Blood vessel segmentation algorithms — Review of
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Abstract—Background: Blood vessel segmentation is a topic
of high interest in medical image analysis since the analysis of
vessels is crucial for diagnosis, treatment planning and execution,
and evaluation of clinical outcomes in different fields, including
laryngology, neurosurgery and ophthalmology. Automatic or semi-
automatic vessel segmentation can support clinicians in performing
these tasks. Different medical imaging techniques are currently used
in clinical practice and an appropriate choice of the segmentation
algorithm is mandatory to deal with the adopted imaging technique
characteristics (e.g. resolution, noise and vessel contrast).

Objective: This paper aims at reviewing the most recent and
innovative blood vessel segmentation algorithms. Among the
algorithms and approaches considered, we deeply investigated the
most novel blood vessel segmentation including machine learning,
deformable model, and tracking-based approaches.

Method: This paper analyzes more than 100 articles focused
on blood vessel segmentation methods. For each analyzed approach,
summary tables are presented reporting imaging technique used,
anatomical region and performance measures employed. Benefits
and disadvantages of each method are highlighted.

Discussion: Despite the constant progress and efforts addressed
in the field, several issues still need to be overcome. A relevant
limitation consists in the segmentation of pathological vessels.
Unfortunately, not consistent research effort has been addressed
to this issue yet. Research is needed since some of the main
assumptions made for healthy vessels (such as linearity and circular
cross-section) do not hold in pathological tissues, which on the
other hand require new vessel model formulations. Moreover, image
intensity drops, noise and low contrast still represent an important
obstacle for the achievement of a high-quality enhancement. This
is particularly true for optical imaging, where the image quality is
usually lower in terms of noise and contrast with respect to magnetic
resonance and computer tomography angiography.

Conclusion: No single segmentation approach is suitable for
all the different anatomical region or imaging modalities, thus the
primary goal of this review was to provide an up to date source of
information about the state of the art of the vessel segmentation
algorithms so that the most suitable methods can be chosen
according to the specific task.

Index Terms—Blood vessels, Medical imaging, Review, Seg-
mentation.
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I. INTRODUCTION

Blood vessel analysis plays a fundamental role in different
clinical fields, such as laryngology, oncology [1], ophthal-
mology [2], and neurosurgery [3]-[5] [[6], both for diagnosis,
treatment planning and execution, and for treatment outcome
evaluation and follow up.

The importance of vessel analysis is supported by the
constant introduction in clinical practice of new medical tech-
nologies aimed at enhancing the visualization of vessels, as
endoscopy in Narrow Band Imaging (NBI) [7]] and cone beam
Computed Tomography (CT) 3D Digital Subtraction Angiog-
raphy (DSA) [8]]. At the same time, standard techniques, such
as Magnetic Resonance Angiography (MRA) and Computed
Tomography Angiography (CTA), are constantly improved to
enhance vascular tree visualization [9], [10]], [[L1].

Manual segmentation of blood vessels is an expensive
procedure in terms of time and lacking intra- and inter-
operator repeatability and reproducibility. On the other hand,
semi-automatic or automatic vessel segmentation methods
require at least one expert clinician to segment or to evaluate
the segmentation results obtained. In addition, support for
the development and evaluation of such algorithms is still
poor as publicly available image datasets with associated
Gold Standard (GS) segmentation are currently limited to
specific anatomical regions, such as retina [12]]. However,
automatic or semi-automatic blood vessel segmentation could
assist clinicians and, therefore, are topics of great interest
in medical research, as demonstrated by the high amount of
papers annually published in this field. Indeed, an extensive
literature already exists on vessel segmentation and in the past
years different reviews on vessel segmentation algorithms have
been published, such as [13]], [14], [[12], [15], [16], [17], [18]]
and [19]. However, due to the strong development in the field,
updated reviews are required to analyze and summarize the
actual state of the art.

This review aims at analyzing a wide spectrum of the most
recent and innovative vessel segmentation techniques found in
the literature, reporting on state of the art approaches based on
machine learning (Sec. [V]), deformable model (Sec. and
tracking methods (Sec. [VII). Moreover, it reports on the most
commonly adopted metrics for the evaluation of segmentation
results (Sec. and identifies the available testing datasets
(Sec. [IV).

The goal of this review is to provide comprehensive infor-
mation for the understanding of existing vessel segmentation
algorithms by summarizing their advantages and limitations.
Each segmentation approach is first analyzed in the general
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TABLE I: Vessel segmentation categorization. MRA: Magnetic Resonance Angiography, CT: Computed Tomography, CT:A
Computed Tomography Angiography, CFP: Color Fundus Photography, OCT: Optical Coherence Tomography, US: Ultrasound,
FA: Fluorescein Angiography, DSA: Digital Subtraction Angiography, 3DRA: 3D Rotational Angiography.

Method Year Anatomical region Imaging technique Image processing method
Feng et al. [20] 2010 Brain MRA Unsupervised machine learning
Hassouna et al. [21] 2006 Brain MRA (Sec.
Oliveira et al. [22] 2011 Liver CT
Goceri et al. [23] 2017 Liver MRI
Bruyninckx et al. [24] 2010 Liver CT
Bruyninckx et al. [25] 2009 Lung CT
Asad et al. [26] 2017 Retina CFP
Mapayi et al. [27]] 2015 Retina CFP
Sreejini et al. [28] 2015 Retina CFP
Cinsdikici et al. [29] 2009 Retina CFP
Al-Rawi et al. [30] 2007 Retina CFP
Hanaoka et al. [31]] 2015 Brain MRA Supervised machine learning
Sironi et al. [32] 2014 Brain Microscopy (Sec.
Merkow et al. [33] 2016 Cardiovascular and Lung CT and MRI
Sankaran et al. [34] 2016 Coronary CTA
Schaap et al. [35] 2011 Coronary CTA
Zheng et al. [36] 2011 Coronary CT
Nekovei et al. [37] 1995 Coronary CT
Smistad et al. [38]] 2016 Femoral region, Carotid US
Chu et al. [39] 2016 Liver X-ray fluoroscopic
Orlando et al. [40] 2017 Retina CFP
Dasgupta et al. [41] 2017 Retina CFP
Mo et al. [42] 2017 Retina CFP
Lahiri et al. [43] 2017 Retina CFP
Annunziata et al. [44] 2016 Retina Microscopy
Fu et al. [45] 2016 Retina CFP
Luo et al. [46] 2016 Retina CFP
Liskowski et al. [47] 2016 Retina CFP
Li et al. [48] 2016 Retina CFP
Javidi et al. [49] 2016 Retina CFP
Maninis et al. [50] 2016 Retina CFP
Prentasvic et al. [51] 2016 Retina CT
Wu et al. [52] 2016 Retina CFP
Annunziata et al. [S3] 2015 Retina Microscopy
Annunziata et al. [54] 2015 Retina Microscopy
Vega et al. [55] 2015 Retina CFP
Wang et al. [56] 2015 Retina CFP
Fraz et al. [57] 2014 Retina CFP
Ganin et al. [58] 2014 Retina CFP
Orlando et al. [59] 2014 Retina CFP
Becker et al. [[60] 2013 Retina CFP
Rodrigues et al. [61]] 2013 Retina OCT
Fraz et al. [62] 2012 Retina CFP
Zhang et al. [63] 2012 Retina CFP
Marin et al. [64] 2011 Retina CFP
Lupascu et al. [65] 2010 Retina CFP
Salem et al. [66] 2007 Retina CFP
Soares et al. [67] 2006 Retina CFP
Staal et al. [68] 2004 Retina CFP
Lee et al. [69] 2015  Aorta & mesenteric artery CTA Edge-based deformable models
Valencia et al. [70] 2007 Artery MRA (Sec.
Law et al. [71] 2009 Brain & Coronary MRA & CTA
Moreno et al. [72] 2013 Coronary CTA
Wang et al. [73] 2012 Coronary CTA
Cheng et al. [[74] 2015 Carotid,Coronary
Liver, & Lung
Zhu et al. [75] 2009 Lung CTA
Zhang et al. [76] 2015 Retina CFP

Patwardhan et al. [77] 2012 usS

Continued on next page



TABLE I: Vessel segmentation categorization. MRA: Magnetic Resonance Angiography, CT: Computed Tomography, CT:A
Computed Tomography Angiography, CFP: Color Fundus Photography, OCT: Optical Coherence Tomography, US: Ultrasound,
FA: Fluorescein Angiography, DSA: Digital Subtraction Angiography, 3DRA: 3D Rotational Angiography.

Method Year Anatomical region Imaging technique Image processing method
Klepaczko et al. [78] 2016 Brain MRA Region-based deformable models
Tian et al. [79] 2014 Abdomen, Brain, CT, DSA (Sec.
Heart, Lung & Retina Infrared, US & MRA
Law et al. [80] 2007 Brain MRA
Wang et al. [81] 2009 Carotid US
Liang et al. [82] 2015 Liver Microscopy
Zhao et al. [83] 2015 Retina CFP & FA
Zhao et al. [84] 2015 Retina CFP
Wang et al. [85] 2015 Retina CFP
Xiao et al. [86] 2013 Retina CFP
Law et al. [87] 2006 Retina CFP
Robben et al. [88] 2016 Brain MRA Tracking approaches
Rempfler et al. [89] 2015 Brain MRA (Sec.
Yureidini et al. [90] 2012 Brain 3DRA
Cetin et al. [91] 2015 Brain MRA
Coronary CTA
Cetin et al. [92] 2013 Brain MRA
Coronary CTA
Shim et al. [93] 2006 Brain CTA
Cherry et al. [94] 2015 Colon CTA
Shin et al. [95] 2016 Coronary FA
Carrillo et al. [96] 2007 Carotid, aorto-iliac MRA
Coronary, pulmonary arteries CTA
Amir-Khalili et al. [97] 2015 Carotid Us
Benmansour et al. [98]] 2011 Carotid CTA
Biesdorf et al. [99] 2015 Coronary CTA
Lugauer et al. [100] 2014 Coronary CTA
Tang et al. [[101] 2012 Coronary MR
Wang et al. [102] 2012 Coronary CTA
Friman et al. [[103] 2010 Coronary & CTA
Liver
Li et al. [[104] 2009 Coronary CTA
Wink et al. [105] 2002 Coronary MRA
Zeng et al. [[106] 2017 Liver CTA
Bauer et al. [[107] 2010 Liver CT
Amir-Khalili et al. [[108] 2015 Kidney Endoscopy images
Amir-Khalili et al. [105] 2002 Kidney Endoscopic video
Chen et al. [[109] 2016 Retina CFP
Chen et al. [[110] 2014 Retina CFP
Bhuiyan et al. [111] 2013 Retina CFP
Liao et al. [112] 2013 Retina CFP
Rouchdy et al. [[113] 2013 Retina CFP
Stuhmer et al. [114] 2013 Retina CFP
Turetken et al. [115] 2013 Retina Microscopy
Liao et al. [116] 2012 Retina CFP
Kaul et al. [117] 2012 Retina CFP
Delibasis et al. [[118]] 2010 Retina CFP
Breitenreicher et al. [119] 2013 — —
Benmansour et al. [120] 2009 —_— —
Wink et al. [121] 2004 —_— X-ray




context of image segmentation and then in the specific context
of vessel segmentation. For each segmentation category, papers
are discussed, illustrating their benefits and potential disad-
vantages. In addition, summary tables reporting performance
measures are presented for each category. The paper concludes
with a discussion on future directions and open issues in the
field of vessel segmentation.

