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ABSTRACT

Representation learning is typically applied to only one mode of a data matrix,
either its rows or columns. Yet in many applications, there is an underlying geom-
etry to both the rows and the columns. We propose utilizing this coupled structure
to perform co-manifold learning: uncovering the underlying geometry of both the
rows and the columns of a given matrix, where we focus on a missing data setting.
Our unsupervised approach consists of three components. We first solve a fam-
ily of optimization problems to estimate a complete matrix at multiple scales of
smoothness. We then use this collection of smooth matrix estimates to compute
pairwise distances on the rows and columns based on a new multi-scale metric
that implicitly introduces a coupling between the rows and the columns. Finally,
we construct row and column representations from these multi-scale metrics. We
demonstrate that our approach outperforms competing methods in both data visu-
alization and clustering.

1 INTRODUCTION

Dimension reduction plays a key role in exploratory data analysis, data visualization, clustering and
classification. Techniques range from the classical PCA and nonlinear manifold learning to deep
autoencoders (Tenenbaum et al., [2000; Roweis & Saul, 2000; Belkin & Niyogi, 2003 |(Coifman &
Lafon| 2006} [Vincent et al.l [2008; Rifai et al.| [2011; |[Kingma & Welling| |2014). These techniques
focus on only one mode of the data, often the observations (columns) which are measurements
in a high-dimensional feature space (rows), and exploit correlations among the features to reduce
the dimension of the feature vectors and obtain the underlying low-dimensional geometry of the
observations. Yet for many data matrices, for example in gene expression studies, recommendation
systems, sensor networks, and word-document analysis, correlations exist among both observations
and features. In these cases, we seek a method that can exploit the correlations among both the rows
and columns of a data matrix to better learn lower-dimensional representations of both. Biclustering
methods, which extract distinct biclusters along both rows and columns, give a partial solution
to performing simultaneous dimension reduction on the rows and columns of a data matrix. In
certain settings, however, assuming a bi-clustering model is too restrictive and results in breaking
up smooth geometries into artificial disjoint clusters that do not match the actual structure of the
data. This can occur when the true geometry is one of overlapping rather than disjoint clusters,
for example in word-document analysis (Ahn et al., [2010), or when the underlying structure is not
one of clusters at all but rather a smooth manifold (Gavish & Coifman, [2012). Thus, we consider a
more general viewpoint: data matrices possess geometric relationships between their rows (features)
and columns (observations) such that both modes lie on low-dimensional manifolds. Furthermore,
the relationships between the rows may be informed by the relationships between the columns, and
vice versa. Several recent papers (Gavish & Coifman, [2012; |/Ankenman, 2014} Mishne et al., 2016
Shahid et al., 2016; [Mishne et al., 2017; |Yair et al., [2017) exploit this coupled relationship to co-
organize matrices and infer underlying row and column embeddings.

Further complicating the story is that such matrices may suffer from missing values, due to measure-
ment corruptions and limitations. Missing values can sabotage efforts to learn the low dimensional
manifold underlying the data. Specifically, kernel-based methods rely on calculating a similarity
matrix between observations, whose eigendecomposition yields a new embedding of the data. As
the number of missing entries grows, the distances between points are increasingly distorted, re-
sulting in poor representation of the data in the low-dimensional space (Gilbert & Sonthalia, [2018).
Matrix completion algorithms assume the data is low-rank and fill in the missing values by fitting a
global linear subspace to the data. Yet, this may fail when the data lies on a nonlinear manifold.
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Figure 1: The three components of our approach: 1) smooth estimates of a matrix with missing
entries at multiple scales via co-clustering, 2) a multi-scale metric using the smooth estimates across
all scales, yielding an affinity kernel between rows/columns, and 3) nonlinear embeddings of the
rows and columns. The multiscale metric between two columns (red and orange) is a weighted
Euclidean distance between those columns at multiple scales, given by solving the co-clustering for
increasing values of the cost parameters -y, and ..

Manifold learning in the missing data scenario has been addressed by a few recent papers. Non-
linear Principle Component Analysis (NLPCA) (Scholz et al.l [2003) uses an autoencoder neural
network, where the middle layer serves to learn a low-dimensional embedding of the data, and the
trained autoencoder is used to fill in missing values. Missing Data Recovery through Unsupervised
Regression (Carreira-Perpin & Lul [2011) first fills in the missing data with linear matrix completion
methods, then calculates a non-linear embedding of the data and incorporates this embedding in an
optimization problem to fill in the missing values. Recently |Gilbert & Sonthalial (2018)) proposed
MR-MISSING which first calculates an initial distance matrix using only non-missing entries and
then uses the increase-only-metric-repair (IOMR) method to fix the distance matrix so that it is a
metric from which they calculate an embedding. None of these methods consider the co-manifold
setting, where the coupled structure of the rows and the columns can be used to fill in the data, and
to calculate an embedding.

In this paper, we introduce a new method for performing joint dimension reduction on the rows and
columns of a data matrix, which we term co-manifold learning, in the missing data setting. We
build on two recent lines of work on co-organizing the rows and columns of a data matrix
& Coifman) Mishne et al., and convex optimization methods for performing co-
clustering (Chi et al., 2017; [2018). The former provide a flexible framework for jointly organizing
rows and columns but lacks algorithmic convergence guarantees. The latter provides convergence
guarantees but does not take full advantage of the multiple scales of the data revealed in the solution.

