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Abstract

Most of recent work in cross-lingual word embeddings is severely Anglocentric.
The vast majority of lexicon induction evaluation dictionaries are between English
and another language, and the English embedding space is selected by default as
the hub when learning in a multilingual setting. With this work, however, we
challenge these practices. First, we show that the choice of hub language can sig-
nificantly impact downstream lexicon induction performance. Second, we both
expand the current evaluation dictionary collection to include all language pairs
using triangulation, and also create new dictionaries for under-represented lan-
guages. Evaluating established methods over all these language pairs sheds light
into their suitability and presents new challenges for the field. Finally, in our anal-
ysis we identify general guidelines for strong cross-lingual embeddings baselines,
based on more than just Anglocentric experiments.

1 Introduction

Continuous distributional vectors for representing words (embeddings) (Turian et al., 2010) have
become ubiquitous in modern, neural NLP. Cross-lingual representations (Mikolov et al., 2013)
additionally represent words from various languages in a shared continuous space, which in turn can
be used for Bilingual Lexicon Induction (BLI). BLI is often the first step towards several downstream
tasks such as Part-Of-Speech (POS) tagging (Zhang et al., 2016), parsing (Ammar et al., 2016),
document classification (Klementiev et al., 2012), and machine translation (Irvine and Callison-
Burch, 2013; Artetxe et al., 2018b; Lample et al., 2018).

Often, such shared representations are learned with a two-step process, whether under bilingual or
multilingual settings (hereinafter BWE and MWE, respectively). First, monolingual word embed-
dings are learned over large swaths of text; such pre-trained word embeddings, in fact, are available
for several languages and are widely used, like the fastText Wikipedia vectors (Grave et al., 2018).
Second, a mapping between the languages is learned, in one of three ways: in a supervised man-
ner if dictionaries or parallel data are available to be used for supervision (Zou et al., 2013), under
minimal supervision e.g. using only identical strings (Smith et al., 2017), or even in a completely
unsupervised fashion (Zhang et al., 2017; Conneau et al., 2018). Both in bilingual and multilingual
settings, it is common that one of the language embedding spaces is the target to which all other
languages get aligned to (hereinafter “the hub"). We outline the details in Section 2.

Despite all the recent progress in learning cross-lingual embeddings, we identify a major shortcom-
ing to previous work: it is by and large English-centric. Notably, most MWE approaches essentially
select English as the hub during training by default, aligning all other language spaces to the English
one. We argue and empirically show, however, that English is a poor hub language choice. In BWE
settings, on the other hand, it is fairly uncommon to denote which of the two languages is the hub
(often this is implied to be the target language). However, we experimentally find that this choice
can greatly impact downstream performance, especially when aligning distant languages.

This Anglocentricity is even more evident at the evaluation stage. The lexica most commonly used
for evaluation are the MUSE lexica (Conneau et al., 2018) which cover 45 languages, but with
translations only from and into English. Even still, alternative evaluation dictionaries are also very
English- and European-centric: Dinu and Baroni (2014) report results on English–Italian, Artetxe
et al. (2017) on English–German and English–Finnish, Zhang et al. (2017) on Spanish–English and
Italian–English, and Artetxe et al. (2018a) between English and Italian, German, Finnish, Spanish,
and Turkish. We argue that cross-lingual word embedding mapping methods should look beyond
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English for their evaluation benchmarks because, compared to all others, English is a language with
disproportionately large available data and relatively poor inflectional morphology e.g., it lacks case,
gender, and complex verbal inflection systems (Aronoff and Fudeman, 2011). These two factors
allow for an overly easy evaluation setting which does not necessarily generalize to other language
pairs. In light of this, equal focus should instead be devoted to evaluation over more diverse language
pairs that also include morphologically rich and low-resource languages.

With this work, we attempt to address these shortcomings, providing the following contributions:

• We show that the choice of the hub when evaluating on diverse language pairs can lead to
significantly different performance (e.g., by more than 10 percentage points for BWE over
distant languages). We also show that often English is a suboptimal hub for MWE.

• We identify some general guidelines for choosing a hub language which could lead to
stronger baselines; less isometry between the hub and source and target embedding spaces
mildly correlates with performance, as does typological distance (a measure of language
similarity based on language family membership trees). For distant languages, multilingual
systems should in most cases be preferred over bilingual ones.

• We provide resources for training and evaluation on non-Anglocentric language pairs. We
outline a simple triangulation method with which we extend the MUSE dictionaries to an
additional 2352 lexicons covering 49 languages, and we present results on a subset of them.
We also create new evaluation lexica for under-resourced languages using Azerbaijani,
Belarusian, and Galician as our test cases. We additionally provide recipes for creating
such dictionaries for any language pair with available parallel data.

2 Cross-LingualWord Embeddings and Lexicon Induction

In the supervised bilingual setting, as formulated by Mikolov et al. (2013), given two languages
L = {l1, l2} and their pre-trained row-aligned embeddings X1,X2, respectively, a transformation
matrix M is learned such that:

M = arg min
M∈Ω

‖X1 −MX2‖ .

The set Ω can potentially impose a constraint over M , such as the very popular constraint of re-
stricting it to be orthogonal (Xing et al., 2015). Previous work has empirically found that this simple
formulation is competitive with other more complicated alternatives (Xing et al., 2015; Conneau
et al., 2018). The orthogonality assumption ensures that there exists a closed-form solution in the
form of the Singular Value Decomposition (SVD) of X1X

T
2 .1 Note that in this case only a single

matrix M needs to be learned, because ‖X1 −MX2‖ =
∥∥∥M−1X1 − X2

∥∥∥, while at the same time
a model that minimizes ‖X1 −MX2‖ is as expressive as one minimizing ‖M1X1 −M2X2‖, and
easier to learn.

In the minimally supervised or even the unsupervised setting (Zhang et al., 2017) the popular meth-
ods follow an iterative refinement approach (Artetxe et al., 2017). Starting with a seed dictionary
(e.g. from identical strings (Zhou et al., 2019) or numerals) an initial mapping is learned in the
same manner as in the supervised setting. The initial mapping, in turn, is used to expand the seed
dictionary with high confidence word translation pairs. The new dictionary is then used to learn a
better mapping, and so forth the iterations continue until convergence. We will generally refer to
such methods as MUSE-like.

Similarly, in a multilingual setting, one could start with N languages L = {l1, l2, . . . , lN} and their
respective pre-trained embeddingsX1,X2, . . . ,XN , and then learn N−1 bilingual mappings between
a pre-selected target language and all others. Hence, one of the language spaces is treated as a target
(the hub) and remains invariant, while all others are mapped into the (now shared) hub language
space. Alternatively, those mappings could be jointly learned using the MAT+MPSR methods of Chen
and Cardie (2018) – also taking advantage of the inter-dependencies between any two language
pairs. Importantly, though, there is no closed form solution for learning the joint mapping, hence a
solution needs to be approximated with gradient-based methods. MAT+MPSR generalizes the adver-
sarial approach of Zhang et al. (2017) to multiple languages, and also follows an iterative refinement

1We refer the reader to (Mikolov et al., 2013) for more details.
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Table 1: Triangulation and filtering example on Greek–Italian. All words are valid translations of
the English word ‘peaceful’. We also show filtered-out translations.

Greek Italian Bridged Greek–Italian Lexicon
word tag word tag Match Greek Italian

ειρηνικός M;NOM;SG pacifico M;SG M;SG ειρηνικός pacifico, pacifici, pacifica
ειρηνική F;NOM;SG pacifici M;PL F;SG ειρηνική pacifica, pacifico, pacifici
ειρηνικό Neut;NOM;SG pacifica F;SG SG ειρηνικό pacifica, pacifico, pacifici
ειρηνικά Neut;NOM;PL PL ειρηνικά pacifici, pacifica, pacifico

approach very similar to that of MUSE-like methods.2 In either case, a language is chosen as the hub,
and N − 1 mappings for the other languages are learned.

Other than MAT+MPSR, the only other unsupervised multilingual approach is that of Heyman et al.
(2019), who propose to incrementally align multiple languages by adding each new language as
a hub. We decided, though, against comparing to this method, because (a) their method requires
learningO(N2) mappings for relatively small improvements and (b) the order in which the languages
are added is an additional hyperparameter that would explode the experimental space.3

Lexicon Induction One of the most common downstream evaluation tasks for the learned cross-
lingual word mappings is Lexicon Induction (LI), the task of retrieving the most appropriate word-
level translation for a query word from the mapped embedding spaces. Specialized evaluation (and
training) dictionaries have been created for multiple language pairs, with the MUSE dictionaries
(Conneau et al., 2018) most often used, providing word translations between English (En) and 48
other high- to mid-resource languages, as well as on all 30 pairs among 6 very similar Romance and
Germanic languages (English, French, German, Spanish, Italian, Portuguese).

Given the mapped embedding spaces, the translations are retrieved using a distance metric, with
Cross-Lingual Similarity Scaling (Conneau et al., 2018, CSLS) as the most common and best per-
forming in the literature. Intuitively, CSLS decreases the scores of pairs that lie in dense areas,
increasing the scores of rarer words (which are harder to align). The retrieved pairs are compared to
the gold standard and evaluated using precision at k (P@k, evaluating how often the correct transla-
tion is within the k retrieved nearest neighbours of the query). Throughout this work we report P@1,
which is equivalent to accuracy, but we also provide results with P@5 and P@10 in the Appendix.

3 New LI Evaluation Dictionaries

As other works have recently noted (Czarnowska et al., 2019) the typically used evaluation dictio-
naries cover a narrow breadth of the possible language pairs, with the majority of them focusing in
pairs with English (as with the MUSE dictionaries) or among high-resource European languages. In
this section, we first outline our method for creating new dictionaries for low resource languages.
Then, we describe the simple triangulation process that allows us to create dictionaries among all 49
MUSE languages.

3.1 Low-Resource Language Dictionaries

Our approach for constructing dictionaries is fairly straightforward, inspired by phrase table extrac-
tion techniques from phrase-based MT (Koehn, 2009). Rather than manual inspection, however,
which would be impossible for all language pairs, we rely on fairly simple heuristics for controlling
the quality of our dictionaries.

