
Learning to Learn with Feedback and Local Plasticity

Jack Lindsey
Columbia University, Department of Neuroscience

j.lindsey@columbia.edu

Abstract

Developing effective biologically plausible learning rules for deep neural networks
is important for advancing connections between deep learning and neuroscience.
To date, local synaptic learning rules like those employed by the brain have failed
to match the performance of backpropagation in deep networks. In this work, we
employ meta-learning to discover networks that learn using feedback connections
and local, biologically motivated learning rules. Importantly, the feedback connec-
tions are not tied to the feedforward weights, avoiding any biologically implausible
weight transport. It can be shown mathematically that this approach has sufficient
expressivity to approximate any online learning algorithm. Our experiments show
that the meta-trained networks effectively use feedback connections to perform
online credit assignment in multi-layer architectures. Moreover, we demonstrate
empirically that this model outperforms a state-of-the-art gradient-based meta-
learning algorithm for continual learning on regression and few-shot classification
benchmarks. This approach represents a step toward biologically plausible learning
mechanisms that can not only match gradient descent-based learning, but also
overcome its limitations.

1 Introduction

Deep learning has achieved impressive success in solving complex tasks, and in some cases its learned
representations have been shown to match those in the brain [19, 10]. However, there is much debate
over how well the learning algorithm commonly used in deep learning, backpropagation, resembles
biological learning algorithms. Causes for skepticism include the facts that (1) backpropagation
ignores the nonlinearities imposed by neurons in the backward pass and assumes instead that
derivatives of the forward-pass nonlinearities can be applied, (2) in backpropagation, feedback path
weights are exactly tied to feedforward weights, even as weights are updated with learning, and
(3) backpropagation assumes alternating forward and backward passes [12]. The question of how
so-called credit assignment – appropriate propagation of learning signals to non-output neurons – can
be performed in biologically plausible fashion in deep neural networks remains open.

We propose a new learning paradigm that aims to solve the credit assignment problem in more
biologically plausible fashion. Our approach is as follows: (1) endow a deep neural network with
feedback connections that propagate information about target outputs to neurons at all layers, (2)
apply local plasticity rules (e.g. Hebbian or neuromodulated plasticity) to update feedforward
synaptic weights following feedback projections, and (3) employ meta-learning to optimize for
the initialization of feedforward weights, the setting of feedback weights, and synaptic plasticity
levels. On a set of online regression and classification learning tasks, we find that meta-learned deep
networks can successfully perform useful weight updates in early layers, and that feedback with
local learning rules can in fact outperform gradient descent as an inner-loop learning algorithm on
challenging few-shot and continual learning tasks.

2 Related Work

Some research has investigated alternative algorithms to backpropagation that relax or eliminate the
requirement of weight symmetry. A surprising set of results [14, 17], show that random feedback

weights are sufficient to induce learning for simple tasks. Another family of methods, known as target
propagation, use a reconstruction loss to learn a feedback pathway that approximates the inverse of
the feedforward pathway [3]. However, both of these approaches have been found not to scale well to
difficult tasks such as ImageNet classification [2]. To some extent, performance can be recovered by
permitting sign-symmetry in forward and backward weights [13], but this partially re-introduces the
weight symmetry issue and fails to address concerns (1) and (3) above.

Backpropagation-based deep learning notably falls short of human and animal learning in several key
respects. In particular, it has difficulty learning from few examples, and learning in online fashion
from a stream of data and on multiple tasks. One approach to addressing these issues is meta-learning,
in which a network’s learning procedure itself is learned in an “outer loop” of optimization. A popular
class of such methods is gradient-based meta-learning [4], in which the network initialization is
meta-optimized so that batch gradient descent will learn quickly from few examples of a new task. In
the batch (i.e. not online) learning case, this approach has the expressive power to implement any
batch learning algorithm [5]. This method has been extended to the continual learning case, in which
the “inner loop” optimization consists of many online gradient steps on a potentially nonstationary
data distribution [8].