In the first stage of our approach, rather than inferring biclusters at a single scale, we use a multi-
scale optimization framework to fill in the data at fine to coarse scales while imposing smoothness
on both the rows and the columns. The scales of the solutions are encoded in a pair of joint cost
parameters along the rows and columns. Next, we define a new multi-scale metric based on the
filled-in matrix across all scales, which we then use to calculate nonlinear embeddings of the rows
and columns. Thus our approach yields three results: a collection of smoothed estimates of the ma-
trix, pairwise distances on the rows and columns that better estimate the geometry of the complete
data matrix, and corresponding nonlinear embeddings (see Figure[I). We will demonstrate in exper-
imental results that our method reveals meaningful representations in coupled datasets with missing
entries, whereas other methods are capable of revealing a meaningful representation only along one
of the modes.

The paper is organized as follows. We present the optimization framework in Section [2] the new
multi-scale metric for co-manifold learning in Section [3]and experimental results in Section 4]
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2 CO-CLUSTERING AN INCOMPLETE DATA MATRIX

We seek a collection of complete matrix approximations of a partially observed data matrix X €
R™*™ that have been smoothed along their row and columns to varying degrees. This collection will
serve in computing row and column multi-scale distances to better estimate the pairwise distances
of the complete data matrix. Let [m] denote the set of indices {1,...,m}, and let © C [m] x [n]
be a subset of the indices that correspond to observed entries of X, and let Pg denote the projection
operator of m X n matrices onto an index set ©, i.e. [Po(X)];; is x;; if (4, j) € © and is 0 otherwise.
We seek a minimizer U(,, ~.) of the following function.

(U = 5IPo(X) = Po(U)I +7:J(U) + 7. (U). n

The quadratic term quantifies how well U approximates X on the observed entries, while the two
roughness penalties, J,.(U) and J.(U), incentivize smoothness across the rows and columns of U.
The nonnegative parameters <y, and . tune the tradeoff between how well U agrees with X over ©
and how smooth U is with respect to its rows and columns. By tuning +,. and 7., we obtain estimates
of X at varying scales of row and column smoothness.

In this paper, we use roughness penalties of the following forms

JL(U) = Y QUi -Ujls) and J(U)= > QU-Uyls), @
(i,5)€Er (i,5)€€e

where U;. (U.;) denotes the ith row (column) of the matrix U. The index sets &, and &, denote
the edge sets of row and column graphs that encode a preliminary data-driven assessment of the
similarities between rows and columns of the data matrix. The function 2, which maps [0, o) into
[0, 00), will be explained shortly. Variations on the optimization problem of minimizing have
been previously proposed in the literature. When there is no data missing, i.e. © = [m] X [n] and
() is a linear mapping, minimizing the objective in (I)) produces a convex biclustering problem (Chi
et al., [2017). Additionally, if either ~,. or . is zero, then we obtain convex clustering (Pelckmans
et al., |2005; [Hocking et al., 2011} |Lindsten et al., 2011} |Chi & Langel [2015). If we take €2 to be
a nonlinear concave function, problem (I)) reduces to an instance of concave penalized regression-
based clustering (Pan et al., 2013; Marchetti & Zhou, 2014; Wu et al.l 2016). The convergence
properties of our co-clustering procedure will rely on the following two assumptions.

Assumption 2.1 The row and column graphs &, and &, are connected, i.e. the row graph is con-
nected if for any pair of rows, indexed by i and j with i # j, there exists a sequence of indices
it —k — - = 1 = jsuchthat (i,k),...,(l,5) € &E. A column graph is connected under
analogous conditions.

Assumption 2.2 The function () : [0,00) — [0,
on (0, 00), (ii) vanishes at the origin, i.e. Q(0) =
directional derivative at the origin.

00) is (i) concave and continuously differentiable
0, (iii) is increasing on [0, 00), and (iv) has finite

Figure ] in Appendix [A] plots an example of a function 2 that satisfies Assumption 2.2. For con-
creteness, in the rest of this paper, we use the following function {2

1 (7 1
Qz) = 5/0 ﬁd@ 3)

where € is a small positive number, e.g. 1072, The key feature of  in , which satisfies As-
sumption 2.2, is that when it is used in the roughness penalties (2) small differences between
rows and columns are penalized significantly more than larger differences resulting in more aggres-
sive smoothing of small noisy variations and leaving intact more significant systematic variations.
Specifically, functions that satisfy Assumption 2.2 are not differentiable at the origin and therefore
incentivize sparsity in the differences in the rows and columns. Consequently, small noisy variations
between pairs of rows and columns are eliminated completely for sufficiently large ~, and .. This
is in contrast with commonly used quadratic penalties. For example, replacing J,.(U) and J..(U) by
quadratic row and column penalties

1 1 -
S (U) = 5 > wy|[Us = U, |3 and Jo(U) =5 > wl[U - U5 @

(i,5)€&r (i,5)€€c
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gives a version of matrix completion on graphs (Kalofolias et al.l 2014} Rao et al.| [2015), where
w;; and w;; are fixed row and column weights inferred from the data. [Shahid et al.| (2016) also
use quadratic row and column penalties to perform joint linear dimension reduction on the rows
and columns of a data matrix. Penalties like the ones given in @), unlike the ones considered in
Assumption 2.2, smooth out more significant systematic variations more aggressively and shrink,
but do not completely eliminate, small noisy variations.