The first step is collecting publicly available parallel data between English and the low-resource
language of interest. We use data from the TED (Qi et al., 2018), OpenSubtitles (Lison and Tiede-
mann, 2016), WikiMatrix (Schwenk et al., 2019), bible (Malaviya et al., 2017), and JW300 (Agić
and Vulić, 2019) datasets.4 This results in 354k, 53k, and 623k English-to-X parallel sentences for

2Note that MAT+MPSR has the beneficial property of being as computationally efficient as learning O(N)
mappings (instead of O(N2)).We refer the reader to Chen and Cardie (2018) for exact details.

3We refer the reader to Table 2 from Heyman et al. (2019) which compares to MAT+MPSR, and to Table 7 of
their appendix which shows the dramatic influence of language order.

4Not all languages are available in all these datasets.
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Azerbaijani (Az), Belarusian (Be), and Galician (Gl) respectively.5 We align the parallel sentences
using fast align (Dyer et al., 2013), and extract symmetrized alignments using the gdfa heuristic
(Koehn et al., 2005). In order to ensure that we do not extract highly domain-specific word pairs, we
only use the TED, OpenSubtitles, and WikiMatrix parts for word-pair extraction. Also, in order to
control for quality, we only extract word pairs if they appear in the dataset more than 5 times, and if
the alignment probability is higher than 30%.

With this process, we end up with about 6k, 7k, and 38k word pairs for Az–En, Be–En, and Gl–
En respectively. Following standard conventions, we sort the word pairs according to source-side
frequency, and use the intermediate-frequency ones for evaluation, typically using the 5000–6500
rank boundaries. The same process can be followed for any language pair with enough volume of
parallel data (needed for training a decent word alignment model). In fact, we can produce similar
dictionaries for a large number of languages, as the combination of the recently created JW300 and
WikiMatrix datasets provide an average of more than 100k parallel sentences in 300 languages.6

3.2 Dictionaries for all Language Pairs through Triangulation

Pt:

En:

Cs:

trabalho

job work

prácu
zamestnanie

praca
práca

dielo
práce
pracovné

Figure 1: Transitivity example.

Our second method for creating new dictionaries is inspired
from phrase table triangulation ideas from the pre-neural MT
community (Wang et al., 2006; Levinboim and Chiang, 2015).
The concept can be easily explained with an example, visual-
ized in Figure 1. Consider the Portuguese (Pt) word trabalho
which, according to the MUSE Pt–En dictionary, has the
words job and work as possible En translations. In turn, these
two En words can be translated to 4 and 5 Czech (Cs) words respectively. By utilizing the transitive
property (which translation should exhibit) we can identify the set of 7 possible Cs translations for
the Pt word trabalho. Following this simple triangulation approach, we create 2352 new dictio-
naries over language pairs among the 49 languages of the MUSE dictionaries.7 For consistency, we
keep the same train and test splits as with MUSE, so that the source-side types are equal across all
dictionaries with the same source language.

Triangulating through English (which is unavoidable, due to the lack of non-English-centric dictio-
naries) is suboptimal – English is morphologically poor and lacks gender information. As a result,
several inflected forms in morphologically-rich languages map to the same English form. Similarly,
gendered nouns or adjectives in gendered languages map to English forms that lack gender informa-
tion. For example, the MUSE Greek–English dictionary lists the word peaceful as the translation
for all ειρηνικός, ειρηνική, ειρηνικό, ειρηνικά, which are the male, female, and neutral (singular
and plural) inflections of the same adjective. Equivalently, the English–Italian dictionary translates
peaceful into either pacifico, pacifici, or pacifica (male singular, male plural, and female
singular, respectively; see Table 1). When translating from or into English lacking context, all of
those are reasonable translations. When translating between Greek and Italian, though, one should
take gender and number into account.

Hence, we devise a filtering method for removing blatant mistakes when triangulating morpholog-
ically rich languages. We rely on automatic morphological tagging which we can obtain for most
of the MUSE languages, using the StanfordNLP toolkit (Manning et al., 2014). The morphological
tagging uses the Universal Dependencies feature set (Nivre et al., 2016) making the tagging compa-
rable across almost all languages. Our filtering technique iterates through the bridged dictionaries:
for a given source word, if we find a translation word with the exact same morphological analysis,
we filter out all other translations with the same lemma but different tags. In the case of feature
mismatch (for instance, Greek uses 4 cases and 3 genders while Italian has 2 genders and no cases)
or if we only find a partial tag match over a feature subset, we filter out translations with disagreeing
tags. Coming back to our Greek–Italian example, this means that for the form ειρηνικός we would
only keep pacifico as a candidate translation (we show more examples in Table 1).

Our filtering technique removes about 17% of the entries in our bridged dictionaries. Naturally, this
filtering approach is restricted to languages for which a morphological analyzer is available. Miti-

5Note that the anglocentricity in this step is by necessity – it is hard to find a large volume of parallel data
in a language pair excluding English.

6We will create these dictionaries and make them publicly available, along with the corresponding code.
7Available at AnonymizedURL.

4

AnonymizedURL


Under review as a conference paper at ICLR 2020

Table 2: Lexicon Induction performance (measured with P@1) over 10 European languages (90
pairs). In each cell, the superscript denotes the hub language that yields the best result for that
language pair. µbest: average using the best hub language. µEn: average using the En as the hub. The
shaded cells are the only language pairs where a bilingual MUSE system outperforms MAT+MSPR.

src Target
Az Be Cs En Es Gl Pt Ru Sk Tr µbest µEn

Az – 17.2En 35.1Es 35.7Es 48.0Tr 32.7Ru 41.5En 29.8Pt 31.7Cs 32.0Pt 33.7 31.7
Be 14.1Cs – 35.9Tr 29.9Pt 39.5En 25.8Es 34.4Es 41.1Gl 30.7Ru 20.4Pt 30.2 28.8
Cs 6.9 Es 9.3 Ru – 61.0Es 60.5En 27.9Pt 57.8En 45.9Pt 71.2En 35.8Sk 41.8 41.2
En 17.9Es 18.4Es 50.2Es – 77.5Ru 36.3Es 72.3Sk 43.3Pt 40.4Tr 41.9Pt 44.2 42.7
Es 12.1En 10.1Ru 47.4Pt 74.6Sk – 37.5Es 83.1Gl 41.9Tr 40.0Es 38.6Sk 42.8 41.4
Gl 5.5 En 3.6 Az 26.5Tr 43.2Es 60.8Tr – 52.9Cs 23.8Tr 26.8Cs 19.7Cs 29.2 27.7
Pt 5.8 Pt 8.6 Sk 47.2Gl 71.3En 88.1Pt 37.1Es – 38.0Es 38.7Es 38.1En 41.4 40.4
Ru 8.7 Es 12.8Az 50.3Gl 55.5Tr 54.8Cs 23.0Pt 52.4En – 45.5Tr 27.0Be 36.7 35.9
Sk 4.0 Be 10.9Ru 72.5Be 55.6Tr 53.9En 28.4En 52.0Es 44.0Gl – 28.5En 38.9 37.9
Tr 12.1Sk 9.0 Az 41.8Ru 51.1Cs 55.0En 18.4Tr 51.6En 34.6En 29.4Es – 33.7 33.0

µbest 9.7 11.1 45.2 53.1 59.8 29.7 55.3 38.0 39.4 31.3 37.3
µEn 9.1 9.9 43.3 51.0 59.3 28.2 54.9 36.5 37.7 30.8 36.0

gating this limitation is beyond the scope of this work, although it is unfortunately a common issue.
For example, Kementchedjhieva et al. (2019) were able to manually correct (filter) five dictionaries
(between English and German, Danish, Bulgarian, Arabic, and Hindi) but one would have to rely on
automated annotation in order to scale to all languages.

4 Lexicon Induction Experiments

For our main MWE experiments, we train MAT+MPSR systems to align several language subsets vary-
ing the hub language. For BWE experiments, we compare MUSE with MAT+MPSR. The differences
in LI performance show the importance of the hub language choice with respect to each evaluation
pair. As part of our call for moving beyond Anglo-centric evaluation, we also present LI results
on several new language pairs using our triangulated dictionaries. It is worth noting that we are
predominantly interested in comparing the quality of the multilingual alignment when different hub
languages are used. Hence, even slightly noisy dictionaries (like our low-resource language ones)
are still useful. Even if the skyline performance (from e.g. a perfect system) would not reach 100%
accuracy due to noise, the differences between the systems’ performance can be revealing.

We first focus on 10 European languages of varying morphological complexity and data availability
(which affects the quality of the pre-trained word embeddings): Azerbaijani (Az), Belarusian (Be),
Czech (Cs), English (En), Galician (Gl), Portuguese (Pt), Russian (Ru), Slovak (Sk), Spanish (Es),
and Turkish (Tr). The choice of these languages additionally ensures that for our three low-resource
languages (Az, Be, Gl) we include at least one related higher-resource language (Tr, Ru, Pt/Es
respectively), allowing for comparative analysis. Table 2 summarizes the best post-hoc performing
systems for this experiment.

In the second setting, we use a set of 7 more distant languages: English, French (Fr), Hindi (Hi),
Korean (Ko), Russian, Swedish (Sv), and Ukrainian (Uk). This language subset has large variance
in terms of typology and alphabet. The best performing systems are presented in Table 3.

Experimental Setup We train and evaluate all models starting with the pre-trained Wikipedia
FastText embeddings for all languages (Grave et al., 2018). We focus on the minimally supervised
scenario which only uses similar character strings between any languages for supervision in order
to mirror the hard, realistic scenario of not having annotated training dictionaries between the lan-
guages. We learn MWE with the MAT+MPSR method (Chen and Cardie, 2018) using the publicly
available code.8 We also use MAT+MPSR for BWE experiments, but we additionally train and com-
pare to MUSE systems9 (Conneau et al., 2018). We compare the statistical significance of the differ-
ence in performance from two systems using paired bootstrap resampling (Koehn, 2004). Generally,
a difference of 0.4–0.5 percentage points evaluated over our lexica is significant with p < 0.05.

8https://github.com/ccsasuke/umwe
9https://github.com/facebookresearch/MUSE
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Table 3: Lexicon Induction performance (P@1) over MWEs from 7 typologically distant languages
(42 pairs). See Table 2 for notation.