A summary of the papers analyzed in this review con-
sidering year of publication, anatomical region and imaging
technique is reported in Table I} In addition, Fig. [I] highlights
the categories of vessel segmentation algorithms analyzed in
the following sections of this paper.

II. ALGORITHM WORKFLOW

As shown in Fig. [l in vessel segmentation algorithms
the input image first undergoes a pre-processing step, which
typically concerns noise suppression, data normalization, con-
trast enhancement and conversion of color image to grayscale
image. Since different imaging modalities produce images
characterized by different resolution, noise and contrast, dif-
ferent pre-processing techniques have to be employed. An
exhaustive review on pre-processing algorithms is presented
in [[122].

The core of the vessel segmentation workflow concerns the
segmentation process, which can be classified in four different
categories:

o Vessel enhancement

o Machine learning

o Deformable models

e Tracking

Through vessel enhancement approaches, the quality of
vessel perception is improved, e.g. by increasing the vessel
contrast with respect to background and other non-informative
structures. A strong and established literature on vessel
enhancement approaches already exists. Examples include
matched filtering [123[], vesselness-based approaches [124],
Wavelet [[67]] and diffusion filtering [[125]. Due to the extensive
literature on the enhancement methods and the wideness of this
subject, in this review we will not deal with it. A complete
review on the topic can be found e.g. in [12].

The vessel enhancement can be followed by a thresholding
step to directly obtain the vessel binary mask. Nonetheless,
modern methods employ the enhanced vasculature as a pre-
liminary step for more sophisticated segmentation algorithms.
In particular, the enhanced vasculature can be used to extract
features to be classified with machine learning algorithms
(Sec.[V), to define forces that constraint vessel model deforma-
tion for deformable model-based segmentation (Sec. , or to
guide vascular tracking through enhanced vasculature intensity
or gradient-based constraints (Sec. [VII), as explained in depth
in this review.

A post-processing step may also be employed, e.g. to
reconnect vascular segments or remove too small segmented
areas, which often correspond to image artifacts or noise.

III. EVALUATION METRICS

Segmentation performance is commonly evaluated with
respect to GS manual segmentation performed by an expert

TABLE II: Contingency table for vessel segmentation.

Gold Standard segmentation
Vessel | Non-vessel
Algorithm Vessel TP FP
segmentation | Non-vessel FN TN

TABLE III: Performance measures for vessel segmentation
algorithms.

Index Description
Accuracy (Acc) w
Sensitivity (Se) TPT;—%
Specificity (Sp) %
False Positive rate (F'P rate) 1—-Sp
Positive Predictive Value (PPV) TPE—%
Negative Predictive Value (INPV) %

AUROC Area Under the Receiver

Operating Characteristic curve

Matthews Correlation Eq.
Coefficient (M CC)

Cohen’s k coefficient (k) Eq.

Dice Similarity Coefficient (DSC') Eq.

Hausdorff Distance H D Eq. E]

Connectivity Eq.

Area Eq. E)]

Length Eq.

Overlap (OV) Eq.

Overlap until first error (OF) Eq. E]

Overlap with clinically relevant Eq.

part of the vessel (OT)

clinician. To attenuate intra-subject variability when perform-
ing the manual segmentation, and obtain a truthful GS, a
combination of segmentations by multiple experts is usually
employed. Different strategies have been proposed to combine
the segmentations: for example, a voting rule, often used in
practice, selects as GS all voxels where the majority of experts
agree the structure to be segmented is present [126]]. However,
such approach does not allow for incorporating a priori in-
formation of the structure being segmented or estimating the
presence of an imperfect or limited reference standard.

To solve this issue, the Simultaneous Truth And Per-
formance Level Estimation (STAPLE) has been introduced
in [127]. The approach takes a collection of segmenta-
tions and computes simultaneously a probabilistic estimate
of the true segmentation and a measure of the performance
level represented by each segmentation using an Expectation-
Maximization (EM) algorithm.

When evaluating the performance of segmentation algo-
rithms with respect to GS, a contingency table (Table
with True Positive (T'P), True Negative (T'IN), False Negative
(F'N), and False Positive (F'P) is commonly used, where
positive and negative refer to pixels belonging to vessels
and background as in accord with the GS segmentation,
respectively.

Segmentation performance measures are summarized in Ta-
ble Accuracy (Acc), Sensitivity (Se), and Specificity (Sp)



are the most frequently adopted measures, where Acc is the
proportion of true results, both TP and TN, among the
total number of examined cases (n). Se, also referred as TP
rate, measures the proportion of positives, both T'P and F' N,
that are correctly identified. Sp measures the proportion of
negatives, both T'N and F'P, that are correctly identified.
Although a high Se reflects the desirable algorithm inclination
to detect vessels, a high Se with low Sp indicates that the
segmentation includes many pixels that do not belong to
vessels, i.e. high FP. Consequently, an algorithm that provides
high Se and low Sp is acceptable if the post-processing step
is able to remove possible F'P.

Despite the fact that Ace, Se and Sp are the most frequently
adopted performance metrics, other derived metrics are also
often employed. Examples include F'P rate, which is equal
to 1 — Sp, Positive Predictive Value (PPV’), which is the
proportion of T'P among T'P + F'P, and Negative Predictive
Value (NPV), which is the ratio between TN and T'N +
FN. PPV gives an estimation of how likely it is that a pixel
belongs to a vessel given that the algorithm classifies it as
positive. N PV corresponds to the likelihood that a pixel does
not belong to a vessel, given that the algorithm classifies it as
negative.

Receiver Operating Characteristic (ROC) curve, which il-
lustrates the performance of a binary classifier system as its
discrimination threshold is varied, is also often reported. The
area under the ROC (AU ROC) is used as a metric, indicating
the probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative one.
AU ROC assumes value 1 for a perfect classifier. Different
algorithms for the AUROC' estimation are reported in the
literature [|128]]. Precision-recall curve can be used, too. Preci-
sion corresponds to PPV, while recall to Se. The precision-
recall curve compares TP with F'N and F'P, excluding T'N,
which is less relevant for the vessel segmentation performance
evaluation since the proportion of TP (vessels) and T'N
(background) is highly skewed. Also in this case, the area
under the precision-recall curve (AU PRC) can be exploited.

Another metric that can be used is the Matthews Correlation
Coefficient (M CC) [[129]]:

MCC =
(TP+TN)—(FP*TN) (1)
V/(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Some authors also report the Cohen’s x coefficient [130],
which is a measures of inter-rater agreement:
. Acc — pe @)
1- Pe
where p. is the hypothetical probability of chance agreement,
equal to the probability of GS to generate positives times the
probability of the algorithm to generate positives. Cohen’s x
coefficient is considered a robust metric since it takes into ac-
count also the agreement between algorithm and GS occurring
by chance.
Spatial overlapping indexes can be used, too. The most
used is the Dice Similarity Coefficient (DSC') [131], which
is computed as the ratio of the number of elements (card) in

the intersection of two clusters A and B by the mean label
image, where A and B indicate the segmented vessels and its
corresponding GS, respectively:

card(AN B) 2TP

DSC = card(A);rcard(B) = FP+ FN +2TP 3)

DSC is also known as F}score.

Hausdorff distance is another overlapping index, which
measures how far the GS segmentation and the segmented
image are from each other:

HD =
mazx(supae ain foe pd(a, b), supye pin fac ad(a, b))

“4)

where sup represents the supremum, inf the infimum and d
is a chosen metric, e.g. absolute value distance.

All metrics described above are based on the pixel-to-pixel
comparison between the segmented image and the GS, without
considering that vessel pixels are part of a connected vascular
structure with specific features, such as area and length. For
this reason, the use of three additional metric functions is
suggested in [[132]:

|card(A) — card(B)|

) ©®)

Connectivity = 1 — min(1,

card(A)
~ card((5,,(A) N B) U (6,,(B) N A)))
Area = card(AU B) ©
_card(yp(A) N6, (B)) U (6,,(A) Np(B)))
benath = card(w(4) U d(B)) "

where d,, and §,., are morphological dilatations obtained using
a disc of radius r; and 79, respectively, and 1) is a homotopic
skeletonization [133]]. The Connectivity term penalizes frag-
mented segmentation. The Area factor measures the degree of
overlapping between A and B, being less sensitive to slight
differences between the segmentation and the GS if compared
to the DSC, due to the introduced dilatation. The Length
factor evaluates the consistency between the segmented and
the GS vessel length.

Another class of evaluation metrics proposed in [[134] aims
at quantifying the performance of segmentation algorithms
in terms of point-to-point correspondence between the GS
vessel centerline and the computed centerline. The point
correspondence is commonly computed with the mean shift
algorithm [[135]] and three different centerline overlap measures
are derived. The overlap (OV) measures the ability to track
the overall vessel annotated by the observers and it is defined
as follows:

OV — TPM,, +TPR,, )
TPM,,+TPR,, + FN,, + FP,,

where T'PR,, refers to points of the GS centerline whose
distance to the correspondent points on the evaluated centerline
is less than the local vessel radius. Points for which this
distance is higher than the radius are marked as F'N,,,. Points
on the evaluated centerline are marked as T'PM,,, if there is
at least one point on the GS at a distance less than the radius,
otherwise they are marked as F'P,,.