A simple concrete example illuminates the differences between roughness penalties considered in

this paper and commonly used existing penalties. Let U;. = (1 O)T and Ug. = (146 O)T and
take € to be as defined in (3)). Then,

||U1 — U2.||2 = (5, Q(”Ul — U2||2) ~ \/g, and HU1 - UQ”% = (52.
Suppose there is a small difference between the first and second rows of U, e.g. 6 = 10~%. Then
UL —Usls = 1074, Q(|U. —Usal2) ~ 1072, and |U. —-Uy|? = 1075

Thus, small differences are penalized the most using the concave () and the least by the convex
quadratic penalty. Suppose there is a large difference between the first and second rows of U, e.g.
§ = 10*. Then

||U1 - U2.||2 = 104, Q(”Ul - U2H2) ~ 102, and HUl - U2H§ = 108

Thus, large differences are penalized the least using the concave {2 and the most by the convex
quadratic penalty.

The practical consequence of the differences highlighted by the example above is that the convex
penalties, either when €2 is linear or quadratic, do not introduce enough smoothing for small differ-
ences and too much smoothing for large differences. Indeed, (Pan et al., |2013; Marchetti & Zhou,
2014; Wu et al., [2016) showed that superior clustering results could be had, when only J, or J. is
used, by using concave 2. [Chi et al.| (2017)) also showed that empirically that the solution to the con-
vex biclustering problem tended to identify too many biclusters and consequently also introduced
a one-step reweighted convex biclustering refinement, which recovered the true biclusters more ac-
curately in simulation experiments. The reweighting refinement can be seen as taking a single step
in an iterative algorithm for minimizing inexactly when 2 is concave (Chi et al., [2018; |Chi &
Steinerberger, [2018)). As our method combines biclustering of incomplete data at different scales,
or values of v, and ., consequently we extend the reweighting refinement introduced by |Chi et al.
(2017) in Section 2.1}

Our problem formulation () is distinct from related problem formulations in the following ways:

1. Rows and columns of U are simultaneously shrunk towards each other as the parameters
vy and 7, increase. Note that this shrinkage procedure is fundamentally different from
methods like the clustered dendrogram, which independently cluster the rows and columns
as well as alternating partition tree construction procedures (Gavish & Coifman, 2012;
Mishne et al., [2016)).

2. Our ultimate goal is not to perform matrix completion (though this is a by-product of our
approach) but rather to perform joint row and column dimension reduction.

3. Our work generalizes both [Shahid et al.| (2016) and |Chi et al.| (2017) in that we seek the
flexibility of performing non-linear dimension reduction on the rows and columns of the
data matrix, i.e. a more general manifold organization than a co-clustered structure.

4. Instead of determining an optimal single scale of the solution as in/Shahid et al.|(2016));|Chi
et al.| (2017), we recognize that the multiple scales of the different solutions can be aggre-
gated to better estimate the underlying geometry, similar to the tree-based Earth mover’s
distance proposed in /Ankenman| (2014); [Mishne et al.|(2017).

2.1 CoO-CLUSTERING ALGORITHM

We now introduce a majorization-minimization (MM) algorithm (Sun et al.,[2017) for solving the
minimization in (I)). The basic strategy behind an MM algorithm is to convert a hard optimization
problem into a sequence of simpler ones. The MM principle requires majorizing the objective
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Algorithm 1 CO-CLUSTER-MISSING(Pg(X), v, Ve)

1: Initialize Ug, w;.;5, and we ;5

2: repeat

3 X + Po(X) + Poc(Uy)

4: {U11,ny,nc} < CONVEX-BICLUSTER (X,%,%, {ir.ij}, {ﬁzc,ij})
50 Wrij < (| Uppri — Urgaj|2) forall (i, j) € &

6 We,ij < Q/(HUt+1,~i — Ut+1,-j||2) for all (’L,]) S gc

7: until convergence
8: Return {U(fyr,%) = Uy, X,nr,nc}

function f(U) by a surrogate function g(U | fJ) anchored at U. Majorization is a combination of

the tangency condition g(U | U) = f(U) and the domination condition g(U | U) > f(U) for all

U € R™*™. The associated MM algorithm is defined by the iterates U,;1 = argmin g(U | Uy).
U

It is straightforward to verify that the MM iterates generate a descent algorithm driving the objective
function downhill, i.e. that f(U.yq1) < f(U,) for all ¢.

The following function

- 1 - ) i
g(UU) = §||X—UH§+%- > iU = Uplla+7e Y, eillUi = Ugla+ 5
(1,4)€Er (i,5)€E

majorizes our objective function (1)) at U, where  is a constant that does not depend on U and w, ;;
and . ;; are weights that depend on U, i.e.

Grij = (0.~ Ugll2) and ey = (04— Uyll), ®)

where €)' denotes the first derivative of (2. We give a detailed derivation of this majorization in
Appendix [A]

Minimizing g(U | fJ) is equivalent to minimizing the objective function of the convex biclustering
problem for which efficient algorithms have been introduced (Chi et al.,[2017). Thus, in the ¢ 4 1th
iteration, our MM algorithm solves a convex biclustering problem where the missing values in X
have been replaced with the values of U = U, and the weights w,. ;; and w.. ;; have been computed
based on U = U, according to . Note that the weights are continuously updated throughout the
optimization as opposed to the fixed weights in (Chi et al., 2017)). This introduces a notion of the
scale of the solution into the weights.