Source Target
En Fr Hi Ko Ru Sv Uk µbest µEn

En – 76.3Ru 23.9Uk 10.4Fr 42.0Uk 59.0Hi 28.3Ru 40.0 38.5
Fr 74.0Uk – 19.0Ru 7.5 Sv 40.8Ru 51.8En 28.8En 37.0 36.4
Hi 31.4Fr 26.9Ru – 2.1 En 14.6Uk 17.3En 10.5Fr 17.1 16.2
Ko 17.7Sv 13.6Sv 2.4 Fr – 7.9 En 7.2 Ru 3.6 Fr 8.8 7.9
Ru 53.4Ko 51.7Ko 15.3Uk 5.2 En – 41.3Uk 56.3Ko 37.2 36.2
Sv 52.7Uk 48.2Ko 17.7Ru 5.1 Uk 33.2Fr – 24.1Ru 30.2 29.2
Uk 41.4Ru 44.0Hi 14.4Sv 2.6 En 59.7Hi 36.8Ko – 33.2 32.4

µbest 45.1 43.5 15.5 5.5 33.0 35.6 25.3 29.1
µEn 42.7 42.5 14.5 5.1 32.4 34.9 24.5 28.1

4.1 Analysis and Takeaways Table 4: The hub is
important for BWE be-
tween distant languages.

Test Hub
src trg

Az–Cs 22.7 29.1
Az–En 13.2 20.7
Az–Tr 30.1 30.1
Gl–Pt 53.5 53.6
Pt–Gl 39.0 36.7
Uk–Ru 61.6 61.8

BWE: The hub matters for distant languages When using MUSE, the
answer is simple: the closed form solution of the Procrustes problem
is provably direction-independent, and we confirm this empirically (we
provide complete results on MUSE in Table 15 in the Appendix). How-
ever, obtaining good performance with such methods requires the or-
thogonality assumption to hold, which for distant languages is rarely
the case (Patra et al., 2019). In fact, we find that the gradient-based
MAT+MPSR method in a bilingual setting over distant languages exhibits
better performance than MUSE. Across Tables 2 and 3, in only a handful
of examples (shaded cells) does MUSE outperform MAT+MPSR for BWE.

On the other hand, we find that when aligning distant languages with MAT+MPSR, the difference
between hub choices can be significant – in Az–En, for instance, using En as the hub leads to more
than 7 percentage points difference to using Az. We show some examples in Table 4. On the
other hand, when aligning typologically similar languages, the difference is less pronounced. For
example, we obtain practically similar performance for Gl–Pt, Az–Tr, or Uk–Ru when using either
the source or the target language as the hub. Note, though, that non-negligible differences could still
occur, as in the case of Pt–Gl. In most cases, it is the case that the higher-resourced language is a
better hub than the lower-resourced one, especially when the number of resources defer significantly
(as in the case of Az and Be against any other language). Since BWE settings are not our main focus,
we leave an extensive analysis of this observation for future work.

MWE: English is rarely the best hub language In multilingual settings, we conclude that the
standard practice of choosing English as the hub language is sub-optimal. Out of the 90 evaluation
pairs from our European-languages experiment (Table 2) the best hub language is English in only 17
instances (less than 20% of the time). In fact, the average performance (over all evaluation pairs)
when using En as the hub (denoted as µEn) is 1.3 percentage points worse than the optimal (µbest). In
our distant-languages experiment (Table 3) English is the best choice only for 7 of the 42 evaluation
pairs (again, less than 20% of the time). As before, using En as the hub leads to an average drop
of one percentage point in performance aggregated over all pairs, compared to the averages of the
optimal selection. The rest of the section attempts to provide an explanation for these differences.

Expected gain for a hub language choice As vividly outlined by the superscript annotations in
Tables 2 and 3, there is not a single hub language that stands out as the best one. Interestingly, all
languages, across both experiments, are the best hub language for some evaluation language pair.
For example, in our European-languages experiment, Es is the best choice for about 20% of the
evaluation pairs, Tr and En are the best for about 17% each, while Gl and Be are the best for only 5
and 3 language pairs respectively.

Clearly, not all languages are equally suited to be the hub language for many language pairs. Hence,
it would be interesting to quantify how much better one could do by selecting the best hub language
compared to a random choice. In order to achieve this, we define the expected gain Gl of using
language l as follows. Assume that we are interested in mapping N languages into the shared space
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and pm
l is the accuracy10 over a specified evaluation pair m when using language l as the hub. The

random choice between N languages will have an expected accuracy equal to the average accuracy
when using all languages as hub:

E[pm] =

∑
l pm

l

N
.

EN FR HI KO RU SV UK

0

1

2

0.9 1.1 1.2 1.3 1.4
1.7

1.1

0.1 0

−0.3

0
0.4

−0.2

0.1G
l

AZ BE CS EN ES GL PT RU SK TR

0

1

2

1.1 1 1.2
1.5 1.5

0.9

1.5 1.5
1

1.5

−0.4

0 0.2 0.2 0.4 0.4 0.2 0

−0.2

0

G
l

when best overall

Figure 2: Expected gain Gl for the MWE experiments.

The gain for that evaluation dataset m
when using language l as hub, then, is
gm

l = pm
l − E[pm]. Now, for a collection

of M evaluation pairs we simply average
their gains, in order to obtain the expected
gain for using language l as the hub:

Gl = E[gl] =

∑
m gm

l

M
.

The results of this computation for both
sets of experiments are presented in Fig-
ure 2. The bars marked ‘overall’ match
our above definition, as they present the expected gain computed over all evaluation language pairs.
For good measure, we also present the average gain per language aggregated over the evaluation
pairs where that language was indeed the best hub language (‘when best’ bars). Perhaps unsur-
prisingly, Az seems to be the worst hub language choice among the 10 European languages of the
first experiment, with an expected loss (negative gain) of -0.4. This can be attributed to how distant
Az is from all other languages, as well as to the fact that the Az pre-trained embeddings are of lower
quality compared to all other languages (as the Az Wikipedia dataset is significantly smaller than
the others). Similarly, Hi and Sv show expected loss for our second experiment.

Note that English is not a bad hub choice per se – it exhibits a positive expected gain in both sets
of experiments. However, there are languages with larger expected gains, like Es and Gl in the
European-languages experiment that have a twice-as-large expected gain, while Ru has a 4 times
larger expected gain in the distant-languages experiment. Of course, the language subset composi-
tion of these experiments could possibly impact those numbers. For example, there are three very
related languages (Es, Gl, Pt) in the European languages set, which might boost the expected gain
for that subset; however, the trends stand even if we compute the expected gain over a subset of the
evaluation pairs, removing all pairs that include Gl or Pt. For example, after removing all Gl results,
Es has a slightly lower expected gain of 0.32, but is still the language with the largest expected gain.

Identifying the best hub language for a given evaluation set The next step is attempting to iden-
tify potential characteristics that will allow us make educated decisions with regards to choosing the
hub language, given a specific evaluation set. For example, should one choose a language typologi-
cally similar to the evaluation source, target, or both? Or should they use the source or the target of
the desired evaluation set as the hub?

Our first finding is that the best performing hub language will very likely be neither the source nor
the target of the evaluation set. In our European-languages experiments, a language different than
the source and the target yields the best accuracy for over 93% of the evaluation sets. Similarly,
in the distant-languages experiment, there is only a single instance where the best performing hub
language is either the source or the target evaluation language (for the Fr–Ru dataset), and for the
other 97% of the cases the best option is a third language. We hypothesize that learning mappings
for both language spaces of interest (hence rotating both spaces) allows for a more flexible alignment
which leads to better downstream performance, compared to when one of the two spaces is fixed.
Note that this contradicts the mathematical intuition discussed in Section 2 according to which a
model learning a single mapping (keeping another word embedding space fixed) is as expressive as
a model that learns two mappings for each of the languages.

Our second finding is that the downstream performance correlates with measures of distance be-
tween languages and language spaces. The typological distance (dgen) between two languages can
be approximated through their genealogical distance over hypothesized language family trees, which
we obtain from the URIEL typological database (Littell et al., 2017). Also, Patra et al. (2019) re-
cently motivated the use of Gromov-Hausdroff (GH) distance as an a priori estimation of how well

10This could be substituted with any evaluation metric
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Table 5: Comparison of bilingual, trilingual, and multilingual systems for distant (left) and related
(right) languages. Multilinguality boosts performance significantly on distant languages.

Results on Az–Cs Average

Bilingual Az Cs 25.8with hub: 22.7 29.1

Trilingual Az, Cs, +hub:
Be En Es Gl

28.221.6 28.5 31.8 23.0
Pt Ru Sk Tr

29.6 27.4 30.4 32.9

Trilingual Az, hub:Cs, +extra:
En Es Pt Ru Tr 30.830.1 30.1 33.2 27.1 33.7

Multilingual (10 languages)
Az Be Cs En Es

33.933.7 34.0 32.3 34.5 35.1
Gl Pt Ru Sk Tr

34.0 34.8 34.5 32.9 33.7

Results on Ru–Uk Average

Bilingual Ru Uk 57.5with hub: 58.0 57.0

Trilingual Be, Ru, Uk with hub:
Be Ru Uk 58.859.2 58.9 58.4

Trilingual Ru, Uk, +hub:
Az Cs En Es Fr Hi Tr 57.857.4 58.5 58.4 58.3 58.0 57.0 57.2

Multilingual Be, Ru, Uk, +hub:
Cs En Es Gl Ko Pt Sv 58.158.0 58.1 58.5 58.8 57.0 58.3 58.2

Multilingual Ru, Uk, En, Fr, Hi, Ko, Sv, with hub:
En Fr Hi Ko Ru Sv Uk 55.655.3 56.1 55.8 56.3 55.3 55.3 54.9

two language embedding spaces can be aligned under an isometric transformation (which is an as-
sumption most methods rely on). The authors also note that vector space GH distance correlates
with typological language distance. We refer the reader to Patra et al. (2019) for more details.
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Figure 3: The downstream accu-
racy generally correlates positively
with the GH distance of the source
and target language vector spaces
to the hub language.

We find that there is a positive correlation between down-
stream LI performance and the genealogical distances between
the source–hub and target–hub languages. The average (over
all evaluation pairs) Pearson’s correlation coefficient between
P@1 and dgen is 0.49 for the distant languages experiment and
0.38 for the European languages one. A similar positive cor-
relation of performance and the sum of the GH distances be-
tween the source–hub and target–hub spaces. On our distant
languages experiment, the coefficient between P@1 and GH is
equal to 0.45, while it is slightly lower (0.34) for our European
languages experiment. High correlation examples from each
experiment, namely Gl–En and En–Hi, are shown in Figure 3.