TABLE IV: Publicly available databases with associated
Gold Standard segmentation. CFP: Color Fundus Photography,
CTA: Computed Tomography Angiography, CT: Computed
Tomography, FA: Fluorescein Angiography.

Name Anatomical Number of
region images/volumes
STARE [136] Retina 20 CFP
DRIVE [68] 40 CFP
ARIA [137] 143 CFP
CHASE [138] 28 CFP
HRF [139] 45 CFpP
IMAGERET |[140)] 219 CFP
MESSIDOR 1200 CFP
(http://messidor.crihan.fr)
REVIEW [141] 16 CFP
ROC |[142] 100 CFP
VICAVR 58 CFP
( http://www.varpa.es)
VAMPIRE 8 FA
(http://vampire.computing.
dundee.ac.uk)
CASDQEEF [|143] Coronary 48 CTA
ROTTERDAM |[144] 20 CTA
VESSELI12 [145] Lung 20 CT
3D-IRCADb Liver 22 CT

(http://www.ircad.fr/research/3dircadb/)

OSMSC Cardiovascular and 93 MRA and CT
(http://www.vascularmodel.com) Lung
Vascular Synthesizer [146] 3D Synthetic data 120

The overlap until first error (OF') is the ratio of the number
of TPR,, before the first error (I'PR,¢) and the overall
number of reference points (N R):

TPRyy
~ NR ®
The first error refers to the first point of the GS centerline that
is at a distance higher than the radius from the correspondent
point on the evaluated centerline.

Overlap with the clinically relevant part of the vessel (OT)
provides an estimation of the ability of the method to segment
vessel segments that are considered clinically relevant, e.g.
have a diameter equal or larger then 1.5 mm. In this case, the
point (Pend) closest to the end of the reference GS with a
radius larger than or equal to 0.75 mm is determined and OT
is computed as:

OF

TPM, +TPR,
TPM, +TPR, + FN, + FP,;
where TPM,, TPR,, FN,, FP, are computed as
TPM,,, TPR,,, F'N,,, F'P,, but considering only points
between pend and the beginning of the GS centerline.

oT = (10)

IV. EVALUATION DATASETS

Phantoms presenting meaningful features of interest with
respect to the vascular tree (e.g. intensity profile, thickness, tor-

Model tuning
Feature « | Model - | Model
extraction [ |[© | building [ |evaluation

Input images

Segmented image

Fig. 2: Unsupervised learning approaches build segmentation
models based on unlabeled image features, such as local
intensity and gradient. During model tuning, the goodness of
the model is evaluated and the model is tuned according to
a minimization function that aims at finding the best sepa-
ration between the vascular and background classes. Usually,
such function is defined upon metrics such as Euclidean or
probabilistic distance.

tuosity) are often considered for the evaluation of segmentation
algorithms. Phantoms are easy to control and modify with the
goal of understanding how and to which degree the algorithm
performance depends on parameter settings. Moreover, by
providing a GS, phantoms allow simple algorithm validation
and training, which is not always an easy task for real clinical
images since the correspondent GS may not be available [146].
Considering the benefit of using phantoms, methods to develop
realistic digital phantoms have been presented, e.g in [78|] for
intracranial arterial tree on time-of-flight MRI.

Although phantoms have an important role in quantifying
algorithm performance, they do not always fully reflect clin-
ical images, e.g. due to the high inter-patient variability. To
overcome this issue, a number of publicly available databases
with associated GS has been published in the last few years.
Publicly available databases encourage consistent and fair
comparison of vessel segmentation algorithms. However, this
positive trend still concerns only a few anatomical regions. A
list of publicly available databases is presented in Tab. [V}

V. MACHINE LEARNING

There are two main classes of machine learning approaches:
unsupervised and supervised. The former finds a model able to
describe hidden arrangement of input image-derived features,
without any prior knowledge or supervision, while the latter
learns a data model from a set of already labeled features,
as explained in Sec. [V-A] and [V-B] respectively. Since un-
supervised learning does not require GS segmentation, it is
useful for cases where publicly available GS datasets are
not available as well as for exploratory data analysis. On
the other hand, supervised learning requires GS segmentation
to train the learning model. The training computational cost
varies depending on the adopted supervised learning approach.



However, during testing phases, the computational cost is
usually negligible.

A. Unsupervised

Unsupervised learning approaches represent particular features
on the base of the statistical distribution of the overall input
data. The absence of available GS for supervised training
justifies the employment of such methods, at the cost of seg-
mentation performance usually less satisfying with respect to
the supervised approach ones. A typical unsupervised learning
algorithm workflow is shown in Fig.

In [21]], stochastic modeling is used to segment cerebrovas-
cular structures from time of flight MRA. The pixel intensity
histogram is described by two major classes: vessel and back-
ground. Background class is approximated by two Gaussians
and one Rayleigh distribution, while the vessel class is approx-
imated by one Gaussian. EM algorithm [147]] is employed to
automatically estimate the Gaussians and Rayleigh distribution
parameters. Spatial constraints are included through Markov
Random Field (MRF) modeling [148]], privileging connected
sets of data. Thus, MRF are particularly useful when high
noise level is present in the images.

In [23], k-means clustering is used for rough liver vessel
segmentation. Further iterative refinement steps based on mor-
phological operations are applied to refine the segmentation.
This method relies on automatic k-means and morphological
operator parameter selection. Thus, the algorithm can adapt to
different pixel intensity distributions in the image.

In [22], liver vessel segmentation is performed with region-
growing in CT images. A pixel is incorporated in the grow-
ing region if its intensity falls in a predefined range. The
range extrema are defined by approximating the image his-
togram with three Gaussians, through Gaussian Mixture Model
(GMM) [149]. This method is relevant for several imaging
techniques, as far as the pixel intensity distribution is nearly
Gaussian shaped. Portal and hepatic veins are subsequently
separated according to geometric features as dimension and
connectivity. In [20], a similar approach is used to segment the
brain vascular pattern. Maximum Intensity Projection (MIP)
version of the CT is used to enhance the vascular structures
and only two classes are considered for vessel and background
in the histogram approximation, resulting in a lower GMM
computational cost.

Fuzzy C-means segmentation of retinal blood vessels is
employed in [27]. To face non-uniform illumination and
contrast, phase-congruency [150] is first performed, which
preserves features with in-phase frequency components, such
as edges, while suppressing the others. Consequently, accurate
segmentation can be performed also in presence of intensity
drops and varying illumination levels in the image.

In [28], Particle Swarm Optimization (PSO) is used to
segment retinal vessels. PSO is used to iteratively find the
optimal matched filter (MF) [[123]] parameters. The MF locally
exploits the correlation between local image areas and filter
kernel that reproduces the blood vessel architecture in terms
of width and orientation. During the PSO iterative process,
the AUROC of the MF response is used as fitness function
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Fig. 3: Supervised approach workflow. During the training
phase, image features (e.g. intensity, gradient, color) are ex-
tracted from the training images. A machine learning model
is trained with such features and the corresponding labels,
taken from the gold standard segmentation. Once the model
is trained, it can be applied to a new, unseen, testing image to
obtain the vessel segmentation.

for the PSO. Two MFs are employed to separately enhance
small and thick vessels. Similarly, optimal MF parameters are
retrieved using genetic algorithm in [30]. However, PSO has
the shortcoming of easily falling into local optima, influencing
the segmentation performance.

In [25], [24]] ant colony optimization, a population-based
metaheuristic used to find approximate solutions to opti-
mization problems, is used to segment both lung and liver
vessels. The method connects vessel bifurcation by cost path
algorithm and uses the ant colony optimization method to
retrieve the optimal vessel tree between all possible paths. A
similar approach is exploited in [26]] to segment retinal vessels.
Ant colony segmentation results are combined with MF ones
in [29]] to improve the retinal vessel segmentation accuracy.

A summary of the analyzed Unsupervised approaches is
presented in Table

B. Supervised

Supervised learning for vessel segmentation infers a rule from
labeled training couples, one for each pixel, which consist
of an input vector of features (such as pixel intensity, MF
response, etc.), and an output value, which states whether
the pixel belongs to a vessel or not according to a GS. The
workflow of a typical supervised approach is shown in Fig. 3]
From the first attempts of using machine learning for
vessel segmentation (including [37]], [67], [68]), several algo-
rithms have been published following a continuous progress
of research on the topic. So far, supervised learning has
been mainly applied to retinal images, since different labeled
databases for training are publicly available (Tab [[V]).



TABLE V: Summary of unsupervised blood vessel segmentation algorithms (for performance indexes refer to Tab. . CT:
Computed Tomography, MRA: Magnetic Resonance Angiography.

Method

Testing dataset

Synthetic data

Segmentation performance measure

Feng et al. [20]
Hassouna et al. [21]
Goceri et al. [23]

Bruyninckx et al. [24]

Bruyninckx et al. [25]
Oliveira et al. [22]
Al-Rawi et al. [30]

Asad et al. [26]
Cinsdikici [29]

Mapayi et al. [27]]

Sreejini et al. [28]

136 MR slices No Visual
MRA Yes Visual
14 MRI No DSC,HD
5 CT images (3D-IRCADb-01) No DSC
(http://www.ircad.fr/research/3dircadb/)
1 CT volume No Euclidean distance
15 CT volumes No Visual
20 images (DRIVE database [68])) No AUROC = 0.96
20 images (DRIVE database [68]) No Se =0.75
20 images (DRIVE database [68])) No AUROC = 0.94
20 images (STARE database [136])) No Acc = 0.93
20 images (DRIVE database [68]) Acc = 0.94
20 images (STARE [|136]) No Acc = 0.95, Se =0.72, Sp =0.97

20 images (DRIVE database [68])

Ace = 0.96, Se = 0.71, Sp = 0.99

In [[61]], retinal vasculature is segmented from Optical
Coherence Tomography (OCT) images. A set of 2D fundus
reference images are computed from the 3D OCT volume
and used as input to a Support Vector Machine (SVM) with
the Gaussian kernel. The effectiveness of the method depends
on the choice of the selected SVM kernel as well as on the
tuning of its parameters. This approach is able to segment both
healthy and pathological retinal vessels. As a result, the study
of disease progression is one of the major fields of application
of this method.