Algorithm[T|summarizes our MM algorithm, CO-CLUSTER-MISSING, which returns a smooth output
matrix U(v,,7.), a filled-in matrix X = Pe(X) + Poe(U(r,7.)) as well as n, and n,, which
are respectively the number of distinct rows and distinct columns in U(%y;, 7y, ). The CO-CLUSTER-
MISSING algorithm has the following convergence guarantee.

Proposition 1 Under Assumption 2.1 and Assumption 2.2, the sequence U, generated by Algo-
rithm[I) has at least one limit point, and all limit points are stationary points of ({I).

The proof of Proposition [I]is presented in Appendix [B]

2.2 CO-CLUSTERING AT MULTIPLE SCALES

Initializing Algorithm [I)is very important as the objective function in () is not convex. The matrix
U is initialized to be the mean of all non-missing values. The connectivity graphs &, and &,
are initialized at the beginning using k-nearest-neighbor graphs, and remain fixed throughout all
considered scales. If we observed the complete matrix, employing a sparse Gaussian kernel is
a natural way to quantify the local similarity between pairs of rows and pairs of columns. The
challenge is that we do not have the complete data matrix X but only the partially observed one
Po(X). Therefore, we rely only on the observed values to calculate the k-nearest-neighbor graph,
based on the distance used by |Ram et al.|(2013) in an image inpainting problem.
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Algorithm 2 Co-manifold learning on an Incomplete Data Matrix

1: Initialize &,, &,

2: Set d(X“ X]) = 0and d(X“ X]) =0

3: Setn, =m,n.=n,k==kyg,and = [y

4: while n, > 1do

5:  while n. > 1do

6: {UW“), X(l’k),nr,nc} ¢+ CO-CLUSTER-MISSING (Pg (X), 7, = 2,7, = 2")

= (Lk) =(l,k

7: Update row distances: d (X;.,X;.) +=d (XE ), X;. )

8: Update column distances: d (X.;,X.;) +=d (X(llk), X(jk))
9: k+—k+1
10:  end while
11: 1+ 1+1

12: end while
13: Calculate affinities A, (X;.,X;.) and A.(X.;, X.;)
14: Calculate embeddings ¥,., ¥,

Solving the co-clustering problem in Algorithm|T]at a single scale yields the smooth estimate U, the
filled-in data matrix X, and n, and n. which are the number of distinct row and column clusters,
respectively, identified at that scale through columns and rows merging in U. To obtain a collection
of estimates at multiple scales, we solve the optimization problem for pairs of values for v,., v, set
at logarithmic scale (Chi & Steinerberger, 2018)) until we have converged to single global bi-cluster,
ie.n, =n.=1.

We start with small values of ~, = 2% and 7, = 2¥0, where Iy, kg < 0. We apply the co-clustering

(Algorithm and obtain the smooth estimate U(‘o-F0) — U(2', 2%0) ysed to fill in the data matrix

S (losk . . . . . . .
X( ’ D). Keeping +, fixed, we continue increasing 7. by power of 2 and applying the biclustering

until the algorithm converges to one cluster along the columns (n. = 1). We then increase ~,. by
power of 2 and reset v, = 2%0. We repeat this procedure at increasing scales of 7, = 2!, v, = 2F,
until we have converged to a single global bicluster. This multiscale procedure yields a collection

of filled-in matrices at all scales {X(l’k)} . Note that the [ and k denote the power of 2 taken

)

for specific row and column cost parameters (7., 7,-) in the solution. This is intended as a compact
notation that corresponds a pair of parameters (., . ) to their solution U and filled in estimate

%M,

3 CO-MANIFOLD LEARNING

Kernel-based manifold learning relies on constructing a good similarity measure between points,
and a dimension reduction method based on this similarity. The eigenvectors of these kernels are

typically used as the new low-dimensional coordinates for the data. Here we leverage having cal-
& (Lk)

culated an estimate of the filled-in matrix at multiple scales {X } , to define a new metric
Lk

between rows and columns. This metric will encompass all bi-scales as defined by joint pairs of
optimization cost parameters ,, .. Given a new metric we employ Diffusion maps (Coifman &
Lafon, [2006) to obtain a new embedding of the rows and columns. The full algorithm is given in
Algorithm 2|

3.1 MULTI-SCALE METRIC

We define a new metric to estimate the geometry of the complete data matrix both locally and
globally. For a given pair v, 7., we calculate the Euclidean distance between rows for the filled-in
matrix at that joint scale, weighted by the cost parameters:

o (LE) S(Lk) ang (k) S (1LE)
a (X7 X) = eI =X
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where X = Po(X) + Po (UL and we set v = —1/2 to favor local over global structure in

our simulations. Our goal is to aggregate distances between a pair of rows (columns) across multiple
scales of the solution, to calculate a metric that better recovers the local and global geometry of the
data despite the missing values, thus “fixing” the missing data metric. Having solved for multiple
pairs from the solution surface, we sum over all the distances to obtain a multi-scale distance on the
data rows:

d(X;, X;) = Zd(iﬁ,l’k),iy.’k)).
IR

An analogous multi-scale distance is computed for pairs of columns. Note that if there are no missing
values, this metric is just the Euclidean pairwise distance scaled by a scalar, so that we recover the
original embedding of the complete matrix.

