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ABSTRACT

Sequential data often originates from diverse environments. Across them ex-
ist both shared regularities and environment specifics. To learn robust cross-
environment descriptions of sequences we introduce disentangled state space
models (DSSM). In the latent space of DSSM environment-invariant state dynam-
ics is explicitly disentangled from environment-specific information governing
that dynamics. We empirically show that such separation enables robust predic-
tion, sequence manipulation and environment characterization. We also propose
an unsupervised VAE-based training procedure to learn DSSM as Bayesian fil-
ters. In our experiments, we demonstrate state-of-the-art performance in con-
trolled generation and prediction of bouncing ball video sequences across varying
gravitational influences.

1 INTRODUCTION

Learning dynamics and models from sequential data is a central task in various domains of sci-
ence (Durbin & Koopman) [2012). This includes managing input of diverse complexity e.g. natural
language (Graves, 2013), videos (Srivastava et al., 2015) or financial time-series (@Dksendal, 2003).
It is also crucial for building interactive agents which use reinforcement and control algorithms on
top (Finn & Levinel 2017). Traditional choice in engineering are state space models (SSM) (Koller
et al., [2009), typically found in form of Kalman filters (Gelbl |1974) where well-crafted, relatively
simple state representations and (normally linear) functional forms are used. To improve flexibil-
ity, new solutions rather learn model-free SSM "from scratch". Due to their non-autoregressive
architecture they make an attractive alternative to recurrent neural networks.

Several recent works have already recognized the benefits of introducing additional structure into
SSM: the requirement of separating confounders from actions, observations and rewards (Lu et al.,
2018) or content from dynamics (Yingzhen & Mandt, 2018} [Fraccaro et al.l [2017), especially for
transfer learning and extrapolation (Kansky et all [2017). Complementary to these approaches,
we focus on learning structured SSM to decouple system dynamics into its generic (enviroment-
invariant) and environment-specific components. Some examples of sequential data which naturally
admit this structure are given in figure[I} Dynamics of these are defined by some constant external
factors which we jointly refer to as environment.

More concretely, we explore a panel data setting in which we are given multiple sequences describ-
ing the same time-evolving phenomena, one or more per environment e. We would like to learn a
robust non-parametric SSM to represent the dynamics of that phenomena across these environments,
and robustly extrapolate to the unseen ones. To do so, we explicitly model e as a learnable static
element of the latent space. Our idea is based on the assumption that one can decouple sequence
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dynamics to: (i) the generic part which is invariant across environments; and (ii) the environment-
specific part. In other words, true e integrates all unobserved environment-specific influences which
bias generic system dynamics. Our hypothesis is that considering disentangled, implicitly causal
structure of SSM enhances predictive robustness, domain adaptation, and allows for environment
characterization and reasoning under interventions e.g. counterfactual inference.

dx
dt
dy
dt

= ax — By

=dxy — Yy

Figure 1: Sequential systems across environments. Examples include, from left to right: (i)

Michaelis-Menten model for enzyme kinetics, governed by reaction rate constants k; (ii) bouncing
ball kinematics, determined by ball weight and playground characteristics; (iii) ODE dynamics,
governed by model parameters; (iv) bat swinging motion, influenced by the person performing it. In
each example, environments are defined differently, depending on what governs sequence dynamics.

OUR KEY CONTRIBUTIONS

DSSM. We introduce a class of non-parametric SSM tailored to exploit invariance from sequential
data originating from heterogeneous environments. Disentangled state space models (DSSM) (see
figure 2ld) form a joint environment model while explicitly decoupling what is generic in sequence
dynamics from what is environment-specific. This enhances robustness and the ability to extrapolate
knowledge to unseen environments.

Bayesian filtering. We extend on recent advances in amortized variational inference to design an
unsupervised training procedure and implement DSSM in form of Bayesian filters. In the spirit
of (Karl et al., 2016)), well-established reparameterization trick is applied such that the gradient
propagates through time. While VAE heuristic provides no convergence guarantees, it is fast, robust
and allows end-to-end training.

Video prediction and manipulation. We analyze video sequences of a bouncing ball, influenced
by varying gravity (environment). We outperform state-of-the-art K-VAE (Fraccaro et al., 2017)
in predictions, and also do interventions by "swapping environments" i.e. we enforce a specific
dynamic behaviour by using an environment from another sequence which exhibits the desired be-
haviour. Example videos are available at: https://sites.google.com/view/dssm.

