16} skills

Figure 10: Train curves on Manipulation. One epoch is 1e3 steps. (a) . The environment reward
is a weighted sum of three terms: rgoal(s) (+0 if object is on table, -1 otherwise), rrobot(s) (+1 if
robot gripper is close to block), and raction (action penalty term), with weights -20, 1, 0.1 respectively
(see Appendix D.1). The three exploration methods (ICM, Count, SMM) also optimize an auxilliary
exploration loss, which makes the agent more likely to move around the block. Compared to SAC,
this causes the exploration methods to get worse returns for rgoal(s) and raction(s) (due to the agent
moving the block around), but also quickly learns to maximize the sparse reward rrobot(s) (indicator
reward for moving gripper within a threshold distance to the block). (b) The latent action entropy
H[z | s] (discriminator) and latent state entropyH[s | z] (density model) per epoch.

20

Under review as a conference paper at ICLR 2020

Table 3: Hyperparameter Settings. Hyperparameters were chosen according to the following eval metrics:
Manip.-Uniform: State entropy of the discretized gripper and block positions (bin size 0.05), after rolling out the
trained policy for 50K env steps. Manip.-Half : DKL(p

∗(s) ‖ ρπ(s)) and TV(p∗(s), ρπ(s)) of the discretized
gripper and block positions (bin size 0.01), after rolling out the trained policy for 50K env steps. 2D Navigation:
State entropy of the discretized XY-positions of the trained policy. D’Claw: State entropy of the object angle.

Environment Algorithm Hyperparameters Used Hyperparameters Considered

All

SMM, SAC,
ICM, Count,
Pseudocount

Batch size: 128
1e6 env training steps
RL discount: 0.99
Network size: 300
Policy lr: 3e-4
Q-function lr: 3e-4
Value function lr: 3e-4

N/A (Default SAC hyperparameters)

GAIL

1e6 env training steps
Policy lr: 1e-5
Critic lr: 1e-3
Random actions

before training: 1e4
Network size: 256

N/A (Default GAIL hyperparameters)

Navigation
(Fig. 2, 5a)

SMM, SAC SAC reward scale: 25 SAC reward scale: 1e-2, 0.1, 1, 10, 25, 100

SMM SMMH[s | z] coeff: 1
SMMH[z | s] coeff: 1

SMMH[s | z] coeff: 1e-3, 1e-2, 1e-1, 1, 10
SMMH[z | s] coeff: 1e-3, 1e-2, 1e-1, 1, 10

Manip.-Uniform
(Fig. 3b, 3c, 5b)

SMM

Num skills: 4
VAE lr: 1e-2
SMMH[s | z] coeff: 1
SMMH[z | s] coeff: 1
HA sampling: Exponential
HA policies: 10
SMM Latent Prior Coeff: 1

Num skills: 1, 2, 4, 8, 16
VAE lr: 1e-4, 1e-3, 1e-2

HA sampling: Exponential, Uniform, Last
HA policies: 5, 10
SMM Latent Prior Coeff: 1, 4

SAC SAC reward scale: 0.1 SAC reward scale: 0.1, 1, 10, 100

Count Count coeff: 10
Histogram bin width: 0.05 Count coeff: 0.1, 1, 10

Pseudocount Pseudocount coeff: 1
VAE lr: 1e-2

Pseudocount coeff: 0.1, 1, 10
(Use same VAE lr as SMM)

ICM Learning rate: 1e-3 Learning rate: 1e-4, 1e-3, 1e-2

GAIL

Batch size: 512
SAC updates per step: 1
Discriminator input: s
Training iterate: 1e6
State Samples: 1e4

Batch size: 128, 512, 1024
SAC updates per step: 1, 4
Discriminator input: s, sobject, {sobject, srobot}
Training iterate: 1e5, 2e5, 3e5, . . ., 9e5, 1e6
State Samples: 1e4

Manip.-Half
(Fig. 3d)

SMM, SAC,
ICM, Count SAC reward scale: 0.1 (Best reward scale for Manip.-Uniform)

SMM
Num skills: 4
SMMH[s | z] coeff: 1
SMMH[z | s] coeff: 1

Num skills: 1, 2, 4, 8

Count Count coeff: 10
Histogram bin width: 0.05 Count coeff: 0.1, 1, 10

ICM Learning rate: 1e-3 Learning rate: 1e-4, 1e-3, 1e-2

D’Claw
(Fig. 4)

SMM, SAC SAC reward scale: 5 SAC reward scale: 1e-2, 0.1, 1, 5, 10, 100
SMM SMMH[s | z] coeff: 250 SMMH[s | z] coeff: 1, 10, 100, 250, 500, 1e3

Count Count coeff: 1
Histogram bin width: 0.05

Count coeff: 1, 10
Histogram bin width: 0.05, 0.1

Pseudocount Pseudocount coeff: 1
VAE lr: 1e-3

Pseudocount coeff: 1, 10
VAE lr: 1e-1, 1e-2, 1e-3

ICM Learning rate: 1e-3
VAE lr: 1e-1

Learning rate: 1e-2, 1e-3, 1e-4
VAE lr: 1e-1, 1e-2, 1e-3

GAIL

Batch size: 512
SAC updates per step: 4
Discriminator input: sobject
Training iterate: 1e5
State Samples: 1e4

Batch size: 128, 512, 1024
SAC updates per step: 1, 4
Discriminator input: s, sobject
Training iterate: 1e5, 2e5, 3e5, . . ., 9e5, 1e6
State Samples: 1e4

21

	Introduction
	Related Work
	State Marginal Matching
	Optimizing the State Marginal Matching Objective

	Why Does Prediction-Error Exploration Work?
	Simulated Experiments
	Real-World Experiments
	Discussion
	Proofs
	Better Marginal Matching with Mixtures of Mixtures
	Algorithmic Summary
	Ablation Study

	Choosing p*(s) for Goal-Reaching Tasks
	Connections to Goal-Conditioned RL

	Additional Experiments & Experimental Details
	Environment Details
	GAIL
	VAE Density Model
	Computational Complexity
	Algorithm Hyperparameters
	Visualizing the Manipulation Environment