This metric takes advantage of solving the optimization for multiple pairs of cost parameters and
filling in the missing values with increasingly smooth estimates (as 7, and . increase). It also
alleviates the need to identify the ideal scale at which to fill in the points; it is not clear that a
single “optimal” scale actually exists, but rather different points in the matrix may have different
optimal scales. As opposed to the partition-tree based metric of [Mishne et al.| (2017), this metric
takes into account all joint scales of the data as the matrix U is smoothed across rows and columns
simultaneously, thus fully taking advantage of the coupling between both modes.

3.2 DIFFUSION MAPS

Having calculated a multi-scale metric on the rows and columns throughout the joint optimization
procedure, we can now construct a pair of low-dimensional embeddings based on these distances.
Specifically we use Diffusion maps (Coifman & Lafon, 2006), but any dimension reduction tech-
nique relying on the construction of a distance kernel could be used instead. We briefly review the
construction of the diffusion maps for the rows (features) of a matrix but the same can be applied
to the columns (observations). Given a distance between two rows of the matrix d(X;., X;.), we
construct an affinity kernel on the rows. We choose an exponential function, but other kernels can
be considered depending on the application:

A[Za]} = eXp{fdz(Xinj‘)/O'Q},

where o is a scale parameter. The exponential function enhances locality, as pairs of samples whose
distance exceed o have negligible affinity. One possible choice for o is to be the median of distances
within the data.

We derive a row-stochastic matrix P by normalizing the rows of matrix A: P = D™ A, where D
is a diagonal matrix whose elements are given by D[i,i| = >_, A[i, j]. The eigendecomposition of
P yields a sequence of positive decreasing eigenvalues: 1 = Ag > A\; > ..., and right eigenvectors
{%¢}¢. Retaining only the first d eigenvalues and eigenvectors, the mapping ¥ embeds the rows into
the Euclidean space R¢:

U X — (At (6), Aatha(d), - - Aatbali)) -

The embedding integrates the local connections found in the data into a global representation, which
enables visualization of the data, organizes the data into meaningful clusters, and identifies outliers
and singular samples. This embedding is also equipped with a noise-robust distance, the diffusion
distance. For more details on diffusion maps, see Coifman & Lafon|(2006).

4 NUMERICAL EXPERIMENTS

The model we consider in the paper is such that the data is not represented by a biclustering model
but rather at least one of the modes (rows/columns) lies on a low-dimensional manifold. In our
experiments we consider three such examples. In the first a manifold structure exists along both
rows and columns, and for the second and third the columns belong to disjoint clusters while the
rows lie on a manifold:

e linkage A synthetic dataset with a one-dimensional manifold along the rows and a two-

dimensional manifold along the columns. Let {zz}f\]:l1 € R3 be points along a helix and
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Figure 2: Comparing row and column embeddings of NLPCA, FRPCAG, DM, Ours, for three
datasets with 50% missing entries. For each dataset, top / bottom row is embedding of rows /
columns of X. For the lung500 dataset, the color of the clusters are as follows: yellow - normal
subjects, dark blue - carcinoid, cyan - colon , red - small cell carcinoma.

let {y; };V:zl € R? be a two dimensional surface, where we set N; = 190, Ny = 300. We
analyze the matrix of Euclidean distances between the two spatially distant sets of points
to reveal the underlying geometry of both rows and columns,

X[i, j] = llzi = wjlla- (6)
Other functions of the distance can also be used such as the elastic or Coulomb potential
operator (Coifman & Gavish, [2011). Missing values correspond to having access to only
some of the distances between pairs of points across the two sets. Note that this is unlike
MDS as we do not have pairwise distances between all datapoints, but rather distances
between two sets of points with different geometries.

o linkage2 A synthetic dataset with a clustered structure along the rows and a two-
dimensional manifold along the columns. Let {zi}ﬁv:ll € R3 be composed of points in

3 Gaussian clouds in 3D and let {y; };le € R? be a two dimensional surface as before,
where we set N1 = 200, Ny = 300.

o lung500 A real-world dataset composed of 56 lung cancer patients and their gene expres-
sion (Lee et al., [2010). We selected the 500 genes with the greatest variance from the
original collection of 12,625 genes. Subjects belong to one of four subgroups; they are
either normal subjects (Normal) or have been diagnosed with one of three types of can-
cers: pulmonary carcinoid tumors (Carcinoid), colon metastases (Colon), and small cell
carcinoma (Small Cell).

For all datasets, the rows and columns of the data matrix are randomly permuted so their natural
order does not play a role in inferring the geometry. We evaluate results both qualitatively and
quantitatively.
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Figure 3: Comparing k-means clustering applied to embedding of data for increasing percentages
of missing values for our multiscale approach (blue), diffusion maps of missing data matrix (red),
NLPCA (yellow) and FRPCAG for two different cost parameter settings (green and purple). We
evaluate using the adjusted Rand Index (ARI) compared to the ground-truth labels of (left) the 4
cancer types for the lung500 dataset, and (right) 3 Gaussian clusters of the linkage2 dataset.

We compare our embeddings to three approaches: NLPCA with missing data completion (Scholz
et al., 2005), Fast Robust PCA on Graphs (FRPCAG) (Shahid et al [2016) and Diffusion maps
(DM) (Coifman & Lafon, |2006) on the missing data. FRPCAG provides a linear embedding of
a low-rank estimate of a data matrix using quadratic row and column penalties, while the other
methods output nonlinear embeddings. NLPCA and DM are applied to each mode separately, while
our method and FRPCAG take into account the coupled geometry. Comparing to Diffusion maps
demonstrates how missing values corrupt the embedding. Note that this is also equivalent to applying
our approach for only a single scale of the cost parameters (7y,,7. — o0), as for this choice of
parameters the solution U converges to the grand mean of the data.