2 RELATED WORK

Closely related to our proposal are approaches which consider structured and disentangled represen-
tation of videos, separating the pose from the content (Denton et al., 2017} Tulyakov et al., 2017}
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Figure 2: DSSM and related architectures. (a) Traditional SSM architecture was used e.g. in (Karl
et al.|[2016). (b) Disentangled sequential autoencoder (DSA) (Yingzhen & Mandt, [2018) decouples
time-invariant content from the time-varying features. (¢) Kalman-VAE (Fraccaro et al., 2017) sep-
arates object (content) representation from its dynamics (we did not depict control input here). (d)
DSSM introduce environments F to model environment-specific effects on sequence dynamics.
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Villegas et al.,[2017;|Yingzhen & Mandt,2018)) or the object appearance from its dynamics (Fraccaro
et al.l |2017). Proposed models were shown to improve the prediction (Villegas et al., 2017} |Den-
ton et al., |2017) and enable controlled generation with "feature swapping" (Tulyakov et al., 2017}
Yingzhen & Mandt, 2018). This so called content-based disentanglement was also performed in
speech analysis where the structure imposed the explicit separation of sequence- and segment-level
attributes (Hsu et al.,[2017).

VAE frameworks have already been extended to sequence modeling (Marino et al., 2018)), and ap-
plied to speech (Bayer & Osendorfer, 2014} |Chung et al., 2015} [Fraccaro et al.,|2016; |Goyal et al.,
2017), videos (Yingzhen & Mandt, 2018)) and text (Bowman et al.,[2015). However, these (mainly)
recurrent neural network-based approaches are autoregressive and hence not always suitable e.g. for
planning and control from raw pixel space (Watter et al., 2015} |[Hafner et al.| 2018)).

To "image the world" (Ha & Schmidhuber, 2018)) from the latent space directly and circumvent the
autoregressive feedback, alternative methods learn SSM instead (Karl et al.| [2016} [Fraccaro et al.,
2017; Krishnan et al.,[2017). In DVBF (Karl et al.,[2016)) SSM is trained using VAE-based learning
procedure which allows gradient to propagate through time during training. K-VAE by [Fraccaro
et al.[(2017) is a two-layered model which decomposes object’s representation from its dynamics.
DKEF (Krishnan et al., |2015)), and very closely related DMM (Krishnan et al., [2017), admit SSM
structure but the state inference is conditioned on both past and future observations, so the structure
of a filter is not preserved. This is problematic as noted by |[Karl et al.| (2016). Similar issues can be
found in (Yingzhen & Mandt, 2018).

As opposed to content-based methods which focus on the observation model, our work is focused
on dynamics-based disentanglement. This makes our approach complementary to existing (see also
figure [2)). For example, while DSA can represent and manipulate the shape or color of a bouncing
ball, our method can manipulate its trajectory. To implement our Bayesian filter, we blended some
recent ideas in amortized variational inference (Karl et al., [2016; Marino et al., 2018) and adapted
them to fit our novel DSSM architecture.

3  VARIATIONAL BAYESIAN FILTERING FOR DSSM

In this work, we assume that the underlying system is deterministic i.e. the latent process noise 5 and
observation noise w are both uncorrelated in time. We consider the following DSSM description:

Xi =9(5:) +wi, w;~N(0,%,) (D
Sit1 = f(Si, E) + Bi, Bi ~ N(0,Xp) 2)

where f and g represent arbitrary flexible functions. X; € R represents the observation in time
step i and S; € RY is the corresponding latent state. ¥ and 3,, are noise covariances which we for
simplicity assume are isotropic Gaussian. Our goal is to jointly learn the generative model which
consists of the transition function f and observation function g, together with the corresponding
recognition networks ¢"¢, ¢"“ and ¢§"“ which infer the process noise residual Bi, the environment
E, and the initial state .Sy respectively. The framework overview is given in figure 3]

Generative model. Given an observed sequence X of length T', the joint distribution is:

T

p(X, S, E, B) = po(So)po(E) [ [ p(XilS:)p(Sil Si-1, E. B:)po(B:) 3)

i=1

This follows from figure [2d and the assumption that the process noise is serially uncorrelated.
We set the prior probabilities of the initial state pg(Sp), environment po(E) and process noise
po(Bi) = po(f) to be zero-mean unit-variance Gaussian. Conditioned on 3; and FE, state transi-
tion is deterministic and the probability p(S;|S;—1, F, §;) is a Dirac function with the peak defined
by equation (2)). The emission probability p(X;|S;) is defined by equation (I).
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Figure 3: Variational Bayesian filtering framework. (a) predict-update equations of proposed
Bayesian filer: Predict step generates the a priori state estimate .S; . Update step corrects the es-
timate (Si+ ) using observation X; through the residual vector 5;; (b) in environment recognition
phase the environment F is inferred, and the initial state Sp; (¢) function g maps states into obser-
vations; (d) an example implementation of the transition function f from equation (2) using LSTM
equations (Graves| 2013)) (as done in our experiments).

Sic1 = | f(Sic1, E) |57

S; = o;tanh(c;)

Inference. Joint variational distribution over the unobserved random variables F, S and E , for a
sequence of observation X of length T factorizes as:

T
(S, E,B|1X) = q(E|X)q(SolX) [ [ a(Sil8:, S7)a(B:1S;, Xi)a(S;|Si—1, E) )

i=1

Here, the conditionals S; |\S;—1, £ and S;|3;, .S; are deterministic and defined by equation . The
remaining factors are given as follows:

a(Bil Sy xi) = N(pP,25),  [uP, 25 = 65 (S;, 1) (5)
q(So|X) = N (p*,2%),  [p5, %5 = ¢2°(7) (6)
q(B|1X) = N(uP,2F), [uf, 2F] = ¢ (7) (7)

Learning. To match the posterior distributions of F, Sy and 5 to the assigned prior probabilities
po(E), po(So) and po(B), we utilize reparametrization trick (Kingma & Welling} [2013; |[Rezende
et al., 2014). This enables end-to-end training. To define the objective function we derive the
variational lower bound £, which we consequently attempt to maximize during the training. We
start from the well-known equality (Kingma & Welling, [2013):

£ =E, g ¢ log p(X]5)] — KL(q(51X)lpo(S)) ®)
Due to the conditional independence of the observations given the latent states, we can decompose

the first term as:

T
E, 5% log p(X|9)] =D E s g llog p(Xi]S:)] ©)

i=1

The KL term can be shown to simplify into a sum of the following KL terms:

KL(q(S|X)llpo(S)) = KL(a(E|X)l[po(E)) (10)

+ KL(q(30|X)][po(So))
T

+ E  KL(q(8:)lIpo(B))
i—1 9B, E,S;i—1|X)

where we dropped the conditional dependency f3;]S;-1, X;, F in ¢ to ease the notation. Full £
derivation is given in Appendix. Algorithm [I] shows the details of the training procedure for one
iteration, for a batch of size 1. The extension to the batch training is trivial.
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Implementation. We model [f, g, 95", %', ¢3"] as neural networks. In our experiments, g and
(b%”c are convolutional/deconvolutional networks. ¢¢"*“ and ¢%'¢ are given as bi-directional LSTM

followed by a multilayer perceptron to convert LSTM-based sequence embedding into Sy and E,
and f as an LSTM cell as elaborated in figure . LSTM equations are taken from (Graves, 2013)).

Optimization Challenges. Some performance improvements were observed with an additional
heuristic regularization term, which ensures the consistency during the inference of environment F.
Namely, we penalize the step-wise change in time embeddings produced by bi-directional LSTM
used to model ¢4, in order to enforce E to remain time-invariant. To that end, we add an additional

term to our objective function, the moment matching regularization term defined as:

T
MM (7)) = > |lhi = hia|? (11
=2

where h; is the hidden state of the ¢%'° LSTM cell in step ¢. This idea is related to the approaches
based on the maximum mean discrepancy (Gretton et al., 2012). Namely, enforcing equality of
consecutive cell states corresponds to matching of their first moments.

Furthermore, similarly to (Bowman et al., 2015; Karl et al.,|2016) we used a KL annealing scheme.
This was helpful for circumventing local minimum and preventing the KL term to converge to zero
too early during the training. The exact details are given in our experiments.