Building on the meta-learning paradigm, another line of research has explored the approach of
performing inner-loop updates according to biologically motivated Hebbian learning rules rather than
by gradient descent [1, 15, 16]. However, none of these methods fully address the credit assignment
problem, in that they either restrict plasticity to output weights or allow plasticity to proceed without
any dependence on supervised error signals. Recent work has also considered meta-learning algorithm
for learning feedback weights [11]. Their methods, based on node perturbation and RL algorithms,
differ substantially from ours, but a comparison or synthesis could prove fruitful.

3 Method

See Figure 1 for a schematic comparing our model to standard backpropagation and direct feedback
alignment [17]. In our model, a network propagates an input x forward through a neural network
f̂(·; θ), receives a target signal y from the environment, and propagates a function g(y) back to its
neurons. The output of g is an update to the activations of the network. Subsequently, the network
undergoes synaptic plasticity according to a local learning rule that adjusts a synaptic weight w based
on the previous weight value, the presynaptic activity a, and the postsynaptic activity b resulting from
feedback. In some experiments we allow plasticity only in the final N network layers (varying N).

We may take a to be the pre or post-feedback presynaptic activations. The post-feedback case
corresponds to a model in which neural activations are updated directly with feedback and Hebbian-
style plasticity ensues. The pre-feedback case requires error signals to be propagated without affecting
the neural activations used in feedforward computation. This approach has the advantage of avoiding
possible disruption to the feedforward computation, though it may be more difficult to implement.
Possible biological implementations include a segregated dendrites model (see [6]), or feedback
through neuromodulatory signals at postsynaptic sites, with weight updates that are proportional to
presynaptic and neuromodulatory activity, but not postsynaptic activity (see [7]). In our simulations
we use Oja’s learning rule: w ← w + α(ab− b2w), wher α is a plasticity coefficient [18].

We use linear feedback connections with one ReLU nonlinearity applied to enforce positive-valued
feedback activations. Concretely, the activation xi at the output of layer Wi with corresponding
feedback matrixGi is set to ReLU[(1− βi)xi + βiGiy], where βi controls the “strength” of feedback.
Note that βi = 0 corresponds to pure unsupervised Hebbian learning in layer i, while βi = 1
corresponds to supervised learning.

3.1 Meta-learning procedure

The description above specifies how a network in our model learns in its “lifetime.” However, to
create a network that effectively learns using the above procedure, we employ meta-learning. In
particular, for each of our benchmark tasks (described below) we simulate an entire learning episode
and test input, evaluate the performance on the test input, and backpropagate through the entire
learning procedure (see [4, 8]). The meta-learned parameters are the initial weights θ and feedback

2

x

y

φ ○ W3 φ' ○ (W3)T

x

y

φ' ○ B3

φ' ○ B2φ' ○ (W2)Tφ ○ W2

φ ○ W1

φ ○ W3

φ ○ W2

φ ○ W1

Backpropagation Direct Feedback Alignment

where Wi = Wi, init + ΔWi where Wi = Wi, init + ΔWi

x

y

φ ○ (W3, init + ΔW3) φ ○ B3

φ ○ B2φ ○ (W2, init + ΔW2)

Meta-Learned Feedback

φ ○ (W1, init + ΔW1)

Figure 1: A comparison of standard backpropagation, direct feedback alignment [17], and the proposed method.
W variables represent linear transformations, indicates a neuron’s activation function, and denotes composition.
Red quantities indicate plastic weights that change during a network’s lifetime, while green quantities indicate
meta-learned quantities optimized over many lifetimes. In backpropagation, learning signals propagate through
a feedback pathway involving transposes of the feedforward weights and the derivative of the neuron activation
function. Direct feedback alignment replaces the transpose matrices with random feedback pathways. In the
proposed method, feedforward weights evolve according to Hebbian plasticity during a lifetime, while feedback
pathways and initial feedforward weights are meta-optimized over lifetimes. Additionally, error signals are
injected into layers directly, without any derivative computations.

function g, as well as the plasticity coefficients for each plastic weight and each layer’s β coefficient,
which controls the balance of supervised vs. unsupervised learning occurring in that layer.