In Figure 2] we display the embeddings of the different methods for each of the three datasets for
both their rows (top) and their columns (bottom), where 50% of the entries have been removed. Both
NLPCA and DM reveal the underlying 2D surface structure on the rows in only one of the linkage
datasets, and err greatly on the other. DM correctly infers a 1D path for the linkage dataset but it
is increasingly noisy. For NLPCA the 1D embedding is not as smooth and clean as the embedding
inferred by the co-manifold approach. Our method reveals the 2D surface in both cases. FRPCAG
is unsuccessful in uncovering the non-linear manifolds underlying either rows or columns in the
linkage dataset. For linkage2, the rows do not separate cleanly into disjoint clusters, and for the
columns only one of the parameters of the 2D plane is uncovered.

For the lung500 data, NLPCA and DM embed the cancer samples such that the normal subjects
(yellow) are close to the Colon type (cyan), whereas both our method and FRPCAG separates the
normal subjects from the cancer types. This is due to taking into account the coupled structure of
the genes and the samples. As opposed to the clustered structure along the samples, the three non-
linear methods reveal a smooth manifold structure to the genes, which is different than the assumed
clustered structure a biclustering method would infer. The representation yielded by FRPCAG is the
least structured but also does not reveal disjoint gene clusters. For plots presenting the datasets and
filled-in values at multiple scales see Appendix [C]

Manifold learning is not used only for data visualization but also for calculating new data represen-
tations that can then be used for signal processing and machine learning tasks. Here we calculate
clustering accuracy of clustering the low-dimensional representation of the data. We apply k-means
to the column embeddings of each method, with k set to the correct number of clusters in the data,
as we want to evaluate the ability of the methods to properly represent the data without being sensi-
tive to empirical estimation of the number of clusters in the data. We use the Adjusted Rand Index
(ARI) (Hubert & Arabiel [1985)), to measure the similarity between the k-means clustering of the
embedding and the ground-truth labels.

We note that |Shahid et al.| (2016) do not provide guidelines by which to select the appropriate cost
parameters -y, and -, in the FRPCAG solution. Therefore we calculated the solution using a wide
range of possible values and plot the results for worst and best performance to demonstrate the
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sensitivity to setting these parameters. In contrast, our approach alleviates the need to perform this
parameter selection.

The left panel of Figure [3] compares clustering the embedding of the cancer patients in lung500 by
each method for increasing percentage of missing values in the data, where we averaged over 30
realizations of missing entries. For low values of missing data, FRPCAG performs the best but its
performance degrades as the percentage of missing values increases. For higher values of missing
data (50% and above), our embedding (blue plot) gives the best clustering result and its performance
is only slightly degraded by increasing the percentage of missing values, as opposed to Diffusion
maps (red plot). This demonstrates that the metric we calculate is a good estimate of the metric of
the complete data matrix. NLPCA (yellow plot) performs worst.

The right panel of Figure[3|compares clustering the embedding of the three Gaussian clusters in link-
age?2 for increasing percentage of missing values in the data, where we averaged over 30 realizations
of the data itself and the missing entries. Our embedding (blue plot) gives the best clustering result
(for 20% missing values and above) and its performance is unaffected by increasing the percentage
of missing values up to 80%, as opposed to Diffusion maps (red plot) which is greatly degraded
by the missing values. NLPCA (yellow plot) does not perform as well as our approach, with per-
formance decreasing as the percentage of missing values increases. For a good parameter selection
FRPCAG (purple plot) performs well for low percentage of missing values, and then performance
is drastically impaired above 50%. For a poor parameter selection FRPCAG (green plot) has the
worst performance for practically all percentages of missing values. Note that the overall poor per-
formance of FRPCAG in this setting is due to the underlying manifold being non-linear and the data
being high-rank, demonstrating the need for nonlinear embedding approaches.

5 CONCLUSIONS

In this paper we presented a new method for learning nonlinear manifold representations of both the
rows and columns of a matrix with missing data. We proposed a new optimization problem to obtain
a smooth estimate of the missing data matrix, and solved this problem for different values of the cost
parameters, which encode the smoothness scale of the estimate along the rows and columns. We
leverage calculating these multi-scale estimates into a new metric that aims to capture the geometry
of the complete data matrix. This metric is then used in a kernel-based manifold learning technique
to obtain new representations of both the rows and the columns. In future work we will investigate
additional metrics in a general co-manifold setting and relate them to optimal transport problem and
Earth Mover’s Distance (Coifman & Leebl 2013)). We also intend to develop efficient solutions to
accelerate the optimization in order to address large-scale datasets, in addition to the small-scale
regime we demonstrate here. We note that the datasets considered here, while being small-scale in
the observation domain are high-dimensional in the feature domain, which is a non-trivial setting,
and indeed a challenge for supervised methods such as deep learning due to limited training data.

10
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Figure 4: Majorization of the ) function (black) given in (3) by its first-order Taylor approximation
at 1 (blue).

A DERIVATION OF MAJORIZATION

We first construct a majorization of the data-fidelity term. It is easy to verify that the following
function of U

- 1 -
a(U|0) = SIX-Ulz ™

where X = Pg(X) + Po-(U), majorizes the data-fidelity term 1[Pe(X) — Po(U) || at U.