4 PREDICTION, MANIPULATION AND GENERATION OF VIDEO SEQUENCES

Bouncing ball in varying gravity settings. We test our framework on a 2D bouncing ball problem
where the ball kinematics is affected by a varying gravity vector. The idea is to evaluate model
robustness across environments — gravitational settings. See also visualizations at: https://
sites.google.com/view/dssm. Using the physics engine code from (Fraccaro et al.,2017),
we simulate video sequences of a bouncing ball. During generation, we randomly change the gravity
such that it remains constant within a sequence, but may vary across sequences. The gravity vector
takes 4 values, depending on whether the gravity points up, down, left or right. The magnitude
is kept fixed. Each video frame is a 32x32 binary image. We generate 16’000 trajectories across
40 time steps for training, and another 2000 trajectories across 70 time steps for testing. We first
perform long-term forecasting analysis comparing our method against one of the state-of-the-art
approaches, the K-VAE from (Fraccaro et al.,2017). Next, we demonstrate controlled generation, by
manipulating video sequences. Effectively we perform interventions by "swapping environments"
between video sequences, and similarly we swap initial states. Furthermore, we show the ability to
perform uncontrolled generation where both initial state and gravity vector are sampled from a prior.
Finally we visualize the environment embeddings to provide further intuiton.

Forecasting ball trajectory. We use OpenCV inbuilt functions to detect ground truth ball position
p¢ in each time frame. The exact algorithm for the position extraction is provided in the Appendix
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Figure 4: Bouncing ball trajectory forecasting. DSSM-based Bayesian filter against K-VAE on
the task of long-term forecasting: (left) velocity magnitude; (right) cosine similarity. MM denotes
moment-matching regularization. Shown error curves are the test set averages.
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Following (Hsieh et al', 2018}, [Chang et al., 2016) we define the ball velocity as v; = py1 — py

and compute the relative error in the predicted velocities of the balls for forecasting. Evaluated
models observe the first 25 frames of a test sequence and then forecast the next 45. The results for
relative error in magnitude and cosine similarity of the velocities are then averaged across all test
sequences. This is shown in figure[d] We observe an increase in prediction quality with respect to
both metrics in comparison to the benchmarking model K-VAE.

Video manipulation for controlled generation. Firstly, the initial state which consists of the ve-
locity vector and the ball position, is extracted from the baseline video sequence and then "injected"
into a series of other test sequences. Similarly, we performed the gravity environment replacement.
We then enrolled the sequence effectively performing controlled generation (see figure [3)).

D Initial Position ﬂ - Initial Velocity G - Direction of Gravitational Force

N !l e

—

Gravity (§) inferred.

(a)

Figure 5: Environment swapping and controlled generation. (a) base sequence. (b) test se-
quences in which we injected (i) environment gravity value; (ii) initial state; of the base sequence
inferred using recognition networks ¢7'¢ and ¢§*“ respectively.

Environment identification. We trained an auxiliary multi layer perceptron classifier to map E
to true gravity value. The cross-validation results performed on the training set rendered accuracy
of 99.15%. Visualized embeddings (for E € R?) are given in ﬁgure@ Well-defined clusters can
be observed, indicating that £ indeed represents the true gravity.

Uncontrolled Generation. We demonstrate the uncontrolled generation of the sequences where
s0 and E are sampled from the priors po(E) and p(So) respectively. In figure[6p we observe how
the generated sequences preserve natural bouncing ball dynamics.

Positive X-axis Gravity T

Positive Y-axis Gravity |

Negative X-axis Gravity (b)
+ Negative Y-axis Gravity

Figure 6: (a) learned environment £ embeddings. (b) uncontrolled video generation.

5 CONCLUSION

This work proposes a novel view on data-driven learning of dynamics from diverse environments.
We proposed a new class of state space models particularly crafted to exploit this kind of a setting.
In disentangled state space models one separates generic system dynamics which is assumed to be
invariant across environments and environment-specific information which governs this dynamics.
We showed that such separation is beneficial and allows us to learn robust cross-environment models
which hold promise to generalize on unseen environments. Our particular application was learning
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of the video dynamics of a bouncing ball affected by varying gravitational influences where we
achieved state-of-the-art results. Our future work will include other types of data.
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A LOWER BOUND DERIVATION (SECTION@

Conditional log-likelihood term in £

T T
Eq(g‘)?)[log p(X|9)] = E 1) [log HP(XHSM = Eq(§\)?)[z log p(Xi|5;)]

=1 i=1

!