Bi-, tri-, and multilingual systems The last part of our anal-
ysis compares bilingual, trilingual, and multilingual systems,
with a focus on the under-represented languages. Through
multiple experiments (complete evaluations are listed in the
Appendix) we reach two main conclusions. On one hand,
when evaluating on typologically distant languages, one
should use as many languages as possible. In Table 5 we
present one such example with results on Az–Cs under various settings. On the other hand, when
multiple related languages are available, one can achieve higher performance with multilingual sys-
tems containing all related languages and one more hub language, rather than learning diverse multi-
lingual mappings using more languages. We confirm the latter observation with experiments on the
Slavic (Be, Ru, Uk) and Iberian (Es, Gl, Pt) clusters, and present an example (Ru–Uk) in Table 5.

5 Conclusion

With this work we challenge the standard practices in learning cross-lingual word embeddings. We
empirically showed that the choice of the hub language is an important parameter that affects lexi-
con induction performance in both bilingual (between distant languages) and multilingual settings.
More importantly, we hope that by providing new dictionaries and baseline results on several lan-
guage pairs, we will stir the community towards evaluating all methods in challenging scenarios
that include under-represented language pairs. Towards this end, our analysis provides insights and
general directions for stronger baselines for non-Anglocentric cross-lingual word embeddings.
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A Does evaluation directionality matter?

We also explored whether there are significant differences between the evaluated quality of aligned
spaces, when computed on both directions (src–trg and trg–src). We find that the evaluation direction
indeed matters a lot, when the languages of the evaluation pair are very distant, in terms of morpho-
logical complexity and data availability (which affects the quality of the original embeddings). A
prominent example, from our European-languages experiment, are evaluation pairs involving Az or
Be. When evaluating on the Az–XX and Be–XX dictionaries, the word translation P@1 is more than
20 percentage points higher than when evaluating on the opposite direction (XX-Az or XX-Be). For
example, Es–Az has a mere P@1 of 9.9, while Az–Es achieves a P@1 of 44.9. This observation
holds even between very related languages (cf. Ru–Be: 12.8, Be–Ru: 41.1 and Tr–Az: 8.4, Az–Tr:
32.0), which supports our hypothesis that this difference is also due to the quality of the pre-trained
embeddings. It is important to note that such directionality differences are not observed when eval-
uating distant pairs with presumably high-quality pre-trained embeddings e.g. Tr–Sk or Tr–Es; the
P@1 for both directions is very close.

B Complete results for all experiments

Here we provide complete evaluation results for our multilingual experiments. Tables 6–11 present
P@1, P@5, and P@10 respectively, for the experiment on the 10 European languages. Similarly,
results on the distant languages experiment are shown in Tables 12, 13, and 14. Table 15 presents
the P@1 of the bilingual experiments using MUSE.
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Table 6: All results from the European-languages MWE experiment: P@1 (part 1).

Test Hub language
µAz Be Cs En Es Gl Pt Ru Sk Tr

Az–Be 13.7 12.6 14.2 17.2 16.4 13.9 15.0 15.6 14.5 15.8 14.9
Az–Cs 33.7 34.0 32.3 34.5 35.1 34.0 34.8 34.5 32.9 33.7 33.9
Az–En 31.1 34.7 32.8 32.6 35.7 34.2 33.6 33.6 34.0 33.2 33.5
Az–Es 42.7 46.6 45.2 46.1 44.9 44.4 44.9 43.3 46.1 48.0 45.2
Az–Gl 25.9 27.2 29.0 26.5 29.0 24.7 27.2 32.7 31.5 25.9 28.0
Az–Pt 37.5 41.5 39.3 41.5 39.8 39.0 39.8 41.5 38.5 40.0 39.8
Az–Ru 27.9 27.1 27.1 27.4 27.7 29.0 29.8 26.3 26.3 28.5 27.7
Az–Sk 28.8 30.1 31.7 29.1 30.4 30.4 28.8 28.5 29.5 30.4 29.8
Az–Tr 29.8 30.8 32.0 30.1 31.3 30.8 32.0 31.1 32.0 31.8 31.2
Be–Az 10.4 13.3 14.1 13.0 11.9 12.7 12.4 13.0 13.3 13.0 12.7
Be–Cs 30.5 31.6 33.3 33.0 30.8 31.6 32.5 32.2 33.0 35.9 32.5
Be–En 24.8 26.5 27.8 27.8 28.2 24.8 29.9 28.2 26.5 25.6 27.0
Be–Es 36.4 38.1 36.4 39.5 35.5 38.1 39.0 37.0 36.1 34.4 37.0
Be–Gl 24.4 24.4 22.9 24.9 25.8 22.6 24.9 23.5 22.6 24.4 24.0
Be–Pt 33.2 33.2 32.7 33.7 34.4 31.7 33.9 31.7 31.9 31.4 32.8
Be–Ru 40.9 40.9 40.6 40.3 40.0 41.1 39.1 38.9 39.7 40.0 40.1
Be–Sk 30.1 27.7 30.7 27.4 28.6 29.2 28.9 30.7 27.7 27.4 28.8
Be–Tr 17.7 17.2 18.9 19.9 17.4 18.9 20.4 18.7 16.9 18.4 18.5
Cs–Az 3.5 4.6 4.9 6.0 6.9 4.9 3.7 4.9 4.0 6.0 4.9
Cs–Be 8.6 7.8 8.6 8.6 8.8 7.8 8.8 9.3 9.3 8.6 8.6
Cs–En 59.7 60.5 59.4 59.2 61.0 60.4 60.1 59.7 60.2 58.8 59.9
Cs–Es 59.0 59.1 57.5 60.5 59.2 58.7 58.9 59.6 59.1 57.6 58.9
Cs–Gl 27.1 26.9 27.1 27.6 27.0 21.4 27.9 27.1 26.5 26.1 26.5
Cs–Pt 56.9 55.6 55.4 57.8 55.5 56.9 55.6 57.3 56.1 54.1 56.1
Cs–Ru 44.2 45.5 45.5 45.0 45.5 45.3 45.9 45.0 45.2 45.9 45.3
Cs–Sk 69.8 69.8 70.2 71.2 70.6 70.2 70.4 69.7 68.4 70.2 70.0
Cs–Tr 35.3 35.2 34.6 35.1 34.7 34.7 35.1 35.0 35.8 34.2 35.0
En–Az 15.8 17.7 16.6 17.5 17.9 16.9 17.5 16.1 16.6 17.2 17.0
En–Be 16.4 15.1 17.6 14.9 18.4 17.4 15.6 17.1 15.9 16.4 16.5
En–Cs 49.2 49.0 47.6 47.4 50.2 49.8 50.1 48.3 48.8 49.3 49.0
En–Es 76.3 77.5 77.2 77.0 76.8 76.5 76.6 77.5 77.3 76.6 76.9
En–Gl 35.0 35.8 36.0 35.2 36.3 31.9 35.9 36.2 35.3 35.0 35.3
En–Pt 71.3 71.8 71.3 72.1 71.5 72.0 71.0 71.5 72.3 71.3 71.6
En–Ru 42.5 43.3 42.7 40.8 43.1 43.3 43.3 41.3 41.4 42.8 42.4
En–Sk 38.7 39.6 40.2 38.0 40.4 39.3 38.5 38.6 36.8 40.4 39.0
En–Tr 40.5 41.7 41.3 41.6 39.4 40.9 41.9 41.0 41.3 40.9 41.0
Es–Az 8.4 10.8 9.0 12.1 10.5 10.5 10.8 9.6 11.8 11.8 10.5
Es–Be 9.9 7.2 8.5 9.3 7.5 9.9 9.9 10.1 9.1 8.8 9.0
Es–Cs 45.3 46.0 44.2 43.4 45.8 45.5 47.4 46.3 45.4 44.7 45.4
Es–En 73.0 74.5 73.8 73.2 74.0 74.1 73.1 73.5 74.6 73.6 73.7
Es–Gl 37.1 37.0 37.1 36.9 37.5 33.7 36.8 37.0 36.8 36.7 36.7
Es–Pt 82.1 82.9 82.7 83.0 83.1 83.1 82.5 83.0 82.9 83.0 82.8
Es–Ru 41.4 41.5 41.2 39.4 41.3 41.9 40.9 40.3 40.2 41.9 41.0
Es–Sk 37.0 39.2 38.8 37.4 40.0 39.2 39.5 39.5 35.2 38.8 38.5
Es–Tr 37.5 38.0 37.7 38.2 37.6 37.8 38.4 37.8 38.6 37.9 38.0
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Table 7: All results from the European-languages MWE experiment: P@1 (part 2).