In [31] a geometrical feature set is defined to classify cere-
bral vessel morphology in MRA. The features are specifically
chosen to account also for morphologically abnormal lesions,
making the algorithm suitable for segmented pathological
structures. Vessel segmentation is obtained via region-growing
and the binary vessel mask is approximated by a graph,
whose nodes belong to the vessel tree. For each node, the
3D histogram of shortest path lengths between the considered
node and the others is computed and used as feature vector.
SVM is used to classify vascular tree morphology in healthy
or pathological condition.

Fully-Connected Conditional Random Field (FCCRF) is
used in [59] and [40] to segment retinal vessels in color
fundus photography. FCCRF maps the image into a fully
connected graph structure, in which every pixel (graph node)
is influenced by the others. Each pixel is represented by a set
of features extracted through vessel enhancement approaches,
such as gradient magnitude, and MF response. Structured
SVM [153] are employed to learn the FCCRF parameters. The
fully-connected framework leads to a more robust segmenta-
tion with respect to the classification performed considering
each vessel pixel as an isolated point, or as influenced by a

restricted neighborhood (as for traditional CRF).

RAdius-based Clustering ALgorithm (RACAL), introduced
in [[154], is used in [66] to segment retinal vasculature in
color fundus photography. RACAL is used to cluster pixels,
through a distance-based principle, in the feature space built
considering green channel intensity, gradient magnitude and
maximum image Hessian (H) eigenvalue. The assignment
of each cluster to either the vessel or background class is
made according to a training procedure, employing as GS a
thresholded version of the vesselness:

max, (A2(0))
¢std(61)

where e; is the H eigenvector associated to the smallest eigen-
value, \o is the biggest H eigenvalue, and ¢4 the standard
deviation of the orientation of e; computed with different scale
value (o). ey inclination is constant for longitudinal vessels
thus providing a high vesselness value. Sparse coding is used
in [49], [|63]] for retinal vessel enhancement and segmentation.
Sparse coding approximates the image intensity by a sparse
linear combination of items from an overcomplete dictionary
built from training images patches.

In [36]], Probabilistic Boosting Tree (PBT), is used to
segment coronary arteries in CT images. Geometric features,
which describe the position of an image voxel in a heart-
oriented coordinate system, are used. In addition, image
steerable features are included in the boosting phase, which
takes into account image intensity and gradient information.
A similar approach is exploited in [57] to segment retinal
vessels. In this case, the feature vector consists of Gabor Filter
(GF) [67] and Gaussian filter outputs. A similar approach is
used in [62].

(11
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TABLE VI: Summary of supervised blood vessel segmentation algorithms (for performance indexes refer to Tab. . CT:
Computed Tomography, CTA: Computer Tomography Angiography, MRA: Magnetic Resonance Angiography, US: Ultrasound.

Method

Testing dataset

Synthetic data

Segmentation performance measure

Hanaoka et al. [31]
Annunziata et al. [44]

Annunziata et al. [53]

Annunziata et al. [54]

Sironi et al. [32]
Sankaran et al. [34]

Schaap et al. [35]

Merkow et al. [33]
Nekovei et al. [37]
Prentasvic et al. [51]]
Zheng et al. [36]
Chu et al. [39]

Rodrigues et al. [61]

Smistad et al. [38]]

Fraz et al. [57]
Wu et al. [52]
Ganin et al. [58]
Orlando et al. [59]
Becker et al. [60]
Lahiri et al. [43]
Luo et al. [46]
Dasgupta et al. [41]

Lupascu et al. [65]

Salem et al. [66]

Javidi et al. [49]

Maninis et al. [50]

Vega et al. [55]

Wang et al. [S6]

300 MRA volumes
140 Microscopy images
50 images (IVCM database [151])
1 image (BF2D database [[152]))
1 image (VC6 database [[152])
50 images (IVCM database [[151])
1 image (BF2D database [[152]))
1 image (VC6 database [[152])
13 Microscopy images

4697 CTA sections

24 CTA (ROTTERDAM database [[144]

93 MRI and CT volumes (OSMSC database)
1 CT volume
80 CT volumes
14 CT volumes
6 X-ray fluoroscopic images

48 OCT volumes

15 US Femoral images
2 US Carotid images

28 images (CHASE [138])
20 images (DRIVE database [68])
20 images (DRIVE database [68]
20 images (DRIVE database [68])
20 images (DRIVE database [68]
20 images (DRIVE database [68])
20 images (DRIVE database [68])
20 images (DRIVE database [68])

20 images (DRIVE database [68])

20 images (STARE database [|136])

20 images (DRIVE database [68])
20 images (STARE database [[136])

20 images (DRIVE database [68])
10 images (STARE database [|136])

20 images (DRIVE database [68])
20 images (STARE database [[136])

20 images (DRIVE database [68])

No

No

No

ROC curve

Precision-recall curve

Visual, Precision-recall curve

AUPRC = 0.91

AUPRC = 0.81

AUPRC = 0.84
Precision-recall curve

AUC = 0.90, Se = 0.90, Sp = 0.85

OV =0.97, OF = 0.72
or =0.97

Precision-recall curve, PPV = 0.42
Acc = 0.92
Acc = 0.83, ROC curve
FPrate, Se
Visual
Acc =0.98, Se =0.81, Sp =0.99,
Connectivity = 0.98, Area = 0.91,
Length = 0.88, k = 0.85

Acc =0.94
Acc = 0.96

Se = 0.74, Sp = 0.98, Acc = 0.96
AUROC = 0.97
AUROC = 0.89

Se =0.78, Sp = 0.97
Precision-recall curve
AUROC = 0.96
Acc =0.95, Se = 0.75
Ace = 0.95, Se = 0.75

Se = 0.67, Sp = 0.99,
Acc = 0.96, AUROC = 0.96

Se = 0.81, FFPrate = 0.04

Se =0.72,Sp = 0.97,Acc = 0.94
Se = 0.780, Sp = 0.96, Acc = 0.95

DSC = 0.82, Precision-recall curve
DSC = 0.83, Precision-recall curve

Acc =0.94, Se = 0.74,
Sp =0.96, DSC = 0.69, MCC = 0.66
Ace = 0.94, Se = 0.70,
Sp =0.97, DSC = 0.66, MCC = 0.64
Se =0.74, Sp = 0.98,
Acc = 0.95, AUROC = 0.97

Continued on next page



TABLE VI: Summary of supervised blood vessel segmentation algorithms (for performance indexes refer to Tab. . OCT:

Optical Coherence Tomography.

Method Testing dataset

Synthetic data

Segmentation performance measure

Wang et al. [56] 20 images (STARE database [[136])

Zhang et al. [63] 20 images (DRIVE database [68])
20 images (STARE database [[136])

Marin et al. [64] 40 images (DRIVE database [[68]])

20 images (STARE database [136]))

Soares et al. [67] 19 images (STARE database [136]))

20 images (DRIVE database [68])
Staal et al. [68] 19 images (STARE database [136]))
20 images (DRIVE database [68])

Mo et al. [42] 20 images (DRIVE database [68])
20 images (STARE database [[136])

28 images (CHASE [|138])
Fu et al. [45] 20 images (DRIVE database [68]])

20 images (STARE database [136])
20 images (CHASE database [[138]))
Liskowski et al. [47] 20 images (DRIVE database [68])
20 images (STARE database [[136])
28 images (CHASE database [138]])

Li et al. [48] 20 images (DRIVE database [68]
20 images (STARE database [136])
28 images (CHASE [138]])
Fraz et al. [62] 20 images (STARE database [136]))

20 images (DRIVE database [68])
28 images (CHASE [138]))

Orlando et al. [40] 20 images (DRIVE database [68]])
20 images (STARE database [136]))
20 images (CHASEDBI database [[138]))

30 images (HRF database [[139])

Se = 0.75,Sp = 0.98,
Acc = 0.95, AUROC = 0.98
No FPR =0.01, TPR =0.58,PPV = 0.84
FPR=0.01, TPR=0.74, PPV =0.74

No Se =0.71, Sp = 0.98, Acc = 0.94,
PPV =0.84, NPV = 0.96, AUROC = 0.97

Se = 0.69, Sp = 0.98, Acc = 0.95,
PPV =0.82, NPV =0.97, AUROC = 0.98

No AUROC = 0.97, Acc = 0.95

No AUROC = 0.96, Acc = 0.95

No Acc =0.93

No AUROC = 0.95, Acc =0.94

No AUROC = 0.98, Acc = 0.95, Se = 0.78, Sp = 0.98

AUROC = 0.99, Acc = 0.97, Se = 0.81, Sp =0.98
AUROC = 0.98, Acc = 0.96, Se = 0.77, Sp = 0.98

No Se =0.76, Acc = 0.95
Se = 0.74, Acc = 0.96
Se =0.71, Acc = 0.95

No
AUROC, Acc, Se, Sp, k
No Se =0.76, Sp = 0.98, Acc = 0.96, AUROC = 0.97
Se =0.77, Sp = 0.98, Acc = 0.96, AUROC = 0.99
Se =0.75, Sp = 0.98, Acc = 0.96, AUROC = 0.97
No AUROC = 0.97, Acc = 0.95, Se = 0.75, Sp = 0.98
AUROC = 0.98, Acc = 0.95, Se = 0.74, Sp = 0.98
AUROC = 0.97, Acc = 0.95, Se = 0.72, Sp = 0.97
No Se =0.79, Sp = 0.97,

MCC =0.75, PPV =0.78
Se =0.77, Sp = 0.97
MCC = 0.74, PPV = 0.770
Se = 0.73, Sp = 0.97
MCC =0.70, PPV =0.74
Se =0.79, Sp =0.96
MCC =0.69, PPV = 0.66

In [65], the feature-based AdaBoost classifier is used to
segment retinal vessels. Numerous features are used, such
as MF, GF and Gaussian derivatives. However, the most
informative ones, according to the authors’ analysis, are the
second order derivative of Gaussian, multiscale MF using a
Gaussian vessel profile, and Staal’s ridges [68]. With respect
to SVM, AdaBoost relies on the construction of an accurate
classification model from a linear combination of weak clas-
sifiers, making it easier and faster to train. AdaBoost is also
used in [32] and [35] to extract vessel centerline by using
convolutional filter and intensity-based feature vector.