3.2 Universiality

We are able prove that sufficiently wide and deep neural networks using the above learning procedure
can approximate any learning algorithm. A learning algorithm, for our purposes, maps a set of
training examples {(x,y)k} and a test input x? to a predicted output ŷ∗.

Theorem. For any learning rule ftarget({(x,y)k},x?), there exists a deep ReLU network feedforward
function f̂(·; θ) and feedback function g(y) such that f̂(x?; θ′) ≈ ftarget({(x,y)k},x?). Here
θ′ = θk, θ0 = θ, and θk+1 = θk + ∆θk(y,x), where ∆θ(y,x) is computed following feedback
according to a local learning rule at each synapse, either Hebb’s rule or Oja’s rule.

Proof. See Appendix A. It borrows techniques from [5], which proved a similar universality result
for gradient-based meta-learning in the non-online batch learning case (in which the entire dataset
is available at once). The feedforward network initialization and feedback weights are chosen so
that the weight updates losslessly encode the training data in early layers of the network in such a
way that it can be processed in an arbitrary way (i.e. to simulate ftarget) by downstream layers. The
proof deviates from [5] in at least one major respect: in the online, continual case, the ability to
choose the feedback weights is essential. Indeed, one can indeed show that there are some reasonable
ftarget which gradient-based learning (where feedback weights are tied to feedforward weights) cannot
approximate.

4 Experiments

We build off the experimental protocol of [8], evaluating our approach on a regression task and a
classification task, all requiring online continual learning. We use the same architectures for the
regression and classification tasks as [8] (in short, a nine-layer fully connected network for regression
and an six convolutional layer + two fully connected layer for classification).

Incremental Sine Waves: The regression problem is as follows: in each training episode, ten sine
functions are sampled randomly, parameterized by amplitude in [0.1, 5] and phase in [0, π]. In each
episode, forty size-32 batches of (x̃, y) pairs from the first function are presented, then forty from the

3

Figure 2: Performance of models on regression and one-shot classification experiments. For regression we show
performance after learning all 40 classes. In both cases, meta-learned networks which learn with feedback and
local plasticity outperform gradient-based meta-learners. Ablation experiments with local plasticity alone show
the necessity of feedback. Error bars indicate standard error over 50 evaluations of the trained network. Numbers
in parentheses show the number of plastic layers, starting with the output.

second, and so on. The input x̃ contains both the function input x and the index k of the function
being used. The network is tasked with outputing y for a new x̃. Evaluation occurs on new episodes
with sine functions not used in meta-training. Meta-training is performed for 20,000 episodes.

Split-Omniglot: The dataset is split into meta-training and meta-testing classes. During an episode,
k examples from one class are presented, followed by k from the next, up to a total of N classes.
The model is tested on unseen examples from the classes in the episode. We choose k = 1, N = 20
to consider the one-shot continual learning case. Feedback to output activations is clamped to their
target values, but feedback weights to earlier layers are meta-learned. Evaluation occurs on episodes
with classes not used in meta-training. Meta-training is performed for 40,000 episodes.

Experimental Protocol: We evaluate our method in a number of ways: (1) We compare its per-
formance to a gradient-based meta-learner with the same architecture (we also allow its plasticity
coefficients to be meta-learned to permit fair comparison). (2) We vary the number of plastic layers in
the network. In particular, the case in which only the output weights are plastic serves as a control to
indicate whether the feedback propagation to earlier layers is indeed helping learning. (3) We perform
ablation experiments to discern the significance of the learned feedback weights. In particular, we
experiment with disallowing feedback altogether but maintaining Hebbian plasticity throughout the
network, and with clamping all β parameters to 1 to prevent the network from performing Hebbian
unsupervised learning along with feedback-modulated updates. (4) We compare using pre or post-
feedback presynaptic activations for plasticity updates, corresponding to the two scenarios (with or
without dendritically segragated or neuromodulator-carried learning signals) described above.