Test Hub language
µAz Be Cs En Es Gl Pt Ru Sk Tr

Gl–Az 4.0 4.6 4.3 5.5 5.0 4.1 5.2 4.7 4.8 5.0 4.7
Gl–Be 3.6 3.0 2.4 3.0 3.0 2.4 3.0 2.4 1.2 3.0 2.7
Gl–Cs 23.2 25.7 25.0 23.8 26.5 23.0 25.6 25.4 25.6 26.5 25.0
Gl–En 40.3 41.8 41.9 39.6 43.2 40.8 41.5 41.9 41.6 42.1 41.5
Gl–Es 60.0 60.5 60.1 59.9 60.4 59.0 60.0 60.3 59.6 60.8 60.1
Gl–Pt 52.5 52.5 52.9 52.0 52.0 50.4 52.5 51.9 52.1 52.0 52.1
Gl–Ru 22.5 22.7 22.9 21.7 23.3 21.9 23.7 22.7 22.5 23.8 22.8
Gl–Sk 26.0 26.3 26.8 25.6 26.4 23.4 25.5 25.1 23.2 26.4 25.5
Gl–Tr 18.5 19.3 19.7 18.6 17.8 18.3 18.9 19.2 19.4 17.6 18.7
Pt–Az 3.8 4.7 5.8 5.0 5.0 3.2 5.8 5.0 5.5 4.7 4.8
Pt–Be 7.3 5.3 7.3 7.3 6.1 7.1 6.8 6.1 8.6 7.1 6.9
Pt–Cs 45.5 47.0 46.3 45.0 45.5 47.2 45.5 46.7 46.5 45.6 46.1
Pt–En 69.9 70.9 70.2 71.3 71.1 70.5 70.6 71.3 70.6 70.8 70.7
Pt–Es 87.4 88.1 87.7 87.6 88.0 87.4 88.1 87.8 87.6 88.1 87.8
Pt–Gl 35.7 36.9 36.3 36.3 37.1 32.7 36.0 35.9 35.2 36.4 35.8
Pt–Ru 37.4 37.7 36.4 36.5 38.0 38.0 36.2 37.0 37.1 37.4 37.2
Pt–Sk 37.6 37.0 37.3 36.7 38.7 37.7 38.3 37.9 33.6 38.0 37.3
Pt–Tr 36.5 37.4 37.2 38.1 35.9 36.4 35.5 37.2 36.2 36.3 36.7
Ru–Az 5.0 6.4 6.2 7.8 8.7 7.3 7.5 7.3 6.7 7.5 7.0
Ru–Be 12.8 9.9 10.7 11.5 11.2 11.0 11.5 12.3 11.0 11.8 11.4
Ru–Cs 49.2 50.0 49.2 50.1 49.7 50.3 50.3 49.8 50.1 50.1 49.9
Ru–En 53.6 53.8 54.4 52.7 54.7 55.5 54.8 52.0 54.5 55.5 54.1
Ru–Es 53.7 53.4 54.8 54.5 52.3 53.5 54.0 53.2 53.9 51.2 53.4
Ru–Gl 20.9 21.3 22.1 22.3 22.9 17.2 23.0 21.8 21.7 21.9 21.5
Ru–Pt 50.4 50.3 50.4 52.4 51.1 51.1 49.6 49.8 51.0 47.6 50.4
Ru–Sk 45.0 44.7 44.7 45.2 45.2 44.7 44.3 43.7 43.7 45.5 44.7
Ru–Tr 25.9 27.0 26.2 26.9 26.0 25.9 26.1 25.6 26.8 24.7 26.1
Sk–Az 2.8 4.0 1.5 3.7 2.1 2.8 3.4 3.1 1.8 3.4 2.9
Sk–Be 10.2 7.5 9.9 9.4 9.6 8.3 10.4 10.9 10.9 9.1 9.6
Sk–Cs 71.4 72.5 70.9 70.8 70.5 71.1 71.3 70.6 71.0 71.4 71.1
Sk–En 54.8 55.0 54.0 52.9 55.4 54.7 54.8 54.6 53.0 55.6 54.5
Sk–Es 52.5 51.6 52.2 53.9 52.3 52.0 50.4 50.5 51.5 51.1 51.8
Sk–Gl 27.0 27.3 27.2 28.4 27.8 20.6 26.2 26.0 27.0 27.0 26.4
Sk–Pt 49.3 50.3 48.2 50.4 52.0 49.2 49.1 48.7 48.5 47.7 49.3
Sk–Ru 43.8 43.4 43.5 43.2 43.7 44.0 42.8 42.9 41.2 43.4 43.2
Sk–Tr 28.2 27.5 27.2 28.5 27.1 26.1 26.2 27.6 27.4 26.0 27.2
Tr–Az 9.8 12.1 10.1 11.1 10.1 11.4 11.4 10.8 12.1 11.1 11.0
Tr–Be 9.0 4.8 8.7 8.1 7.8 7.5 8.1 6.9 7.5 7.2 7.6
Tr–Cs 40.3 41.6 40.3 41.6 41.6 40.8 41.6 41.8 40.9 39.2 41.0
Tr–En 51.1 49.3 51.1 50.2 50.4 48.5 50.5 50.2 50.7 50.1 50.2
Tr–Es 53.8 53.6 55.0 55.0 52.5 53.0 54.6 52.9 54.1 53.3 53.8
Tr–Gl 17.0 17.3 17.3 15.9 16.8 11.6 17.5 17.1 17.1 18.4 16.6
Tr–Pt 50.1 50.1 51.4 51.6 49.3 48.9 48.7 49.9 50.5 49.5 50.0
Tr–Ru 34.0 34.3 32.3 34.6 34.3 33.6 33.2 32.0 33.0 32.9 33.4
Tr–Sk 27.5 29.2 27.9 28.5 29.4 27.7 27.9 27.5 25.2 27.9 27.9
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Table 8: All results from the European-languages MWE experiment: P@5 (part 1).

Test Hub language
µAz Be Cs En Es Gl Pt Ru Sk Tr

Az–Be 26.0 22.5 26.5 26.0 26.5 25.2 25.7 26.0 25.7 25.7 25.6
Az–Cs 53.4 54.8 53.7 57.5 54.8 55.9 55.6 54.5 53.2 54.8 54.8
Az–En 44.7 48.0 47.6 45.7 45.9 47.4 46.8 46.3 46.1 47.2 46.6
Az–Es 60.1 62.6 60.7 62.6 60.7 60.4 60.7 62.4 61.8 62.9 61.5
Az–Gl 38.3 37.7 40.1 41.4 38.9 35.8 40.1 41.4 38.9 39.5 39.2
Az–Pt 52.8 55.3 55.3 56.3 55.8 55.3 55.8 57.8 55.3 56.8 55.7
Az–Ru 45.2 46.5 46.8 48.1 49.2 47.3 48.4 45.5 46.8 50.0 47.4
Az–Sk 43.9 46.1 47.0 48.3 49.2 48.3 49.2 48.3 46.7 46.7 47.4
Az–Tr 45.2 49.1 51.3 49.1 46.7 48.7 49.1 49.4 49.6 49.4 48.8
Be–Az 20.6 20.6 23.4 23.2 24.6 22.0 22.9 24.9 22.3 24.6 22.9
Be–Cs 44.5 44.8 47.6 48.5 46.5 47.9 48.7 46.8 45.7 47.9 46.9
Be–En 42.3 42.3 42.7 41.5 44.4 42.7 42.3 42.7 41.0 43.2 42.5
Be–Es 50.4 53.0 54.2 53.3 50.4 53.6 54.4 51.0 54.2 52.4 52.7
Be–Gl 38.8 36.5 37.7 38.8 38.0 36.5 38.3 38.0 38.6 37.7 37.9
Be–Pt 49.5 50.8 52.8 51.5 52.0 50.0 49.0 49.0 50.5 49.5 50.5
Be–Ru 53.0 53.2 52.1 51.8 53.8 52.7 53.0 53.0 53.2 51.8 52.8
Be–Sk 43.8 40.1 44.7 43.5 41.6 43.8 44.4 43.5 40.1 43.5 42.9
Be–Tr 33.4 33.2 34.6 37.8 32.2 34.4 36.9 33.4 33.2 32.2 34.1
Cs–Az 10.3 11.2 11.2 13.8 14.1 11.8 12.1 10.6 11.2 12.6 11.9
Cs–Be 14.8 15.5 15.5 16.3 16.3 16.6 16.1 16.1 14.8 15.8 15.8
Cs–En 75.6 76.4 75.1 75.7 76.2 76.9 76.1 75.8 75.9 76.0 76.0
Cs–Es 75.5 75.3 74.1 76.5 75.9 74.9 74.3 75.5 75.9 74.1 75.2
Cs–Gl 40.8 41.8 43.0 43.7 43.1 36.5 42.1 42.6 42.1 41.2 41.7
Cs–Pt 72.9 74.1 72.2 74.3 73.1 73.7 72.7 73.8 72.7 71.6 73.1
Cs–Ru 64.5 64.4 63.6 63.9 63.9 64.5 64.9 64.5 64.3 65.5 64.4
Cs–Sk 81.7 82.9 83.2 82.8 82.5 83.0 83.2 82.7 81.6 82.7 82.6
Cs–Tr 56.2 56.0 55.1 57.1 56.4 54.2 54.9 55.5 54.9 53.8 55.4
En–Az 28.3 29.1 30.3 29.9 28.9 29.2 30.2 29.1 28.8 30.6 29.4
En–Be 32.8 28.3 34.0 31.5 34.0 34.5 30.3 32.8 33.3 32.8 32.4
En–Cs 74.7 74.9 73.4 74.5 76.1 76.5 74.8 75.1 73.8 75.5 74.9
En–Es 88.9 89.5 88.8 89.3 89.1 89.3 89.1 89.3 89.0 89.1 89.1
En–Gl 49.0 50.4 50.5 50.4 51.3 47.8 50.9 51.4 49.1 50.7 50.1
En–Pt 86.0 86.6 86.2 86.6 86.2 86.4 86.3 86.3 86.4 85.8 86.3
En–Ru 68.0 68.1 68.2 66.0 68.6 69.6 68.7 67.7 67.4 68.2 68.1
En–Sk 62.3 62.7 62.5 60.8 62.5 62.1 63.5 62.7 59.9 63.2 62.2
En–Tr 63.6 62.6 64.3 62.4 62.4 63.8 63.8 63.0 63.2 63.2 63.2
Es–Az 16.3 16.9 16.9 17.5 18.4 17.8 17.2 17.2 19.0 18.1 17.5
Es–Be 16.8 15.5 17.1 18.9 16.3 18.9 18.7 17.1 18.1 16.5 17.4
Es–Cs 64.4 65.7 63.5 65.2 66.1 65.5 65.9 66.0 65.8 65.9 65.4
Es–En 85.2 86.3 86.0 85.5 85.8 85.5 85.8 86.1 86.0 86.0 85.8
Es–Gl 45.6 46.0 45.7 46.1 46.4 43.2 45.9 45.7 45.8 46.2 45.7
Es–Pt 90.8 91.1 90.7 91.3 91.4 91.1 91.3 90.7 90.9 90.9 91.0
Es–Ru 61.5 62.5 61.4 62.5 62.1 61.7 62.2 60.8 61.6 62.9 61.9
Es–Sk 57.9 59.1 58.7 58.5 59.1 57.8 58.1 57.6 57.0 58.5 58.2
Es–Tr 57.0 57.4 57.2 56.7 55.0 56.3 56.3 55.5 56.6 56.5 56.5
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Table 9: All results from the European-languages MWE experiment: P@5 (part 2).