Random decision forest (RF) is used in [53] to segment
highly tortuous or irregular structures. A modified Gaussian-
like bank filter is designed to detect bended tubular structures
and the filter outputs are used as features for the classification.
When compared to SVM, RF usually has comparable perfor-
mance with a lower training computational cost. Similarly, RF

regressors are used in [34] for the estimation of vessel diameter
in coronary artery from CTA. The rationale is evaluating the
presence and the degree of stenosis using downstream and
upstream properties of coronary tree vasculature as features
for the regression.

Inspired by [155]], context filters and appearance filters are
used in [54]. Optimal Oriented Flux (OOF) [156] is used to
exploit vessel appearance information. OOF finds the optimal
axis on which image gradients are projected in order to
compute the image gradient flux. K-means are used to learn in
an unsupervised way a bank of context filters from the OOF-
filtered image. RF is used to classify a feature vector made
of OOF-output and context filter output. A similar approach is
used in [44] using as appearance filter the ridge detector filter
defined in [53]]. The main advantage of OOF is its robustness
against the disturbance induced by closely located adjacent
objects.
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Neural networks are used in [[64] to segment retinal vessels.
Gray-level-based and moment invariants-based features are
used to train the network, which is defined as a multilayer
feedforward network with three hidden layers. The vessel
mask is obtained by thresholding the sigmoid output. A
further improvement is introduced in [55], where intensity-
based and moment-invariant features are used to segment
the retinal vasculature through Lattice Neural Network with
Dendritic processing (LNND). As a matter of fact, LNND
architecture does not require to set the number of hidden layers
in the network, allowing for a simple network training and
consequently for a reduction of the computational cost.

In the past years, Convolutional Neural Networks (CNNs)
have become strongly popular. A CNN is a feed-forward
artificial neural network in which the connectivity between its
neurons is inspired by the organization of the human visual
cortex. The building blocks of a CNN are convolutional and
fully connected layers. The convolutional layer parameters
consist of a set of filters, whose values are learned during the
CNN training. Fully connected layers represent the high-level
reasoning block in the CNN. Neurons in a fully connected
layer have connections to all activations in the previous
layer. CNN-based vascular segmentation workflow is shown
in Fig. {]

CNNs have been exploited in [157] to extract esophageal
microvessel features from NBI microscopy. The extracted
features are then classified with SVM. Similarly, in [56]], CNNs
are used to extract hierarchical features from retinal color
fundus images, which are then classified with ensemble RF.
In [58], the feature vector extracted with CNNs is compared
with a dictionary feature vector that refers to several vascular
patterns. The nearest feature vector extracted from the dictio-
nary, according to the nearest neighbor algorithm, is elected
as output vascular pattern. These approaches are particularly

useful for small datasets. Indeed, when the dataset variability
is small, machine learning approaches, such as SVM and RF,
are better suited for achieving pixel classification.

On the other side, CNNs are trained to directly obtain
vascular segmentation in [51] for retinal vessel segmentation
in OCT angiography, in [38] for carotid segmentation in
ultrasound images and in [47] for retinal segmentation in
color fundus photography images. Specifically, the CNN fully
connected layer is used to classify each pixel in the image
as belonging to vessel or background. This approach leads to
a fast CNN training, as it already embeds the classification
step. However, a large dataset is required for preventing fully-
connected CNN overfitting. Indeed, as already highlighted, if
the dataset is small it is recommended to use CNN only to
extract features.

In [47]] the use of image pre-processing for retinal vessel
segmentation with CNN is also investigated. Images are pre-
processed with different methods, such as global contrast
normalization, zero-phase whitening, data augmentation using
geometric transformations and gamma corrections. Authors
report an increment in segmentation performance.

Cross-modality learning is used in [48]] to segment retinal
vessels. The mapping function between the retinal image and
the vessel map is learned through a deep neural network.

A unified framework of retinal image analysis that provides
both retinal vessel and optic disc segmentation is proposed
in [50]. A CNN is designed to segment both retinal vessel
and optic disc in single forward pass.

CNNs and Conditional Random Field (CRF) are combined
into an integrated deep network called DeepVessel in [45] for
retinal vessel segmentation. CRF helps modeling the long-
range interactions between pixels and increases the segmen-
tation performance. A similar approach is exploited in [46].
CREF inclusion allows good segmentation performance also in
presence of intensity drops and noise.

In [[39] CNN is used to produce robust vessel segmentation
and tracking in X-ray image sequences. The tracking exploits
a multi-dimensional assignment problem, which is solved with
rank-1 tensor approximation. Similarly, a deep CNN is trained
for estimating local retinal vessel probability via principal
component analysis and nearest neighbor search in [52]. The
resulting vessel map is exploited to extract the entire connected
tree with a probabilistic tracking approach.

A study on the effectiveness of gradient boosting for training
CNN s is proposed in [[60]. The main benefit of this approach is
that both features and the classifier that uses them are learned
simultaneously, resulting in a faster procedure that does not
require any parameter tuning.

Further developments are presented in [41]], [42], where
Fully Convolutional Networks (FCN) are used to segment
retinal vessels in color fundus photography images. The fully
connected layers are replaced by deconvolutional layers al-
lowing to obtain a faster and more precise vessel localization
with respect to approaches based on fully connected layer
classification. FCN-based vascular segmentation workflow is
shown in Fig. [5]

In [33], the FCN approach is extended to perform 3D
vascular segmentation in cardiovascular and pulmonary vessels
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Fig. 5: Fully Convolutional Neural networks (FCN) for
vascular segmentation replace fully connected layers with
one or more deconvolutional layers, making the segmentation
faster.

in MRI and CT volumes, respectively.

In [43]], a preliminary attempt of using adversarial learning
for vessel segmentation in retinal color fundus photography
images is exploited. In adversarial network setup, one network
generates candidate segmentations and one evaluates them.
With respect to standard network learning, adversarial learning
has the potential of improving the segmentation outcome,
lowering the number of wrongly classified pixels [158].

A summary of the supervised approaches analyzed above is
presented in Table

VI. DEFORMABLE MODEL

Deformable models consider curves or surfaces (S), defined
within the image domain, that can move and deform under the
influence of internal (Fi,¢) and external (Fey¢) forces. The
former are designed to keep S smooth during the deformation
while the latter attract S toward the vessel boundary. Since
S initialization is required to start the deformation process, a
robust deformable model should be insensitive to the initial
position, as well as in general to noise. Recent efforts in
deformable model formulation focus on easily incorporating
in the model formulation both image-guided deformation
constraints and a priori clinical knowledge of vessel geometry.
This class of algorithms appears suitable to face the segmen-
tation of vessels with complex architecture and high shape
and size variability, both in pathological and physiological
context. However, the required computational cost in general
still represents a limit for real time applications.

Deformable model approaches can be divided in edge-based
and region-based, which are hereafter in depth analyzed.

A. Edge-based

According to the representation of S, edge-based deformable
models can be classified in parametric or geometric mod-

els [159].

- Foxt
computation
s s
initialization > update

)

Segmentation

Input image

Fine outcome
computation
Fig. 6: In parametric deformable model approaches, the

segmentation is obtained by evolving a parametrized curve (S)
according to external (Fext) and internal forces (Fint). Fext
is formulated according to image-dependent features, such as
intensity or gradient. Fy,¢ deals with constraint imposed to
the curve evolution, such as curvature and perimeter.

1) Parametric: Parametric deformable models, whose dif-
fusion is mainly due to the work of [I60], represent S in
a parametric form. The deformable model problem can be
formulated as:

s

. Fin S Fex S

N £(S) + Fext(S)
being ¢ a damping coefficient. Fj,¢ consists of two main

contributions:
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with s € [0,1], and p and ¢ being the weighting parameters
that control the S elasticity and resistance to bending, respec-
tively. The Fext term varies according to the method. The
general workflow of parametric deformable models is shown
in Fig. [

With respect to geometric models, the main limitation
of this class of algorithms, is the difficulty in adapting to
changing vessel topology, due to the parametrization of S.
Nonetheless, the parametric framework is easy to formulate
and allows fast convergence, which is a suitable property to
lower computational costs.

In [74], a B-snake active contour is employed to
segment retinal vessels. Foy¢ consists of (i) a Gradient Vector
Flow (GVF) term [162]], which describes how the gradient
vectors of an image-derived edge-map diffuses inside the
image domain, and (ii) a force contributions that impose
constrains on the S evolution, such as vessel cross-section
shape, position and size. The good performance, achieved with
both low contrasted and thin vessels, deteriorates in presence
of pathology, i.e. when the assumptions made on the vessel
geometry are not anymore valid.

In [69], an active contour strategy coupled with Kalman
filtering is employed to segment the vasculature in CTA. The
active contour provides the vessel segmentation in the first
CT slice, employing image intensity- and gradient-based Feox¢,
while the Kalman filtering is used to track the vessel across
other CT slices. The Kalman tracking-based approach provides
automatic contour initialization, reducing the computational
cost with respect to methods based solely on deformable

13)



TABLE VII: Summary of edge-based parametric deformable model algorithms for blood vessel segmentation (for performance
indexes refer to Tab. [T). CTA: Computer Tomography Angiography.

Method Testing dataset Synthetic data Segmentation performance measure
Lee et al. [69] CTA Yes Se =0.95, Sp=0.99
Cheng et al. [74] 3 Abdominal, 1 Carotid Yes DSC = 0.86
2 Lung Visual

& 24 CTA volumes (ROTTERDAM database [144])

Zhang et al. [76] 20 images (DRIVE database [68])

OV =0.93, OF = 0.53, OT = 0.94

No Acc = 0.95, Se =0.75, Sp = 0.96, AUROC = 0.95

TABLE VIII: Summary of edge-based geometric deformable model algorithms for blood vessel segmentation (for performance
indexes refer to Tab. [[I). CT: Computed Tomography, CTA: Computer Tomography Angiography, MRA: Magnetic Resonance

Angiography, US: Ultrasound.

Method Testing dataset Synthetic data ~ Segmentation performance measure
Law et al. [71] 1 CTA, 3 MRA Yes Visual
Moreno et al. [72] 18 CTA (CASDQEF database [143]) Yes Visual
Wang et al. [73] 24 CTA volumes (CASDQEF database [[143])) No DSC = 0.69
Zhu et al. [75] 10 CT volumes No Se =0.96, Sp = 0.98
Patwardhan et al. [77] US Yes Visual
Valencia et al. [70] 7 MRA volumes Yes Visual
models. Similarly, in [77]], a single spatial Kalman-filter = A
tracker keeps track of the vessel center-line in 3D ultrasound. > omputation| ! o
The vessel boundaries are then estimated by growing an area - ‘
weighted active contour outward from the centerline. Y i '
In [76], active contours are used to segment retinal vessels. . > ° > @ =0 ;
initialization evolution | !