5 Results

Experimental outcomes are shown in Figure 2. We find that the architecture with meta-learned
feedback and local plasticity significantly outperforms an architecturally equivalent gradient-based
meta-learner on both the regression and classification tasks. Ablation experiments show that feedback
in addition to local plasticity is necessary to enable learning, and that feedback to earlier layers
aids performance beyond what can be achieved with feedback only to output layers. Interestingly,
we also find that networks invariably learn β values between 0 and 1, and that networks with all β
fixed at 1 perform worse. This result indicates that a mix of unsupervised Hebbian and supervised
feedback-modulated learning is beneficial. We additionally examined the correlation between weight
updates in the feedback network and updates that would be computed by gradient descent. We find
that the average correlation between the two increases from early to late layers but remains weak
(< 0.1) throughout, and is even negative at some stages in the learning process on the regression
task. This phenomenon suggests that the meta-learned feedback network learns in a manner that is
qualitatively different from gradient-based learners.

4

6 Discussion

This work demonstrates that meta-learning procedures can optimize for neural networks that learn
online using local plasticity rules and feedback connections. Several follow-up directions could be
pursued. First, meta-learning of this kind is computationally expensive, as the meta-learner must
backpropagate through the network’s entire training procedure. In order to scale this approach, it will
be important to find ways to meta-train networks that generalize to longer lifetimes than were used
during meta-training, or to explore alternatives to backprop-based meta-training (e.g. evolutionary
algorithms). The present work focused on the case of online learning, but the case of learning from
repeated exposure to large datasets is also of interest, and scaling the method in this fashion will be
crucial to exploring this regime.

Future work could also increase the biological plausibility of the method. For instance, in the
present implementation the feedforward and feedback + update passes occur sequentially. However,
a natural extension would enable them to run in parallel. This requires ensuring (through appropriate
meta-learning and/or a segregated dendrites model [6]) that feedforward and feedback information do
not interfere destructively. Third, the meta-learning procedure in this work optimizes for a precise
feedforward and feedback weight initialization. Optimizing instead for a distribution of weight
initializations or connectivity patterns would better reflect the stochasticity in synapse development.
Another direction is to apply meta-learning to understand biological learning systems (see [9] for
an example of such an effort). Well-constrained biological learning models meta-optimized in this
manner might show emergence of learning circuits used in biology and even suggest new ones.

References

[1] J. Ba, G. E. Hinton, V. Mnih, J. Z. Leibo, and C. Ionescu. Using fast weights to attend to the
recent past. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems 29, pages 4331–4339. 2016.

[2] Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Timothy
Lillicrap. Assessing the scalability of biologically-motivated deep learning algorithms and
architectures. In Advances in Neural Information Processing Systems, pages 9368–9378, 2018.

[3] Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target
propagation. arXiv preprint arXiv:1407.7906, 2014.

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, 2017.

[5] Chelsea Finn and Sergey Levine. Meta-learning and universality: Deep representations and
gradient descent can approximate any learning algorithm. arXiv preprint arXiv:1710.11622,
2017.

[6] Jordan Guerguiev, Timothy P Lillicrap, and Blake A Richards. Towards deep learning with
segregated dendrites. ELife, 6:e22901, 2017.

[7] Toshihide Hige, Yoshinori Aso, Mehrab N Modi, Gerald M Rubin, and Glenn C Turner.
Heterosynaptic plasticity underlies aversive olfactory learning in drosophila. Neuron, 88(5):985–
998, 2015.

[8] Khurram Javed and Martha White. Meta-learning representations for continual learning. Ad-
vances in Neural Information Processing Systems, 2019.

[9] Linnie Jiang and Ashok Litwin-Kumar. Models of heterogeneous dopamine signaling in an
insect learning and memory center. bioRxiv, page 737064, 2019.

[10] Alexander JE Kell, Daniel LK Yamins, Erica N Shook, Sam V Norman-Haignere, and Josh H
McDermott. A task-optimized neural network replicates human auditory behavior, predicts
brain responses, and reveals a cortical processing hierarchy. Neuron, 98(3):630–644, 2018.