Test Hub language
µAz Be Cs En Es Gl Pt Ru Sk Tr

Gl–Az 8.4 9.0 8.8 9.8 9.6 10.0 9.7 9.4 9.2 9.7 9.4
Gl–Be 7.3 6.1 6.1 6.7 6.7 6.7 7.9 6.1 6.1 7.3 6.7
Gl–Cs 41.8 42.1 43.0 42.3 44.5 40.2 42.5 42.5 42.0 43.0 42.4
Gl–En 56.8 57.4 58.6 56.3 59.7 57.6 57.2 57.8 56.7 58.1 57.6
Gl–Es 68.3 68.8 68.1 68.8 68.6 67.9 68.3 68.8 68.2 68.8 68.5
Gl–Pt 63.9 64.3 63.4 64.1 63.2 62.8 63.4 64.0 63.7 63.9 63.7
Gl–Ru 40.2 39.8 39.3 39.6 39.5 37.0 40.0 39.5 39.3 40.8 39.5
Gl–Sk 41.6 42.4 41.1 41.9 43.7 38.5 41.0 41.4 39.2 41.5 41.2
Gl–Tr 33.5 33.4 34.9 33.9 33.3 29.4 32.4 32.6 34.0 31.5 32.9
Pt–Az 8.7 11.1 10.2 12.5 11.1 10.2 10.5 9.9 12.0 11.1 10.7
Pt–Be 14.4 12.1 14.4 17.4 14.1 15.9 14.9 14.9 14.9 14.6 14.8
Pt–Cs 65.6 66.6 64.7 65.8 66.5 66.6 65.9 66.3 65.5 65.1 65.9
Pt–En 81.3 82.1 82.0 82.1 81.9 82.0 81.5 81.7 81.5 82.0 81.8
Pt–Es 92.1 92.6 92.4 92.1 92.0 91.8 92.4 92.4 92.0 92.3 92.2
Pt–Gl 45.4 46.4 46.2 46.9 46.8 43.5 45.8 45.4 45.2 46.7 45.8
Pt–Ru 57.6 57.8 57.7 58.7 58.1 58.5 57.0 57.5 57.6 57.6 57.8
Pt–Sk 57.2 56.9 57.0 57.8 56.6 55.4 56.6 56.8 53.1 56.4 56.4
Pt–Tr 53.9 54.8 54.2 56.3 53.3 53.6 52.7 54.5 54.4 54.6 54.2
Ru–Az 12.0 15.6 15.9 15.6 15.9 14.8 15.4 14.2 14.2 15.9 15.0
Ru–Be 20.1 18.3 20.6 20.1 20.9 20.6 20.6 20.9 21.1 20.4 20.4
Ru–Cs 65.7 65.0 65.1 64.7 65.0 66.7 66.1 65.8 65.1 65.5 65.5
Ru–En 72.8 73.0 73.9 72.0 73.8 73.5 72.7 72.3 72.9 73.5 73.0
Ru–Es 70.1 69.8 69.7 71.3 69.2 70.3 71.2 68.8 70.7 68.4 69.9
Ru–Gl 36.1 35.9 36.1 36.8 37.1 30.9 36.5 36.6 35.9 35.3 35.7
Ru–Pt 66.8 66.8 67.0 69.3 67.9 67.6 65.8 66.6 67.3 65.2 67.0
Ru–Sk 61.1 62.6 61.4 61.1 62.0 61.8 61.8 60.9 59.8 61.6 61.4
Ru–Tr 48.0 48.0 47.6 49.9 47.1 47.5 48.0 46.0 47.0 47.4 47.7
Sk–Az 7.7 9.2 7.1 9.5 7.4 8.3 8.9 8.9 8.3 8.6 8.4
Sk–Be 17.4 16.7 18.5 18.2 17.7 18.5 18.2 19.3 19.3 18.5 18.2
Sk–Cs 82.1 82.1 81.3 81.6 82.1 82.4 81.6 81.6 81.3 81.9 81.8
Sk–En 70.7 71.7 71.3 69.6 71.2 71.4 71.5 70.9 70.3 71.4 71.0
Sk–Es 69.2 69.7 70.2 71.2 70.1 68.8 70.0 68.6 69.2 69.4 69.6
Sk–Gl 43.4 43.3 42.9 45.1 43.7 36.0 42.9 42.0 43.0 42.7 42.5
Sk–Pt 68.2 67.5 67.5 68.7 69.9 67.6 66.1 67.6 66.7 66.7 67.7
Sk–Ru 59.2 58.1 58.2 58.8 59.4 59.5 58.8 58.5 57.5 59.5 58.8
Sk–Tr 47.2 48.7 47.6 48.7 47.1 46.7 48.2 47.8 46.7 46.2 47.5
Tr–Az 19.5 22.2 19.9 21.2 20.9 20.9 20.5 19.5 21.9 20.2 20.7
Tr–Be 17.1 12.3 16.2 17.1 16.8 15.6 16.5 16.5 16.2 16.2 16.1
Tr–Cs 61.6 62.1 60.1 61.8 62.4 61.9 61.6 61.5 61.4 60.1 61.4
Tr–En 68.0 68.2 68.1 67.2 67.8 67.5 69.6 67.7 67.9 67.2 67.9
Tr–Es 69.8 69.0 70.4 70.5 68.0 69.2 70.5 69.4 69.8 69.5 69.6
Tr–Gl 30.5 30.7 31.1 30.0 30.4 23.6 31.4 31.1 29.7 30.7 29.9
Tr–Pt 67.1 66.9 66.9 67.9 66.5 65.9 65.2 67.1 67.5 66.6 66.8
Tr–Ru 55.4 55.9 54.0 55.4 55.3 55.1 55.1 53.0 52.9 53.5 54.6
Tr–Sk 48.2 49.9 48.9 49.7 48.7 47.8 48.9 48.1 44.2 47.7 48.2

16



Under review as a conference paper at ICLR 2020

Table 10: All results from the European-languages MWE experiment: P@10 (part 1).

Test Hub language
µAz Be Cs En Es Gl Pt Ru Sk Tr

Az–Be 31.1 27.1 30.8 31.4 31.9 31.1 29.8 30.3 32.2 31.1 30.7
Az–Cs 60.3 62.5 60.8 62.7 63.6 61.4 62.7 61.1 60.3 63.6 61.9
Az–En 49.3 51.1 52.6 50.5 49.5 50.7 51.4 50.3 50.1 50.7 50.6
Az–Es 63.8 65.7 65.4 67.1 65.2 66.3 68.0 64.6 66.6 67.4 66.0
Az–Gl 42.6 42.6 45.1 45.1 43.8 39.5 45.1 43.8 42.6 43.8 43.4
Az–Pt 58.5 61.2 62.7 62.5 61.5 61.7 61.0 61.2 61.7 62.5 61.5
Az–Ru 50.8 52.7 52.9 50.8 54.0 53.2 54.3 51.6 51.9 54.5 52.7
Az–Sk 48.9 52.0 53.0 52.0 53.9 54.2 53.0 52.4 51.7 51.7 52.3
Az–Tr 53.3 55.5 56.7 57.0 55.0 55.3 55.7 56.5 57.0 56.7 55.9
Be–Az 25.7 25.4 29.7 28.5 29.4 26.8 27.7 28.2 26.8 28.0 27.6
Be–Cs 50.7 51.0 52.1 51.3 51.8 53.8 52.7 51.8 50.7 51.8 51.8
Be–En 46.6 48.7 50.0 46.2 48.3 50.9 46.2 48.3 46.2 47.9 47.9
Be–Es 54.7 57.3 58.7 58.7 56.2 57.9 57.9 55.9 58.5 57.9 57.4
Be–Gl 47.0 45.2 44.6 46.1 43.8 41.4 43.5 43.8 44.3 42.9 44.3
Be–Pt 55.3 55.8 57.0 57.8 57.0 56.5 55.8 54.5 55.5 56.0 56.1
Be–Ru 56.3 56.3 56.1 56.1 56.9 56.1 56.3 56.3 56.9 55.5 56.3
Be–Sk 48.0 45.6 48.3 47.7 48.0 48.6 49.8 48.6 46.2 48.0 47.9
Be–Tr 38.3 40.5 41.5 43.2 40.3 40.3 41.8 41.5 40.3 38.3 40.6
Cs–Az 13.8 14.9 15.5 16.1 17.5 14.9 15.8 14.1 14.9 15.5 15.3
Cs–Be 18.9 17.9 19.2 19.9 19.4 19.9 19.9 19.2 17.9 19.2 19.1
Cs–En 80.2 80.5 79.8 80.0 80.1 81.0 80.2 80.5 80.5 81.1 80.4
Cs–Es 80.1 79.6 78.8 80.0 79.9 79.4 79.9 79.3 80.2 79.0 79.6
Cs–Gl 47.2 48.0 47.9 49.9 49.3 42.4 48.2 48.3 49.1 47.1 47.7
Cs–Pt 77.5 78.7 77.5 78.3 77.1 77.7 76.9 77.7 76.9 76.8 77.5
Cs–Ru 70.1 70.3 69.1 69.6 69.4 70.7 69.6 69.5 69.5 70.5 69.8
Cs–Sk 85.5 85.6 85.7 85.2 84.9 85.1 86.2 85.2 84.9 85.6 85.4
Cs–Tr 63.2 62.7 62.5 63.5 62.7 62.5 62.7 63.4 62.6 61.6 62.7
En–Az 32.2 33.3 34.3 34.3 33.8 32.5 34.4 33.0 34.3 33.8 33.6
En–Be 38.5 34.0 40.4 39.0 40.0 41.2 38.7 38.2 38.7 38.5 38.7
En–Cs 81.2 81.1 79.9 80.7 81.9 82.5 80.6 80.7 80.7 81.5 81.1
En–Es 91.3 92.1 91.7 91.5 91.9 91.7 91.8 91.6 91.9 91.7 91.7
En–Gl 53.9 56.3 56.4 55.7 55.8 53.2 55.9 56.2 54.9 55.5 55.4
En–Pt 89.4 90.0 89.2 89.5 89.1 89.5 89.3 89.0 89.4 89.0 89.3
En–Ru 74.6 74.0 75.8 72.2 74.8 76.0 74.8 73.8 74.0 74.4 74.4
En–Sk 69.3 69.7 69.9 68.0 69.6 68.7 69.9 69.5 67.1 69.9 69.2
En–Tr 69.9 70.1 71.0 69.3 69.5 69.8 70.3 71.1 70.0 69.2 70.0
Es–Az 20.2 20.8 20.2 21.1 20.8 20.2 19.3 20.2 21.1 21.1 20.5
Es–Be 20.8 18.9 20.8 22.9 21.3 22.4 21.1 23.2 21.3 21.3 21.4
Es–Cs 70.5 70.7 70.8 70.9 71.0 71.1 71.3 71.8 72.2 70.9 71.1
Es–En 88.5 88.4 88.5 88.3 88.5 88.5 88.5 88.5 88.5 88.4 88.5
Es–Gl 49.5 49.4 49.4 49.8 50.0 46.0 49.6 49.6 49.4 50.2 49.3
Es–Pt 92.7 92.5 92.5 92.5 93.0 92.9 92.8 92.4 92.1 92.7 92.6
Es–Ru 67.5 67.1 67.4 68.9 67.4 67.6 67.8 66.8 68.7 68.5 67.8
Es–Sk 64.5 64.3 63.9 65.4 65.4 63.5 64.3 64.8 63.0 63.8 64.3
Es–Tr 63.6 63.8 64.3 62.7 61.6 62.6 63.7 62.2 63.8 61.7 63.0

17



Under review as a conference paper at ICLR 2020

Table 11: All results from the European-languages MWE experiment: P@10 (part 2).