A rough vessel edge map is computed by thresholding the
vesselness measure defined in [[124]]. The vessel edges are
then used to initialize two active contours S_ and S_. The
active contours deform according to intensity-based Fext. A
further constraint is introduced in the F¢x¢ formulation, to
avoid the intersection of S_ and Sy, by controlling their
relative distance. The vesselness measure allows for the au-
tomated initialization of the model, while the intensity-based
formulation of the Fext addresses the problem of detecting
small and peripheral vessels.

A summary of the analyzed parametric deformable ap-
proaches is presented in Table

2) Geometric: Geometric deformable models, first intro-
duced in [[163]] and in [[164], are based on the curve-evolution
theory, described by:

s
% Zn
being Z a function called speed function and n the unit normal
to S.
Two main terms can contribute to the speed function formu-
lation [[165]]: (i) a constant term, which defines the deformation
along the S normal through a coefficient v, and (ii) a defor-

mation term that depends on the S curvature ({). The speed
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Fig. 7: In geometric deformable model approaches, segmen-
tation is treated as a curve evolution problem. The evolution
is implemented using the level set method, which needs to
define a level set function (®). After ® initialization, &
evolution is controlled by the speed function (Z), which can be
defined for example according to intensity or gradient-based
information. Once the ® evolution ends, the segmentation
contour corresponds to the zero-level of ®.

function formulation defines difference among methods. Since
no curve-parametrization is introduced, the evolution of S only
depends on geometrical constraints. Consequently, topology
changes can be easily handled, overcoming the main limits of
parametric models.

The geometric curve evolution is commonly implemented



TABLE IX: Summary of region-based deformable model algorithms for blood vessel segmentation (for performance indexes
refer to Tab. [IT). CTA: Computed Tomography Angiography, IR: Infrared, MRA: Magnetic Resonance Angiography, DSA:

Digital Subtraction Angiography, US: Ultrasound.

Synthetic data Segmentation performance measure

Method Testing dataset
Tian et al. [79] 2 DSA, 1 1R,
2 MRA, 1 US

Klepaczko et al. [78] MRA volumes

Law et al. [80] 4 MRA volumes

Liang et al. [82] 54 Microscopy images

Wang et al. [81]

Law et al. [87]

1 image (DRIVE database [68])

Wang et al. [85] 20 images (STARE database [[136])

Xiao et al. [86] 20 images (STARE database [|136])

20 images (DRIVE database [68]])

Zhao et al. [84] 20 images (STARE database [[136])

20 images (DRIVE database [68]])

Zhao et al. [83] 20 images (STARE database [[136])
20 images (DRIVE database [68])

143 images (ARIA [137])

8 images (VAMPIRE http://vampire.computing.dundee.ac.uk)

Yes Root mean squared error
Yes Visual
Yes Visual
No PPV =0.96, Se = 0.87,
DSC =091
Yes Visual
No Visual
Visual
No Acc = 0.94, Se = 0.76, Sp = 0.96,
AUROC = 0.86
No Acc = 0.95, Se =0.71, Sp = 0.97
Acc = 0.95, Se = 0.75, Sp = 0.98
No Se =0.74, Sp = 0.98, Acc = 0.95,
AUROC = 0.86
Se =0.78, Sp = 0.98, Acc = 0.96,
AUROC = 0.87
No Se =0.79, Sp =0.97, Acc = 0.95

AUROC = 0.88

Se =0.74, Sp = 0.98, Acc = 0.95,
AUROC = 0.86

Se =0.75, Sp = 0.93, Acc = 0.94,
AUROC = 0.84

Se =0.72, Sp = 0.98, Acc = 0.98,
AUROC = 0.85

using the Level Set (LS) method [[166]:

0P
5 = 2O

being ® = ®(S) the LS function.

The geometric deformable model workflow is shown in
Fig.

A rather popular LS formulation, proposed in [[167] and
in [168], introduces a regularization term to deal with leaky
vessel edges and possible gaps:

0P
ot
Different speed functions are used in the literature, mainly
based on gradient information as in [[169], [[L170]], [171], [172].
In [[73] LS is used to segment coronary artery lumens in
CTA. The speed function (Eq. is made of three contribu-
tions: the ® minimum curvature (z¢), an image intensity-based
term (Zimage), and a model-based term (2,,04¢1) that measures
the deviation of the evolving curve from a cylindrical model,
whose axis corresponds to the vessel centerline.

(@) (15)

Z(Q)|V(®)| + VZVE (16)

Z = 2¢ + Zimage T Zmodel (17

During the ® evolution, the vessel centerline is iteratively
computed with the Fast Marching Method (FMM) [173].

The LS function ¢ for vessel lumen segmentation described
in [73] acts as initialization for the evolution of a second
LS function @4, Which provides the vessel outer layer
segmentation [72]. A modified version of Eq. is used to
define the speed function of @y, The 2¢ is replaced by the
Laplacian of the mean curvature, as suggested in [174f, and
a Ziumen term is introduced to avoid the vessel outer layer to
shrink inside the vessel lumen, by pushing ®,,:., outwards
from the vessel lumen.

In [75], a LS algorithm is implemented to segment pul-
monary vasculature. The employed speed function (Eq. [I8),
inspired by [[167], is modified to include the vesselness mea-
sure (V') defined in [[124]. V' is built from the eigenvalues of
the image Hessian and represents the likelihood of a pixel to
be a part of a vessel.

1
T 1+ VG(o)* V|

€ =1me

Z (v—¢€Q)

nVv3

(18)

being G a Gaussian kernel with standard deviation o, V the



gradient operator, and m and n two constant coefficients.

In this way, the typical high vessel ¢ does not penalize the
LS evolution, resulting in a faster segmentation. Moreover, the
use of the vesselness enhanced vasculature allows for a better
treatment of image inhomogeneities.

In [71], gradient flux symmetry along the vessel centerline
and gradient flux asymmetry along vessel edges are imposed
to drive an active contour model. Gradient flux-based al-
gorithms are quite popular (e.g. [175], [176], [177], [178],
[179], [180]) since gradient flux allows overcoming intensity
inhomogeneities, resulting in the segmentation of the entire
vascular tree without contour leakages.

In [70] a generalized cylinder deformable model is encoded
in the LS formulation to extract the vasculature from MRA
and simulate its interaction with a stent. The model internal
deformation forces takes into account the particular global
cylindrical shape and the expected geometric properties of a
vessel to improve the segmentation accuracy.

A summary of the analyzed geometric deformable model
approaches is presented in Table [VIII

B. Region-based

Region-based deformable models were first introduced
in [181]] by considering the deformable curve S as moving
under image foreground and background region constraints.
Both regions are considered as statistically homogeneous, and
the main differences among this class of algorithms rely in
the definition of the region statistics. Region-based deformable
models were introduced to overcome some of the edge-based
deformable model issues, as the boundary leakage problem,
that arises especially when dealing with noisy images or
non-uniform intensity. Moreover, since edge-based deformable
models are mainly driven by intensity or gradient derived
external forces, the segmentation becomes challenging if the
curve initialization is performed far from the boundary of
interest, due to the local nature of the intensity gradient [85].
Despite the fact that region-based deformable models benefit
of adaptive topology, it is worth noting that this comes at the
expense of higher computational cost with respect to edge-
based deformable models [182].

Region-based deformable models define an energy mini-
mization problem, which is solved employing LS. The energy
formulation for an image I = I(r) is:

E = ¢length(S) + cqarea(S) + e1 E1(S) + ea Fa(S)
with

El(S):/ |I(r) — c1|?dr (19)

inside(S)

EQ(S):/ 1(r) — co|? dr
outside(S)

being ¢;, ¢4, €1 and e constant parameters and ¢ and co the
image intensity average inside and outside S, respectively. This
energy formulation is globally defined and local information
is not considered. To overcome this limit, a localized region

energy formulation is introduced in [[183]], by replacing F;
and F with E{°¢ and El°°:

Elo°(S) = / [ /m_de(s) w(r — Y)(y) — AI(r)[? dy] dr

B = [1f  w-y)liy) - Sl dyldr
outside(S)

(20)
being w a weighting function, and f; and f5 functions that
approximate the image intensity inside and outside S, respec-
tively. Following a similar approach, in [79] the localized
region energy formulation is used (w = G(0)), and a further
energy contribution term is built from the vesselness measure
in [[124].

The active contour formulation in [181] is combined with
phase-based vessel enhancement and intensity inhomogeneity
correction (used as region information) in [[83] to segment both
color fundus photography and fluorescein angiography images.
Similarly, simulated MRA images are segmented in [[78]]. The
enhancement and correction strategies are particularly useful
for small branching vascular structure detection.

In [81]], the local statistic of pixel intensities is estimated
with a Gaussian probability distribution p, with E!°¢ and EL°°
defined as in Eq. 21}

Bloe(8) = — / [ / g ) o T() dy)d

Eloe(S) = — / [ / g M lompal1 () dy

with
1 _ <1<y>—uk<2r>>2
pk(l(y)) = me 20 (r)
k
2h

being g and oy (k= 1 inside(S) and k = 2 outside(S))
the local mean and standard deviation of the pixel intensity.

A further improvement is introduced in [85] by considering
also the local statistic of the image vesselness map defined
in [[184].

In [86], spatial constraints are introduced in the estimation
of the local pixel intensity distribution. Each pixel classifi-
cation depends on its neighborhood, with the main scope of
privileging connected set of pixels in order to increase the
segmentation robustness.

Local phase map and pixel intensity are used as region
information in [84]. The former allows obtaining an accurate
vessel map, the latter lowers false positive vessels.

In [87], [80]], the vessel boundary orientation is locally
estimated based on the orientation that minimizes the weighted
local variance and is used to drive an active contour model.
Region-based deformable model algorithms are summarized
in Table

VII. TRACKING

Blood vessel tracking algorithms usually consist in the defi-
nition of seed points followed by a growth process guided by
image-derived constraints. Seed points can be either manually
defined or obtained through vessel enhancement approaches.