[11] Benjamin James Lansdell, Prashanth Prakash, and Konrad Paul Kording. Learning to solve the
credit assignment problem. arXiv preprint arXiv:1906.00889, 2019.

[12] Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propaga-
tion. In Joint european conference on machine learning and knowledge discovery in databases,
pages 498–515. Springer, 2015.

[13] Qianli Liao, Joel Z Leibo, and Tomaso Poggio. How important is weight symmetry in back-
propagation? In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

5

[14] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synap-
tic feedback weights support error backpropagation for deep learning. Nature communications,
7:13276, 2016.

[15] Thomas Miconi, Jeff Clune, and Kenneth O Stanley. Differentiable plasticity: training plastic
neural networks with backpropagation. arXiv preprint arXiv:1804.02464, 2018.

[16] Thomas Miconi, Aditya Rawal, Jeff Clune, and Kenneth O Stanley. Backpropamine: training
self-modifying neural networks with differentiable neuromodulated plasticity. 2018.

[17] Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. In
Advances in neural information processing systems, pages 1037–1045, 2016.

[18] Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of mathematical
biology, 15(3):267–273, 1982.

[19] Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert, and James J
DiCarlo. Performance-optimized hierarchical models predict neural responses in higher visual
cortex. Proceedings of the National Academy of Sciences, 111(23):8619–8624, 2014.

A Appendix: Universality Proofs

We prove that sufficiently wide and deep neural networks with supervised feedback and local learning
rules can approximate any learning algorithm. We borrow some of the notation and proof techniques
from [5]. We suppose the network propagates an input x forward, receives a target signal y from
a supervisor, propagates a function of y back to its neural activations (feedback), and undergoes
synaptic plasticity according to a local learning role dependent on these activations. We let {(xk,yk)}
denote the training data, observed in that order, and x? denote the test input.

We want to construct a network architecture with feedforward function f̂(·; θ) and feed-
back function g(y) such that f̂(x?; θ′) ≈ ftarget({(x,y)k},x?), where θ′ = θk, θ0 = θ, and
θk+1 = θk + ∆θk(y, f̂(x; θk)). The update ∆θ(y, f̂(x; θ)) is assumed to proceed according to
a local learning rule that adjust a synaptic weight w based on the previous weight value, the presy-
naptic activity a, and the postsynaptic activity b, where the values of a and b are taken following
feedback propagation. We will consider Hebb’s learning rule: w ← w + α(ab) and Oja’s learning
rule: w ← w + α(ab− b2w).

We let f̂ be a deep neural network with 2N + 2 layers and ReLU nonlinearities. We will ensure
nonnegativity of the activations of the intermediate 2N layers, allowing us to treat them as linear.
This simplification allows us to write the model as follows:

f̂(·; θ) = fout

((
N∏
i=1

ViWi

)
φ(·; θft); θout

)
,

where φ(·; θft) is an initial neural network with parameters θft.
∏N
i=1W

2
i W

1
i is a product of 2N

square linear weight matrices, and fout(·; θout) is an output neural network with parameters θout. We
adopt corresponding notation of G1

i , G
2
i – feedback matrices projecting a function ϕ(y) of the target

(computed with a one-layer feedback network) to the outputs of the layers W 1
i ,W

2
i respectively, as

well as β1
i , β

2
i (feedback strength) and α1

i , α
2
i (plasticity coefficients at W 1

i and W 2
i). Concretely, the

activation xji at the output of layer W j
i is set to ReLU((1− βji)x

j
i + βjiG

j
iϕ(y)), where βji ∈ [0, 1].

We will ensure nonnegativity of the projection so that we may ignore the ReLU. The weights of layer
W j
i are then updated according to one of the following rules:

W j
i ←W j

i + αjix
j
i (x̃

j
i)
T (Hebb’s rule)

W j
i ←W j

i + αji [x
j
i (x̃

j
i)
T − diag(xji)

2W j
i] (Oja’s rule),

where x̃ji refers to the activations at the layer preceding layer xji , and diag(x) denotes a square
diagonal matrix with x along the diagonal. We will conduct the proofs for Hebb’s rule and Oja’s
rule in parallel, using as an indicator variable – a value of 1 indicates we are using Oja’s rule, and 0
corresponds to Hebb’s rule. Hence we may write the learning rule compactly as follows:

6

W j
i ←W j

i + αji [x
j
i (x̃

j
i)
T − L · diag(xji)

2W j
i].