Test Hub language
µAz Be Cs En Es Gl Pt Ru Sk Tr

Gl–Az 11.5 11.2 11.1 12.5 12.6 12.3 13.1 12.1 12.5 12.3 12.1
Gl–Be 8.5 7.3 8.5 9.1 8.5 7.9 7.9 7.9 8.5 9.7 8.4
Gl–Cs 48.0 49.0 48.8 49.0 50.7 46.6 48.3 49.1 49.0 49.0 48.8
Gl–En 64.1 64.4 64.7 62.2 64.4 62.5 63.4 64.4 62.4 63.0 63.6
Gl–Es 71.3 71.5 71.5 72.1 71.7 71.1 71.0 71.6 71.4 72.5 71.6
Gl–Pt 66.9 67.1 67.4 67.6 67.5 67.7 67.1 67.6 66.8 68.1 67.4
Gl–Ru 46.7 46.5 45.9 45.0 46.3 42.8 45.8 44.8 44.7 45.7 45.4
Gl–Sk 48.2 48.1 47.2 48.5 48.8 45.3 47.6 46.7 45.5 48.2 47.4
Gl–Tr 39.7 39.3 39.3 39.1 38.2 35.9 38.8 38.9 38.3 38.0 38.5
Pt–Az 11.7 14.6 13.4 14.6 15.2 12.5 13.4 13.1 13.4 15.7 13.8
Pt–Be 18.9 17.2 18.2 21.0 18.7 20.2 18.7 19.7 18.4 18.7 19.0
Pt–Cs 71.6 72.0 70.6 71.7 71.7 72.0 71.5 71.9 71.2 70.7 71.5
Pt–En 84.0 84.3 84.1 85.1 84.2 84.9 84.1 83.9 84.7 84.3 84.4
Pt–Es 92.8 93.2 93.2 93.2 93.6 93.0 93.4 93.3 93.2 93.4 93.2
Pt–Gl 49.3 49.6 48.9 50.1 49.9 46.8 49.3 48.9 47.9 49.6 49.0
Pt–Ru 63.6 64.3 62.8 64.7 64.4 64.3 63.0 63.4 63.8 62.4 63.7
Pt–Sk 63.6 62.4 62.6 63.9 63.0 62.6 62.4 62.1 59.7 62.2 62.4
Pt–Tr 60.4 60.8 60.4 62.3 59.5 60.4 60.3 60.9 60.5 60.9 60.6
Ru–Az 15.4 17.0 18.7 20.1 18.4 18.4 19.0 17.9 17.3 19.8 18.2
Ru–Be 25.1 22.2 24.5 23.8 24.3 24.0 24.5 24.3 25.3 24.3 24.2
Ru–Cs 70.8 70.3 70.9 70.4 70.8 71.3 71.0 70.5 70.8 71.1 70.8
Ru–En 76.9 77.8 78.6 76.6 78.4 77.8 77.4 76.8 77.1 77.5 77.5
Ru–Es 75.2 75.2 75.3 76.3 75.6 75.3 76.3 74.8 76.4 74.5 75.5
Ru–Gl 43.1 42.2 42.1 43.3 43.5 37.1 41.9 41.7 41.3 40.5 41.7
Ru–Pt 72.6 71.8 72.6 74.5 72.5 72.6 71.5 71.5 72.2 70.2 72.2
Ru–Sk 65.5 66.8 66.3 66.5 66.3 66.4 67.0 66.5 64.7 66.9 66.3
Ru–Tr 56.1 56.2 55.2 57.7 56.8 57.0 56.1 54.8 57.3 54.8 56.2
Sk–Az 11.0 11.0 10.7 13.8 10.7 13.2 13.2 10.4 11.3 12.0 11.7
Sk–Be 23.2 20.8 21.1 22.1 21.1 22.9 22.7 22.9 23.4 22.1 22.2
Sk–Cs 85.1 85.5 84.6 84.4 85.3 85.9 85.6 84.9 85.0 85.0 85.1
Sk–En 74.5 76.3 76.6 73.9 75.7 76.0 75.6 75.4 75.3 75.8 75.5
Sk–Es 75.7 75.5 74.9 76.2 74.4 74.2 74.6 74.4 74.7 74.7 74.9
Sk–Gl 49.1 48.7 48.9 51.7 50.1 40.9 49.4 48.5 49.6 49.7 48.7
Sk–Pt 73.7 73.2 72.6 74.7 74.0 73.1 71.7 72.8 72.9 72.0 73.1
Sk–Ru 63.5 64.4 62.8 64.0 64.0 64.2 64.0 62.6 62.6 64.6 63.7
Sk–Tr 55.4 57.0 56.2 57.4 55.7 55.4 57.0 56.0 54.4 55.2 56.0
Tr–Az 22.9 24.6 23.9 23.2 23.6 24.9 23.6 23.2 24.6 24.9 23.9
Tr–Be 22.2 16.8 21.6 20.7 21.3 21.6 23.4 19.8 19.5 21.3 20.8
Tr–Cs 68.5 68.0 66.7 67.2 68.0 68.1 68.4 67.1 67.8 66.3 67.6
Tr–En 73.5 74.0 73.7 73.2 73.0 73.2 74.2 74.0 72.9 72.2 73.4
Tr–Es 74.4 74.0 74.6 75.5 73.2 73.8 74.6 74.7 74.8 74.4 74.4
Tr–Gl 36.1 36.6 35.9 36.4 35.9 29.7 36.7 36.7 35.0 36.8 35.6
Tr–Pt 72.2 71.8 71.8 72.8 71.3 71.4 70.8 71.8 72.4 72.1 71.8
Tr–Ru 61.3 61.8 60.0 61.8 61.7 61.8 60.5 60.0 59.5 59.9 60.8
Tr–Sk 55.4 56.8 56.8 57.0 56.2 54.9 56.4 55.8 51.6 55.4 55.6
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Table 12: All results from the distant languages MWE experiment (P@1).

Test Hub language
µEn Fr Hi Ko Ru Sv Uk

En–Fr 75.1 75.3 75.2 75.8 76.3 75.5 75.4 75.5
En–Hi 20.9 23.5 21.0 21.4 23.5 21.4 23.9 22.2
En–Ko 9.2 10.4 9.1 9.8 9.8 10.1 10.0 9.8
En–Ru 41.8 42.0 41.8 41.5 42.0 41.8 42.0 41.8
En–Sv 57.0 57.5 59.0 56.6 57.8 57.6 58.4 57.7
En–Uk 26.9 27.5 26.9 26.9 28.3 27.8 26.2 27.2
Fr–En 72.5 72.0 71.6 72.7 72.9 73.4 74.0 72.7
Fr–Hi 18.7 16.0 14.8 17.3 19.0 17.8 17.5 17.3
Fr–Ko 6.9 6.7 5.8 5.5 5.8 7.5 6.0 6.3
Fr–Ru 39.9 38.3 40.3 40.4 40.8 40.0 39.6 39.9
Fr–Sv 51.8 49.3 50.5 51.1 49.4 48.2 51.8 50.3
Fr–Uk 28.8 27.0 27.8 28.5 28.7 27.7 26.1 27.8
Hi–En 27.8 31.4 27.9 28.6 30.4 29.3 29.3 29.3
Hi–Fr 25.6 23.1 25.1 23.3 26.9 25.5 24.2 24.8
Hi–Ko 2.1 1.7 1.3 1.6 1.6 1.4 1.8 1.6
Hi–Ru 13.9 14.2 14.3 13.6 14.3 13.5 14.6 14.0
Hi–Sv 17.3 16.8 16.3 15.9 17.0 15.9 16.6 16.6
Hi–Uk 10.3 10.5 9.1 9.1 9.8 9.5 9.6 9.7
Ko–En 15.1 16.6 15.2 17.0 16.6 17.7 16.4 16.4
Ko–Fr 11.9 10.2 10.9 10.9 12.6 13.6 10.8 11.6
Ko–Hi 1.8 2.4 1.2 1.6 2.0 1.8 2.0 1.9
Ko–Ru 7.9 6.6 6.0 5.7 6.9 6.8 7.3 6.7
Ko–Sv 6.8 6.6 5.9 5.9 7.2 5.6 7.2 6.5
Ko–Uk 3.5 3.6 3.4 3.2 3.5 3.5 3.1 3.4
Ru–En 50.2 53.2 52.2 53.4 52.5 52.6 52.1 52.3
Ru–Fr 51.1 49.6 50.7 51.7 51.0 50.6 50.3 50.7
Ru–Hi 14.6 15.0 12.0 14.6 13.3 14.8 15.3 14.2
Ru–Ko 5.2 4.6 4.4 3.6 4.3 4.1 5.0 4.4
Ru–Sv 40.7 40.9 40.1 41.0 39.8 36.7 41.3 40.1
Ru–Uk 55.3 56.1 55.8 56.3 55.3 55.3 54.9 55.6
Sv–En 51.2 51.1 52.3 51.9 52.0 50.7 52.7 51.7
Sv–Fr 47.9 45.7 46.8 48.2 47.1 46.6 47.4 47.1
Sv–Hi 17.2 16.3 15.0 16.0 17.7 15.9 17.0 16.4
Sv–Ko 4.9 4.2 4.0 3.8 5.0 4.0 5.1 4.4
Sv–Ru 31.5 33.2 32.4 33.0 31.8 30.2 31.8 32.0
Sv–Uk 22.4 23.8 23.0 23.5 24.1 21.0 21.9 22.8
Uk–En 39.5 40.8 40.3 40.7 41.4 40.2 40.2 40.4
Uk–Fr 43.6 42.3 44.0 43.3 43.0 43.3 40.6 42.9
Uk–Hi 13.8 13.8 12.8 12.8 12.7 14.4 13.0 13.3
Uk–Ko 2.6 2.5 2.4 2.0 2.0 2.4 2.6 2.4
Uk–Ru 59.4 58.9 59.7 58.7 59.1 58.4 58.6 59.0
Uk–Sv 35.8 35.5 35.8 36.8 35.4 32.7 35.1 35.3
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Table 13: All results from the distant languages MWE experiment (P@5).