TABLE X: Summary of tracking algorithms (for performance indexes refer to Tab. . CTA: Computer Tomography
Angiography, 3DRA: 3D Rotational Angiography, CFP: Color Fundus Photography, MIP: Maximum Intensity Projection,
MRA: Magnetic Resonance Angiography, US: Ultrasound.

Method

Testing dataset

Synthetic data

Segmentation performance measure

Turetken et al. [[115]
Yureidini et al. [90]
Shin et al. [95]
Amir-Khalili et al. [97]
Tang et al. [[101]
Wink et al. [[105]
Robben et al. [88]
Rempfler et al. [89]

Cetin et al. [91]

Carrillo et al. [96]

Li et al. [104]
Shim et al. [93]
Cherry et al. [94]

Benmansour et al. [98]

Biesdorf et al. [99]
Lugauer et al. [[100]
Wang et al. [102]

Friman et al. [[103]]

Cetin et al. [92]
Zeng et al. [[106]
Bauer et al. [107]
Amir-Khalili et al. [108]
Chen et al. [[110]
Bhuiyan et al. [|[111]
Liao et al. [112]
Rouchdy et al. [[113]
Stuhmer et al. [[114]
Delibasis et al. [[118]
Liao et al. [116]

Kaul et al. [[117]

2 Microscopy
10 3DRA volumes
18 Fluoroscopic x-ray images
8 US
38 MRI volumes
32 MRA
50 MRA volumes
5 micro MRA volumes

50 MRA volumes
24 CTA

16 MRA volumes
12 CTA

2 MRA volumes and 2 CTA
15 CTA volumes
30 CTA volumes

56 CTA volumes

10 CTA volumes
30 CTA volumes (ROTTERDAM database [|144])
32 CTA volumes (ROTTERDAM database [144])

32 CTA volumes (ROTTERDAM database [144])
& liver volumes

32 CTA volumes (ROTTERDAM database [144])
6 CTA
15 contrast enhanced CT
15 Endoscopy images
2 CFP images and 2 MRA
44 CFP images
4 CFP images (DRIVE database [[68]))
20 CFP images (DRIVE database [68]))
20 CFP images (DRIVE database [68]])
20 CFP images (DRIVE database [68]))
10 CFP images (STARE database [136])

3 retinal images

No

No
No

No
No

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

No

No

No

Yes

Visual
Average symmetric surface distance [185] < 1
Se =0.84, Acc = 0.9
AUROC = 0.95
DSC =0.89
Average distance = 0.65 mm

Acc =0.94, PPV = 0.96, Se = 0.96

Acc = 0.52
DSC =0.93
DSC =0.97

FN =0.20, FP=0
FN =0.28, FP =0.08

DSC
Se = 0.87
Se = 0.68, Acc = 0.75

DSC = 0.84, Dy, 54 [186]= 0.80,
Dymssa [186]= 1.57, Dmaz = 6.47 [186]

DSC =0.97
DSC =0.76
OV=0.81

oV =0.99

OV =0.96
Acc =0.98, Se = 0.8, Sp = 0.99
FN = 0.26%
AUROC = 0.72
Visual
Acc = 0.88
Acc =0.99
DSC =0.77, Se = 0.66, Sp = 0.91
Acc =0.94, Se = 0.84, Sp = 0.96
Se, Sp, Acc, ROC curve
Visual

TP =0.90, FP=0.15, FN =0.10

Continued on next page
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TABLE X Summary of tracking algorithms (for performance indexes refer to Tab. . CTA: Computer Tomography
Angiography, 3DRA: 3D Rotational Angiography, CFP: Color Fundus Photography,MIP: Maximum Intensity Projection, MRA:

Magnetic Resonance Angiography, US: Ultrasound.

Method Testing dataset

Synthetic data

Segmentation performance measure

Breitenreicher et al. [[119] —_—
Benmansour et al. [[120] —_—
Wink et al. [[121]

Chen et al. [[109] —_—

No —_—

Yes Visual
Yes Visual
No Visual

Vessel
model
definition

Model
L Tracking Best New model
> position %hypumesesl—» matching H position
initialization

Fig. 8: Model-based tracking approaches require to define
a vessel model, which most of the time takes the form of a
cylinder. After model initialization, at each tracking step the
new model position is obtained by finding the best image-
model match among all the possible new model positions
(tracking hypotheses). The match is computed based on image
features computed in a neighborhood of the current model
position.

Tracking approaches are particularly useful to segment con-
nected vascular trees, for which the segmentation can be
achieved using a limited number of seed points. Differences
between tracking-based methods lie in the definition of the
tracking constraints. A classification can be done considering
model-based tracking approaches, which track vessels accord-
ing to a vascular model, and minimum cost path approaches,
which finds the minimum path between two seed points
according to image-derived metrics.

A. Model-based

Model-based tracking approaches, usually exploited for 3D
vessel segmentation, address the segmentation problem as the
tracking of a predefined model in 3D volumes. The model
can assume different shapes, even if the most commonly
adopted is a 3D cylinder with elliptical or circular section, the
latter of which is usually preferred when dealing with small
vessels. The starting position and orientation of the model are
defined by placing an initial seed and estimating the vessel
direction in the seed, which can be done either manually or
automatically, e.g. exploiting filtering approaches such as MF.
At each tracking step, the next model position and orientation
are computed locally as the best match between the model
itself and the image data in the current model neighborhood.
Both deterministic and statistical approaches can be used to
investigate the possible vessel trajectories, and different image-
derived features, e.g. intensity or gradient flux, can be used to

compute the match between the image and the template. The
workflow of model-based segmentation algorithms is shown in
Fig. [§] The main limit of this class of algorithms is the early
termination in presence of intensity inhomogeneities, noisy
images, and when the model is not able to replicate the vessel
architecture, e.g. in presence of pathology.

Recursive tracking is performed in [96] by recruiting pixels
according to a cluster algorithm based on geometry and
intensity constraints. Cylindrical geometry is assumed for the
tracking. The clustering minimizes the intra-class intensity
variances and the inertia moment of the vessel class, enhancing
the cylindrical structures.

A deterministic tracking approach is proposed in [103]
to segment coronaries in CT, exploiting Multiple Hypoth-
esis Template Tracking (MHTT). At each tracking step, a
range of possible cylindrical model predictions is geometri-
cally computed, exploring a user-defined number of directions
equidistributed on the half-unit sphere centered at the current
model position. Instead of retaining only the absolute best
match, which not always represents the correct tracking (e.g. in
presence of bifurcation, intensity inhomogeneities and noise),
MHTT allows considering multiple possible vessel trajectories
by building a trajectory search tree. The leaf of the tree that
globally guarantees the higher matches provides the segmen-
tation. The method shows high accuracy in extracting and
preserving small and weakly contrasted vessel centerline, and
improving the bifurcation detection, due to both the adopted
vessel model and to the MHTT searching approach.

In [[102], coronary arteries are tracked with a statistical
bayesian approach in CTA. The model matching is evaluated
according to cylindrical minimal flux [[187]], which measures
the inward gradient flux through a cylindrical surface. The
inward flux is maximized when the cylinder is aligned with
the coronary.

Other common statistic approaches, which focus on solv-
ing non-linear Bayesian state estimation problem for vessel
tracking, use Particle Filtering (PF) [188]]. PF is employed
for tracking cerebral vessels in [93] and for marginal artery
localization in colonography [94].

Vasculature tracking in 3D Rotational Angiography (3DRA)
is performed in [90]. The main innovation consists in the in-
clusion of the RANdom SAmple Consensus (RANSAC) [189].
RANSAC is an iterative method used to estimate the quality



of the vascular model fitting from the set of observed data.
RANSAC allows handling possible outlier pixel values, mak-
ing the tracking more robust to noise and intensity drop. The
algorithm succeeds in tracking the centerline of vessels with
complex architecture, overcoming the problem of bifurcation
and vessel kissing.

Cylindrical-model tracking with MRF is exploited in [[100].
A discrete number of radial candidates along equiangular
rays in slices orthogonal with respect to an initialized vessel
centerline are considered as random variables of a MRF
graph. The algorithm performance is boosted by including
supervised PBT to estimate vessel boundaries. A similar
approach is exploited in [95]], where otimal correspondences
between consecutive frames of fluoroscopic X-ray sequences
are determined within a MRF optimization framework.

In [[107], vessel skeletons are extracted by using cylindrical
structures enhancing filter with constraints on vessel radius and
centerline direction. Vessel segmentation is achieved using the
graph cut algorithm [190]. With graph cut, the segmentation
problem is interpreted as image partitioning in two different
categories (i.e. vessel and background). The cut of the graph,
obtained by minimizing a cost term that depends on image
gradient and vessel shape priors, gives the partition of the
graph vertices into the vessel and background subsets. A
similar approach is exploited in [[I11]], where false vessels
are clarified imposing a threshold on the maximum possible
distance between vessel edges.

An intensity-based vessel model is defined in [92] to
extract coronaries in CTA volumes. A second order tensor
is constructed from image intensity and used to drive the
segmentation evolution. A similar approach with higher-order
tensors is used in [91]. The use of the second order tensor
allows dealing with complex structures, such as bifurcations.

A parametric vascular model that can assume arbitrarily
complex shape is used in [[118] to segment retinal vessel.
From the vessel model, vessel diameter can be retrieved in
a supervised way at each detected vessel centerline pixel
after tuning the vessel model-to-diameter transformation on a
training set. Thus, this approach can easily adapt to different
vessel topologies as long as a proper training dataset is used.
Similarly, in [99], the problem of estimating the shape of a
vessel is treated as a convex parameter estimation problem.
Vessel tracking is performed according to the locally estimated
vessel direction and radius.

In [97], [108]] the monogenic signal [191] is used to
estimate the image motion vector field and track the temporal
displacement of vessels in endoscopic images. The vessels are
detected where the divergence of the motion vector field is
high. By including motion feature, the method exploits the
vascular pulsatile behavior, allowing a targeted discrimination
between vessels and background.