We set all W 2
i to be identity matrices, all β2

i to 0 (rendering the values of G2
i irrelevant), all β1

i to 1,
all α2

i to be 0, and all α1
i to be a constant α (assumed in the rest of the proof to be sufficiently small).

These choices specify an architecture consisting of feedforward layers coming in groups of two. The
first layer in each group consists of a general feedforward matrix W 1

i , which we will henceforth
write simply as Wi. The matrix Wi will undergo plasticity at rate α induced by the feedforward
activations at its input and feedback-induced activations at its output from feedback matrix G1

i (which
we will now write simply as Gi). The second layer is a nonplastic identity transformation which
effectively “shields” Wi−1 from undergoing plasticity induced by the feedback projection Gi. We
assume no feedback propagation to and no plasticity in the feature extractor φ or output network fout.
Thus feedforward propagation is affected only by the Wi, and plasticity updates following feedback
propagation will only modify the Wi matrices.

Now we expand f̂(x?; θ′). We let zk =
(∏N

i=1Wi

)
φ(xk). After one step, each Wi is updated as

follows:

∆Wi
= αGiϕ(y1)φ(x1)T

 N∏
j=i+1

Wj

T

− αL · diag(Giϕ(y1))2Wi.

and up to terms of O(α2), the update is of the same form for all steps k = 1, 2, ...,K. We let α be
small enough that higher-order terms in α can be ignored. Now

∆Wi
=

K∑
k=1

αGiϕ(yk)φ(xk)T

 N∏
j=i+1

Wj

T

− αL · diag(Giϕ(yk))2Wi

+O(α2).

Thus we can expand
∏N
i=1W

′
i =

∏N
i=1(Wi + ∆Wi

) into the following form:

N∏
i=1

Wi + α

K∑
k=1

N∑
i=1

i−1∏
j=1

Wj

Giϕ(yk)φ(xk)T

 N∏
j=i+1

Wj

T N∏
j=i+1

Wj

 (1)

−αL
K∑
k=1

N∑
i=1

i−1∏
j=1

Wj

 diag(Giϕ(yk))2

 N∏
j=i

Wj

+O(α2), (2)

This expansion allows us to derive the form of z? for input x?:

z? =

N∏
i=1

Wiφ(x?) + α

K∑
k=1

N∑
i=1

i−1∏
j=1

Wj

Giϕ(yk)φ(xk)T

 N∏
j=i+1

Wj

T N∏
j=i+1

Wj

φ(x?)

(3)

−αL
K∑
k=1

N∑
i=1

i−1∏
j=1

Wj

 diag(Giϕ(yk))2

 N∏
j=i

Wj

φ(x?),

Note that appropriate choice of Wi and Gi allows us to simplify the form of z? in Equation 3 into the
following:

z? = B0φ(x?) + α

K∑
k=1

N∑
i=1

B0(Bi−1)−1Giϕ(yk)φ(xk)TBTi Biφ(x?) (4)

−αL
K∑
k=1

N∑
i=1

B0(Bi−1)−1[diag(Giϕ(yk))]2Bi−1φ(x?) (5)

7

where the Bi =
(∏N

i+1Wi

)
can be set to arbitrary invertible square matrices.

Now, our goal is to choose Bi, Gi, ϕ, and φ to ensure that the expression above contains a complete
description of the values of {(x,y)k} (up to permuting the order of the examples) and x?. Since
fout can approximate any function to arbitrary precision, f̂(x?; θ′) = fout(z

?) can approximate any
function of {(x,y)k} and x?.