‘We next construct a majorization of the penalty term. Recall that the first-order Taylor approximation
of a differentiable concave function provides a global upper bound on the function. Therefore, under
Assumption 2.2, we have the following inequality

Q) < QE)+YE)(z-2), forall z, Z € [0, 00).

Figure [4| shows the relationship between €2 given in (3) with ¢ = 1072 and its first-order Taylor
approximation at zZ = 1.

Thus, we can majorize the penalty term ~,.J,.(U) + ~.J.(U) with the function
@(U|0) = Z Wy [|Us. — Ui l2 + e Z Weis||Ui = Ujllz+ 5, (8)
(i,4)€Er (i,5)€Ee

where £ is a constant that does not depend on U and w0, ;; and W, ;; @ are weights that depend on
U. The sum of functions (7)) and

g(U0) = q(U|U)+g(U|T) 9)
1,5 - -
= §||X—UH12:+% S iU = Uplla+7e Y. eillUs = Uglz+ 5
(i,9)€E+ (i.4) €€«

majorizes our objective function (1)) at U.

B PROOF OF PROPOSITIONT]

The MM algorithm generates a sequence of iterates that has at least one limit point, and the limit
points are stationary points of the objective function

FO) = 5IPe(X) ~ Po(U)[} + (V) + 7 (V). (10

13
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To reduce notational clutter, we suppress the dependency of f on -, and -, since they are fixed
during Algorithm|l} We prove Proposition |1|in three stages. First, we show that all limit points of
the MM algorithm are fixed points of the MM algorithm map. Second, we show that fixed points of
the MM algorithm are stationary points of f in (I0). Finally, we show that the MM algorithm has at
least one limit point.

B.1 LIMIT POINTS ARE FIXED POINTS

The convergence theory of MM algorithms relies on the properties of the algorithm map 1 (U) that
returns the next iterate given the last iterate. For easy reference, we state a simple version of Meyer’s
monotone convergence theorem Meyer| (1976), which is instrumental in proving convergence in our
setting.

Theorem 1 Ler f(U) be a continuous function on a domain S and 1(U) be a continuous algorithm
map from S into S satisfying f (¢ (U)) < f(U) forall U € S with¢(U) # U. Then all limit points
of the iterate sequence Uy, = 1(Uy_1) are fixed points of (U).

In order to apply Theorem I] we need to identify elements in the assumption with specific functions
and sets corresponding to the problem of minimizing (I0). Throughout the following proof, it will
sometimes be convenient to work with the column major vectorization of a matrix. The vector
b = vec(B) is obtained by stacking the columns of B on top of each other.

The function f: Take S = R™*™ and f : S — R to be the objective function in (10) and majorize
f with g(U | U) given in ﬁ) The function f is continuous. Let ¢)(U) = arg min g(U | U) denote
U

the algorithm map for the MM algorithm. Since g(U | U) is strongly convex in U, it has a unique
global minimizer. Consequently, f(1(U)) < f(U) for all (U) # U.

Continuity of the algorithm map 1): Continuity of i follows from the fact that the solution to
the convex biclustering problem is jointly continuous in the weights and data matrix (Chi et al.,
2017)[Proposition 2]. The weight @, ;;(U) = Q/(|[U;. — Uj.||2) is a continuous function of U,
since €' is continuous according to Assumption 2.2. The weight . ;; (fj) is likewise continuous in
U. The data matrix passed into the convex biclustering algorithm is X = Pg (X) 4+ Pe-(U), which
is a continuous function of U since the projection mapping Pge is continuous.

B.2 FIXED POINTS ARE STATIONARY POINTS

LetL;; = (e; —e;)T @Tand L;; = I® (e; — e;)T, where ® denotes the Kronecker product. Then
VeC(Ui, — U]) = Liju and VGC(U,i - UJ) = iiju.
The directional derivative of f in the direction v at a point u is given by

Q'(ILijull2) (Lijv, 35-)  Liju# 0

' (|Lijull2)||Li; vz otherwise.

Y(Lijull2;v) = {

A point u is a stationary point of f, if for all direction vectors v
0 < (Po(u—x),v)+7 > Q(Lijulsv)+v > Q(Lijulsv),
(i,5)€Er (i,5)€E.
where Pg(u — x) = vec(Po(U) — Po(X)).
A point u is a fixed point of 1, if 0 is in the subdifferential of g(u | u), i.e.
0e{Pou—x}+v > QLyul2)d|Liulz+v Y @ (Lijullz)d|Lijullz, (1D
(i,)€Er (i,9) €€

where the set on the right is the subdifferential dg(u | u).

If L;ju # 0, then 9||Lj;ull2 = {LzTJ HII‘Ji']:lH2 } On the other hand, if L;ju = 0, then 9||L;;uf» =
ij
9[0[]2 = {d : [|d]}2 < 1}.

14
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Fix an arbitrary direction vector v. The inner product of v with an element in the set on right hand
side of (11) is given by

(Po(u—x),v)+v > Q(Lyula)(di,v)+ve Y Q([Lijull2)(di,v),  (12)
(i,5)€Er (i,5)€E.

where dl] S 8||Lz-ju||2 and aL] € 6”]:2]“”2

Then the supremum of the right hand side of over all d;; € 9||Lijul|, and d;; € 9| Ly;uls is

nonnegative, because 0 € dg(u | u). Consequently, all fixed points of ) are also stationary points
of f.