Z a(S5:1%) [log p(X;[S;)]

(where the conditional independence follows from the state space model formulation)

KL term in £
KL(q(S|X)l|po(S5))

= [ 110 2265
/// (S0l X)q(E|X)q(BI1X, So, E)q(So|So, E, B)

Po(S0)po(E)po(B|So, E)po(So|So, E, B)
q(So| X)q(E|X)q(B]X, So, E)q(So|So, E, B)
(where we used the factorization of the variational and the prior distribution. Sy is vector S without So)
= / q(E|X) log pO(E_?
E q(E|X)

> po(So)
+/ q(So|X) log (SO|X)

// 4(BIX, E, So) log po(BIE, So)
” 451X, B, 50)

+ So|2)q(E|%)q(B| X, So, E)q(So|So, E, B) 1 IM
/ /B [ aSola(EDaEIE. S0, Bla(Gulsi. 5. ) og i £

(where we dropped the integral sums for which the corresponding term does not depend on)
= KL(¢(E|X)||po(E))

+ KL(g(S0| X)|[po(So))

+KL(qa(B|X, E, So)|lpo(B| E, S0))

(where the last term vanishes since 3o|so, E, E is deterministic)

= KL(q(E|X)]|po(E))

+KL(q(So|X)][po(So))

T
+ E  KL(q(Bi|Xi, E, Si—
D 50y KL Dlpo(8)

(where we have po(Bi|E, si) = po(B) by design)

B EXPERIMENTS (SECTION [)

B.1 DETAILS

To get compressed representation of each frame, the images are first passed through a shallow con-
volutional network. Kernel size was set to 3x3, while the network depth was 64. The step size was
1 in both directions. We used ReL.U activation units. All of the hidden latent states were equal to
64. To parameterize g we used a deconvolutional network with transposed convolutions. The kernel
size was set to 5.
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Following the insights from (Bowman et al.| |2015), we tried different settings for KL annealing in
the model. Since we have three KL terms in our model which have different roles, we do not pe-
nalize KL terms of time-invariant components i.e. K L(q(So|X)||po(S)) and K L(q(E|X)||po(E))
as forcefully as K L(q(8:|S:, X;)||po(B)) during training. This makes it relatively easier for the
model to learn the time-invariant components. Similarly to (Fraccaro et al., [2017), we also found
that down-weighing the reconstruction term helps in faster convergence. In particular we ap-

plied scaling coefficients of [0.1,0.2,0.3,1.0] for terms E_ 5 ¢, log p(X|5)]. KL(q(E|X)||po(E)).
K L(q(So|X)l|po(S)) and K L(q(5:]S:, X)||po(68))] respectively.

We use ADAM as the optimizer with 0.0008 as the initial learning rate, and weight decay of 0.6
applied every 20 epochs.

B.2 ALGORITHM FOR DETECTING BALL POSITIONS

We use OpenCV’s (Itseez, 2015) inbuilt functions to detect the pixel level positions of the ball in the
images.

import cv2
import imutils
def find_positions (image) :
ret, binary_mask = cv2.threshold(image, 0.01, 1, cv2.THRESH_BINARY)

binary_mask = cv2.erode(binary_mask, None, iterations=1)
binary_mask = cv2.dilate(binary_mask, None, iterations=1)
fake_frame = cv2.convertScaleAbs (binary_mask.copy())

cnts = cv2.findContours (fake_frame,

cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours (cnts)
c = max (cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle (c)
return x, y

C TRAINING ALGORITHM (SECTION [3))

Algorithm 1 One iteration of the training procedure

Input: sequence & of length T’
[,UE7 EE] = ¢%‘nc(f)7 E~ N(ME7 EE)
[MS» ES] = ¢g'nc(f)v So ~ N(MS, ES)
fori=1to7T do
Predict step: S; = f(S;—1, E)
Estimate residual: [u?, E?] =¢5"(5;, Xi), Bi~ N(,u?, Ef)
Update step: S; = S; + f3;
Predict observation: X; = g(S;)
end for -
1I_loss = LL(X7 X) (see Eq (@))
kl_loss = KL(E, Sy, ﬁ), (see Eq )
mm_loss = MM(¢5¢(X)); (see Eq (1))
Backpropagate(ll_loss, kl_loss, mm_loss)
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