We set ϕ(y) = discr(y), yielding a one-hot d-dimensional vector indicating the value of y up to
arbitrary precision. We let φ (recall φ is a universal function approximator) have the following form:

φ(x) ≈

 0
discr(x)
0J2d

discr(x)

 ,
where discr(x) is a one-hot J-dimensional vector indicating the value of x up to a discretization of
arbitrary precision, and 0J2 is a zero vector of dimension J2. Note that φ satisfies the requirement
that all its outputs are nonnegative. We furthermore let N = J2 and rewrite the layer index i as a
double index (j, l) where j and l each range from 1 through J . For future reference let us denote the
dimensionality of y as d. Bj,l and Gj,l are defined as follows:

Bj,l :=

 0 B̃j,l 0 0
0 0J×J 0 0
0 0 0J2d×J2d 0
0 0 0 IJ×J

+ εI Gj,l :=

 01×d
0J×d
G̃j,l

0J×d

 (6)

where B̃j,l is a 1× J matrix containing ones in the j and l positions and zeroes elsewhere, the εI is
included to ensure the invertibility of Bj,l, and G̃j,l maps ϕ(y) to a vector consisting of a stack of
J2 d-dimensional vectors, all of which are zero except the vector in the slot corresponding to (j, l),
which is ϕ(y). That is,

G̃j,lϕ(y) :=

0d
...
0d

discr(y)
0d
...
0d

(7)

with ϕ(y) appearing in the J ∗ j + l position.

Now we observe that:

φ(x)TBTjl ≈
{
eTj if discr(x) ∈ {ej , el}
0 otherwise

Bjlφ(x?) ≈
{
ej if discr(x?) ∈ {ej , el}
0 otherwise

where the approximation in the equalities is due to the ε terms included to ensure invertibility.

As a result, we have:

z? ≈ B0φ(x?) + α

K∑
k=1

 0
0J
z̃?k
0J

 ,

where z̃?k ≈
{
v(discr(yk), {j + J ∗ l, l + J ∗ j}) if discr(x?) = ej 6= el = discr(xk)

v(discr(yk), {j + J ∗ i|1 ≤ i ≤ J} ∪ {i+ J ∗ j|1 ≤ i ≤ J}) if discr(x?) = ej = discr(xk)

8

with v(a, A) defined as the J2d-dimensional vector consisting of J2 stacked d-dimensional vectors,
all of which are zero except those located in the slots specified by the set A, which are set to a.

Now we claim that {(x,y)k} and x? can be decoded with arbitrary accuracy from z?. Indeed, note
that B0 =

∏N
i=1 contains an identity matrix in its last J-dimensional block, meaning that B0φ(x?),

and hence z?, contains an unaltered copy of discr(x?) in its last J dimensions, from which x? can
be decoded to arbitrary accuracy. Given the value of x? we may also subtract B0φ(x?) from z?

and multiply by 1
α to obtain an unaltered version of

∑K
k=1 z̃

?
k. Next, we may decode

∑K
k=1 z̃

?
k in

the following fashion. First, we can infer whether, and if so how many, of the xk have the same
discretization as x? by checking if any of the J d-dimensional vectors in slot j + J ∗ j is nonzero,
and if so, what its value is. If slot j + J ∗ j has nonzero value c, we subtract c from all slots with
index j + J ∗ i and i+ J ∗ j for any i. Given discr(x?) = el the resulting vector, which we may call
z̃??k , This leaves us with a vector which in each slot j + J ∗ l and l + J ∗ j indicates (by summing
the d components of the slot) how many times an x has been observed with discr(x) = ej and (by
looking at the nonzero components in the slot) counts of how many times every possible discr(y)
value was observed to correspond with that discr(x). Thus, the set {(x,y)k} as well as x? can be
decoded to arbitrary accuracy from z?.

Since fout is a universal function approximator, we let fout(z
?) be the function that performs the

decoding procedure above and then uses the inferred values of {(x,y)k} and x? to approximate
ftarget({(x,y)k},x?) to arbitrary precision.

9

	Introduction
	Related Work
	Method
	Meta-learning procedure
	Universiality

	Experiments
	Results
	Discussion
	Appendix: Universality Proofs