Test Hub language
µEn Fr Hi Ko Ru Sv Uk

En–Fr 87.3 88.2 87.8 88.4 88.3 88.0 87.7 88.0
En–Hi 37.2 39.4 36.5 37.1 39.3 38.7 39.9 38.3
En–Ko 23.4 24.6 22.6 23.4 24.3 25.9 25.0 24.2
En–Ru 63.5 65.3 65.1 64.8 66.9 64.6 65.9 65.2
En–Sv 74.8 76.1 76.3 75.8 75.4 75.6 76.5 75.8
En–Uk 47.7 49.8 49.3 47.9 49.3 48.5 47.7 48.6
Fr–En 85.3 84.5 83.7 84.5 85.4 85.1 84.6 84.7
Fr–Hi 32.7 30.0 29.5 30.6 33.4 32.2 31.6 31.4
Fr–Ko 14.9 14.5 14.0 14.6 16.0 15.3 15.2 14.9
Fr–Ru 61.0 59.5 61.9 61.7 62.1 60.6 60.9 61.1
Fr–Sv 69.6 68.1 68.8 69.1 68.6 68.0 71.1 69.0
Fr–Uk 45.6 44.2 44.8 45.6 45.8 45.0 44.1 45.0
Hi–En 44.5 47.0 46.3 44.3 47.0 46.3 46.7 46.0
Hi–Fr 41.7 39.3 41.6 39.6 42.7 41.2 42.3 41.2
Hi–Ko 5.3 4.8 3.4 3.5 4.7 5.1 5.0 4.5
Hi–Ru 27.6 29.6 27.6 28.1 27.9 28.8 29.5 28.4
Hi–Sv 31.7 31.7 30.8 30.7 32.7 30.2 32.0 31.4
Hi–Uk 21.4 21.9 19.9 20.1 20.8 20.4 20.2 20.7
Ko–En 28.9 28.7 27.0 28.1 30.1 33.1 28.6 29.2
Ko–Fr 21.9 21.6 19.7 20.4 24.0 24.4 21.3 21.9
Ko–Hi 4.3 4.8 3.9 4.1 4.6 4.8 5.0 4.5
Ko–Ru 16.2 15.3 12.9 13.4 15.8 15.7 16.3 15.1
Ko–Sv 16.2 14.1 13.9 13.8 15.6 13.9 16.3 14.8
Ko–Uk 9.7 8.0 8.6 8.6 9.3 8.2 8.8 8.8
Ru–En 69.8 71.1 70.9 71.0 70.2 71.1 71.3 70.8
Ru–Fr 65.7 66.2 67.7 67.9 67.0 66.6 67.2 66.9
Ru–Hi 27.3 27.6 24.7 26.7 25.6 26.6 28.7 26.7
Ru–Ko 12.1 10.4 10.1 10.0 11.1 10.4 12.4 10.9
Ru–Sv 58.8 58.9 58.2 58.2 58.8 56.1 59.9 58.4
Ru–Uk 68.3 68.8 69.2 68.0 68.8 68.6 66.9 68.4
Sv–En 65.4 66.2 66.3 65.7 65.1 64.4 65.9 65.6
Sv–Fr 62.5 60.1 60.3 61.1 60.7 59.8 61.3 60.8
Sv–Hi 28.2 28.0 26.6 27.4 29.3 27.1 28.6 27.9
Sv–Ko 11.7 10.7 10.9 9.8 11.5 11.6 11.4 11.1
Sv–Ru 50.5 51.0 50.7 50.9 50.3 47.8 49.9 50.2
Sv–Uk 40.2 42.1 41.6 41.6 41.7 38.3 39.2 40.6
Uk–En 56.3 58.1 57.5 57.2 59.1 58.1 56.1 57.5
Uk–Fr 58.3 56.4 58.5 58.7 58.9 58.0 56.4 57.9
Uk–Hi 27.2 25.8 24.0 25.4 26.5 25.8 25.3 25.7
Uk–Ko 7.4 7.2 6.8 6.0 7.3 7.3 7.3 7.0
Uk–Ru 71.0 71.0 71.2 70.1 70.4 70.7 70.5 70.7
Uk–Sv 53.3 53.3 52.5 53.1 53.7 48.9 53.1 52.5
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Table 14: All results from the distant languages MWE experiment (P@10).

Test Hub language
µEn Fr Hi Ko Ru Sv Uk

En–Fr 90.8 91.3 90.1 91.0 91.1 91.1 90.7 90.9
En–Hi 44.0 45.9 43.3 43.1 45.0 45.2 45.6 44.6
En–Ko 31.1 31.5 28.4 30.5 31.6 33.7 32.1 31.3
En–Ru 70.1 71.7 71.0 70.7 72.4 71.1 72.3 71.3
En–Sv 80.0 81.1 80.9 80.4 80.8 80.4 81.2 80.7
En–Uk 55.3 57.5 56.5 55.2 57.4 56.4 54.6 56.1
Fr–En 87.6 87.8 86.6 87.7 88.0 87.9 88.0 87.6
Fr–Hi 39.1 35.3 35.5 36.5 38.6 38.1 38.5 37.4
Fr–Ko 20.1 18.4 18.4 19.6 20.3 19.4 19.7 19.4
Fr–Ru 67.1 65.9 68.1 67.5 66.8 66.8 67.4 67.1
Fr–Sv 74.4 73.3 74.2 74.8 73.3 73.3 75.5 74.1
Fr–Uk 51.7 49.7 51.3 51.8 52.0 51.2 49.9 51.1
Hi–En 50.0 52.3 53.0 50.8 52.7 51.7 52.3 51.8
Hi–Fr 49.0 45.5 46.8 46.8 48.3 48.1 48.9 47.6
Hi–Ko 7.9 7.2 5.1 5.1 6.4 6.6 7.2 6.5
Hi–Ru 34.5 35.3 34.5 34.7 33.6 35.3 36.3 34.9
Hi–Sv 38.0 37.5 36.1 37.9 38.9 36.3 38.5 37.6
Hi–Uk 27.3 27.6 25.8 25.4 26.2 25.9 25.5 26.3
Ko–En 34.2 34.3 32.3 35.2 37.1 38.4 35.4 35.3
Ko–Fr 27.0 25.9 23.7 24.6 28.5 30.1 26.4 26.6
Ko–Hi 6.2 6.9 5.6 6.0 6.7 6.7 6.9 6.4
Ko–Ru 21.2 19.3 16.4 18.2 20.4 20.9 20.8 19.6
Ko–Sv 20.9 18.1 17.8 17.5 21.1 18.4 20.6 19.2
Ko–Uk 12.9 12.1 11.5 11.3 12.6 12.0 11.7 12.0
Ru–En 74.9 75.8 75.4 75.5 75.5 76.2 75.6 75.6
Ru–Fr 71.8 72.5 73.0 72.2 72.7 72.7 72.6 72.5
Ru–Hi 33.0 32.9 30.1 32.1 31.9 32.1 34.6 32.4
Ru–Ko 17.2 14.6 13.2 13.5 15.9 15.0 16.7 15.2
Ru–Sv 64.7 64.7 63.6 64.6 64.2 62.5 64.6 64.1
Ru–Uk 73.3 72.8 73.1 72.0 73.1 72.9 71.7 72.7
Sv–En 69.5 70.4 71.0 70.6 70.9 69.3 70.0 70.2
Sv–Fr 67.0 64.2 65.0 65.3 65.5 64.2 65.7 65.3
Sv–Hi 33.6 32.6 32.0 30.9 33.3 31.9 33.2 32.5
Sv–Ko 15.7 14.7 14.0 12.9 15.7 14.9 15.6 14.8
Sv–Ru 57.2 56.4 56.5 56.2 56.4 53.8 56.4 56.1
Sv–Uk 47.5 47.9 47.7 47.7 48.5 44.8 46.4 47.2
Uk–En 61.6 63.4 62.9 62.2 63.5 62.7 61.1 62.5
Uk–Fr 63.5 62.4 63.9 63.4 64.3 63.5 61.9 63.3
Uk–Hi 32.7 32.3 28.6 30.2 31.7 31.5 30.7 31.1
Uk–Ko 10.6 10.2 9.5 8.7 10.1 10.4 10.2 10.0
Uk–Ru 74.5 73.8 74.1 73.9 74.5 74.1 73.9 74.1
Uk–Sv 59.1 58.8 58.8 58.7 59.3 55.2 57.8 58.2
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Table 15: BWE results (P@1) with MUSE

Source
Target

Az Be Cs En Es Gl Pt Ru Sk Tr

Az – 4.8 21.4 23.6 32.6 13.6 26.7 10.4 15.0 31.8
Be 4.0 – 26.1 3.8 12.3 9.3 11.3 42.0 23.1 2.9
Cs 2.6 5.4 – 57.1 55.5 11.9 52.3 44.7 71.2 31.6
En 12.2 2.5 47.3 – 79.3 32.0 72.9 39.7 34.3 40.6
Es 7.8 2.4 45.0 76.7 – 37.1 83.4 38.9 34.3 38.2
Gl 2.7 1.8 14.0 38.5 61.2 – 53.3 11.4 12.9 8.5
Pt 2.9 2.3 44.9 72.2 88.7 36.3 – 33.7 33.7 34.6
Ru 1.7 12.0 48.6 50.2 49.4 6.6 46.8 – 44.6 21.1
Sk 0.3 5.2 71.8 48.0 46.4 9.3 44.4 43.2 – 21.2
Tr 10.8 0.3 35.8 48.0 50.9 3.5 45.9 26.9 20.3 –

Source
Target

En Fr Hi Ko Ru Sv Uk

En – 80.3 17.9 9.5 39.7 60.0 25.9
Fr 76.6 – 11.9 5.1 38.0 52.4 26.8
Hi 24.2 17.0 – 0.4 3.1 3.3 2.3
Ko 12.4 7.1 0.4 – 2.5 2.2 0.6
Ru 50.2 47.3 3.2 1.6 – 35.8 58.8
Sv 53.3 47.8 5.2 2.3 27.8 – 19.9
Uk 37.4 40.3 4.1 0.3 60.7 30.2 –
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