B.3 THE MM ITERATE SEQUENCE HAS A LIMIT POINT

To ensure the existence of a limit point, we show that the function f is coercive, i.e. f(U;) — oo
for any sequence ||U;||r — oo. Recall that according to Assumption 2.1 we assume that the row
and column edge sets &, and &, form connected graphs. Therefore, J,.(U) = J.(U) = 0 if and
only if U = a117 (Chi et al., 2017, Proposition 3). The edge-incidence matrix of the column graph
®,. c RIEI*" encodes its connectivity and is defined as

1 If node ¢ is the head of edge [,
be1i = { —1 Ifnode i is the tail of edge I,
0 otherwise.

The row edge-incidence matrix ®, € RI%*1*™ is defined similarly. Assume that © non-empty, i.e.
at least one entry of the matrix has been observed. Finally, assume that € is also coercive.

Note that any sequence U; = a;11"T 4 B; where (B;,117) = 0. Note that J,(U;) = J,.(B;)
and J.(U;) = J.(B;). Let Uy be a diverging sequence, i.e. ||[U|[r — oco. There are two cases to
consider.

Case I: Suppose that ||B;||r — oo. Let

_ I®®, |Er|m+|EcInxmn
L = <<I>C®I> € R :

and let o,,;,, denote the smallest singular value of L. Note that the null space of L is the span of 1.
Therefore, since (1,b;) =0

[Lbills > ominl|Bellr. (13)

Also note that

[ vec(®,By)
Lb, = (vec(BtCPI))'

Since the mapping x = (x| x;)T — max{||x1 |2, ||x2||2} is a norm, and all finite dimensional

norms are equivalent, there exists some 1 > 0 such that

nlLble < max {|@,Blr, Be®] s } (14)
By the triangle inequality
max {| @Bl [B®r} < max{ > Libllzy Y. [Eibelag. ()
(i,5)€Er (4,5)€EEe

Let M = max{|&,|, |E.|} then

maxq > [[Lijbella, Y Tijbell SMmaX{ max |[Ljbe|[2, max ||f4ijbt|2}~(16)
(i) CEs (i) €. (i,4)€Er (1,)€EEC
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Putting inequalities (I3), (T4), (I3), and (I6) together gives us

N0 min

M

B < L;;b Lijbylz ¢ - 17
Bl < max{ max [Lobil, ma (bl a7

»J (D

Since () is increasing according to Assumption 2.2, it follows that

10 min =
Q( B ) < 0 Libs ), Q ;b .8
e B) < max {0 (o [Lgbile) 0 (max [l ) b as

Inequality (I8) implies that

. Omin
min{y,., 7} M (1208 By e

IN

min{~y,, v} max {J;(Uy), Jo(U¢)}
’YTJT(Ut) + "Ych(Ut)-

Consequently, since €2 is increasing and ||B;||r — oo implies that f(U;) — oc.

IN

Case II: Suppose ||B:|[r < B for some B. Then |a;| — oo. Note that we have the following
inequality

FU) > > (i — brij — )’

(,7)€O
2 Z af — 2at(wij — bk,ij)
(i,)€©
= 1©la} —2a; Y (wij — brij)
(1,5)€®©
> |©|a? —2a; sup Z (xij — br,ij)
HBt”FSB (i,j)e@

= 10| [af — 2a,C]
= |@| [(at - 0)2 - 02] )

where C = |©|71  sup Piyee (@i — biij).
1B |lr<B

The function (a; — C)? diverges since |a;| — oo. Therefore, the function f is coercive.

C FILLING IN MISSING DATA

We present the original underlying structure of 3D points used to generate the Euclidean distance
matrix X for the datasets linkage and linkage2 in Figure [5|and Figure[§] In Figure[6|and Figure [0
on the left we plot the original complete matrix where the rows and columns have been ordered
according to the geometry of the 3D points. On the right we plot the matrix we analyze whose
rows and columns have been permuted and 50% of the entries have been removed. In Figure [7|and

oLk . .
Figure [10] we display the matrix X( ) for three pairs of values [, k to demonstrate the smoothing

that is occurring across the different scales of the rows and columns.
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Figure 5: Points in 3D used to generate the Euclidean distance matrix X in the linkage dataset.
Rows correspond to the helix, columns to the 2D surface. Points are colored corresponding to the
embedding of rows and columns in FigureEl

Figure 6: linkage dataset: (Left) Complete matrix X. (Right) Matrix whose rows and columns and
columns have been permuted and 50% of the values have been removed.

(1,0) & (5,2)

3,—2
Figure 7: linkage dataset: Filled-in matrices X at multiple scales: X( ) XV X Rows
and columns have been reordered based on the manifold embedding following (Ankenman| m [@

Figure 8: Points in 3D used to generate the Euclidean distance X in the linkage2 dataset. Rows
correspond to the three 3D Gaussians, columns to the 2D surface. Points are colored corresponding
to the embedding of rows and columns in Figure|z|
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Figure 9: linkage2 dataset: (Left) Complete matrix X. (Right) Matrix whose rows and columns and
columns have been permuted and 50% of the values have been removed.

Figure 10: linkage2 dataset: Filled-in matrices X at multiple scales: X( ) 5( -hy 5((5 -

Rows and columns have been reordered based on the manifold embedding following (Ankenman]

[2o14).
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