B. Minimum cost path

A Minimum Cost Path (MCP) is a curve (Cp, p,) connecting
two usually manually defined points, p; and p2, that mini-
mizes the energy functional:

(22)
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Fig. 9: The minimum cost path algorithm finds the shortest
path between two points (p; and p2) by minimizing an
energy functional that depends on a metric tensor (M). M is
defined according to image features, such us intensity, gradient
or higher-order derivatives. Moreover, py is the only global
minimum of M. Energy minimization is solved by computing
the minimal action map (e.g. by using fast marching method).
Once the map is computed, the path between p; and p2 can
be retrieved with the gradient descent on the map starting from

P2.

where P(v(s),7'(s)) = /YT (s)M(y(5))7(s)) is an in-
finitesimal distance path computed according to the metric
tensor M (symmetric and positive-definite). The MCP for-
mulation can be either isotropic or anisotropic, according to
the formulation of M. The energy minimization problem is
solved through the computation of the minimal action map,
whose values can be interpreted as the arrival time of a
propagation front that starts from py, which is the only action
map global minimum, and moves with velocity dependent on
M, as demonstrated in [192]]. The work proposed in [192]
is employable on 2D structures, while further extensions
introduced in [193]], [194] lead to the segmentation of 3D
structure. The minimal action map can be computed using
different FMM formulations, according to the nature of M.
The FMM formulation for isotropic M was introduced in [[195]]
and [196], and improved in many subsequent works to provide
enhanced computational efficiency and accuracy, e.g. in [[197].
On the other hand, FMM schemes such as those presented
in [[198]], [199]], [200]] can be used to deal with anisotropic M.
Cp,,p. can be found using gradient descent method on the
minimal action map from ps to py. Gradient descent method
can be solved with standard numerical methods, such as [201]].
The workflow of a typical MCP segmentation algorithm is
shown in Fig. 0]

In [[101]], carotids are segmented in multispectral MRI. The
MCP between two manually defined seed points (a start and
an end point) is found accordingly to a metric based on image
gradient [202] and intensity [203[. The centerline is then used
to initialize a geodesic deformable model [[167]] with intensity-
based speed function. Multi-scale Hessian-based enhancement
filtering is used to drive the path evolution in [121], [105],
allowing higher robustness to noise with respect to using
simple gradient information.

In [98]], OOF [156] is used to obtain an estimation of
the carotids direction and radius, which is then used to
construct M. In [[106], OOF [156] and oriented flux antisym-



metry are combined to detect liver vessels. Once the vessel
centerlines is extracted, an intensity model based on FMM and
integrated into graph cuts is applied to obtain the segmentation.
The automatic centerline extraction results to be effective in
presence of small, thin and overlapping vessels.

A front propagation method for vessel segmentation with
the dynamic anisotropic Riemannian metric and anisotropic
FMM is proposed in [[109]. The Riemannian metric is defined
using a prior estimate of vessel orientation, detected by the
OOF filter, and the local intensity values.

Geodesic voting is introduced in [113]]. With respect to
classical MCP algorithm, here multiple end points are defined.
The potential that drives the geodesic evolution from the
manually defined start point and the end points assumes low
value in correspondence to the target vascular tree, leading to
a high geodesic density and high vote. LS is used to propagate
the centerline and obtain the segmentation.

MCP is used in [I119] to segment vessel centerline after
having enhanced vessels with a multi-scale tubular structure
enhancement filter. A learning-based branch classifier is used
as post-processing to remove false positive vessels. A similar
approach is exploited in [[114], where the shortest path energy
minimization is driven by image gradient and intensity. Con-
nectivity priors on vessel tree geometry are included to lower
false positive vessels.

Geodesic are integrated in a graph-based framework in
[88]], [115]]. The main innovation is allowing cycles inside the
graph, avoiding early-termination due to bifurcations or vessel
kissing. A similar approach is exploited in [89], where the
computation of the most probable path in the graph also takes
into account geometric distributions computed from training
samples. The main advantage of this method is the inclusion
of geometrical-physiological prior knowledge, which allows
improving the overall segmentation quality.

In [112], curvature regularization of the local path is dynam-
ically included in the FMM formulation. The main innovation
is the extension of the FMM formulation with dynamic speed
computed at each path evolution step, inspired by [116].

MCP with keypoint detection is used in [109], [[120], [[117],
[104], [110]. Instead of retrieving the MCP between the source
and the end point, new intermediate points, called keypoints,
are found imposing constraints on the length of the path
between consecutive keypoints. This significantly improves the
MCP robustness to noise. MCP is then applied to find the
shortest path between consecutive keypoints.

A summary of the analyzed tracking approaches is presented
in Table [Xl

VIII. CONCLUSION

This review presented a detailed analysis of a wide spectrum
of the most modern vessel segmentation techniques. These in-
cluded image processing methods based on machine learning,
deformable models and tracking approaches.

Vessel segmentation dates back to mid 1900s and a solid
and rich literature now exists in this field. However, despite
the efforts and the already achieved results, there are still
opportunities for improvements.
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o The absence of a systematic evaluation workflow emerges

as a first critical point in the vessel segmentation lit-
erature. It can be difficult to compare algorithm per-
formances if the reported metrics are not consistent.
Moreover, in most cases algorithms are tested on dataset
not publicly available for the community, making the
inter-algorithm comparison almost impossible.
Regarding the GS definition for segmentation quality
assessment, it would be of interest reporting the number
of clinicians who perform the GS segmentation, as well
as their degree of expertise. In case of multiple clinicians,
also the way of combining the single GS should be
reported. In this way, algorithm performance could be
analyzed more robustly, e.g. considering the dispersion
of the GS segmentations, symptomatic of the degree of
image complexity.

As presented, a large range of methods has been de-
veloped and enhanced over the years for segmenting
blood vessels on medical images. However, none of them
are appropriate for all applications. Processing frame-
works are still developed on an ad-hoc fashion since
each application presents its own specific requirements.
These are given by characteristics such as the anatom-
ical region of interest, image acquisition method, noise
levels, illumination, etc. In fact, image quality strongly
affects segmentation performances and a well performing
method in one context may not be that appropriate in
another contexts. This represents a further limitation in
our ability to compare across different methods.

One of the main issues still remaining is the segmentation
of pathological vessels. Unfortunately not much research
effort has been dedicated to this issue yet. Research
is needed since some of the main assumptions made
for healthy vessels (such as linearity and circular cross-
section) do not hold in pathological tissues, requiring new
vessel model formulations.

The constant development of diagnostic imaging systems
is also providing even more detailed and higher reso-
lution images of blood vessels, resulting in processing
algorithms with higher and higher computational cost.
At the same time, many clinical applications require real
time processing. This issue can be faced with parallel
implementation and the use of Graphic Processor Unit
(GPU), however few of the analyzed researches have
directly focused on this. A review on medical image
segmentation on GPUs can be found in [204].

Deep learning algorithms for vessel segmentation are
becoming strongly popular. With respect to machine-
learning algorithms, where the feature extraction process
requires strong domain expertise to understand which are
the most suitable features, deep learning directly extracts
a suitable internal representation of the image. Deep
learning is taking advantage of the increasing computa-
tional power (e.g. GPU) as well as of data availability.
Deep learning via unsupervised or semi-supervised learn-
ing is becoming a topic of interest to overcome the
lack of properly annotated vessel images [205], [206].
Deep learning with reinforcement [207]], generative net-



works [[158]] and recurrent networks [208] are also be-
coming popular, despite direct application on vessel seg-
mentation have not been proposed yet.

o Vessel data availability is increasing thanks to the spread
of diagnostic imaging tools. Such amount of data, if
shared, represents a possibility of building publicly avail-
able databases which can be employed for both algorithm
training and testing with common benchmarks. Some
progress in that direction has been seen recently, specially
by virtue of organizations that promote segmentation
challenges, but databases are still limited to specific
anatomical regions.

To summarize, in the authors’ view, vessel segmentation
will rapidly evolve in the direction of advanced deep-learning
approaches as soon as large and labeled datasets will be pub-
licly available. Indeed, such approaches have already drawn
the attention of the computer vision community in non-
medical research fields, where large annotated datasets are
already available. However, it is worth noting that collecting
medical datasets big enough to encode the intra- and inter-
patient variability needed to justify the use of deep-learning
and prevent overfitting is not trivial. This is particularly true
if one considers the high variability linked to pathological
tissues and the efforts needed to perform manual labeling. In
the authors’ opinion, this is the main reason that is slowing
down the development of deep-learning algorithms for vessel
segmentation. At the same time, exploiting the generalization
power of deep-learning will surely help the medical computer
vision community in reducing the gap between the vessel
segmentation research and its use in actual clinical practice.

To conclude, this review also introduced the theoretical
background of the most innovative and effective segmentation
methods found in the literature, which were summarized with
the support of tables reporting performance measures, datasets
used and anatomical regions of interest. Pros and cons of
each method were highlighted, including metrics reported
by the respective authors for the specific applications. This
can help developers get a better picture of the options and
methods available, leading to a speed-up on the development
and enhancement of methods for blood vessel segmentation.

NOMENCLATURE

e 2D: Bidimensional

e 3D: Tridimensional

o 3DRA: Tridimensional Rotation Angiography

e Acc: Accuracy

o AUROC" Area Under the Receiver Operating Character-
istic Curve

e AUPRC": Area Under the Precision-Recall Curve

e CNN: Convolutional Neural Network

¢ CRF: Conditional Random Field

e CT : Computed Tomography

e CTA : Computed Tomography Angiography

o DSA: Digital Subtraction Angiography

e DSC': Dice Similarity Coefficient

« EM: Expectation-Maximization

o FCCRF: Fully Connected Markov Random Field

(1]

[2

—

(3]
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FMM: Fast Marching Method

F'N: False Negative

F'P: False Positive

F Prate: False Positive rate

FCN: Fully Convolutional Networks

GF: Gabor Filter

GPU: Graphic Processor Unit

GS: Gold Standard

GVF: Gradient Vector Flow

H: Hessian matrix

HD: Hausdorff distance

IR: Infrared

k: Cohen’s x coefficient

LNND: Lattice Neural Network with Dendritic
LS: Level Set

MCC': Matthews Correlation Coefficient

M: Metric tensor for minimum cost path
MCP: Minimum Cost Path

MF: Matched Filter

MHTT: Multiple Hypothesis Template Tracking
MIP: Maximum Intensity Projection

MRA: Magnetic Resonance Angiography
MRF: Markov Random Field

MRI: Magnetic Resonance Imaging

NBI: Narrow Band Imaging

NPV Negative Predictive Value

OCT: Optical Coherence Tomography

OF': Overlap until first error

OOF: Optimal Oriented Flux

OT': Overlap with the clinically relevant part of the vessel
OV Overlap

PBT: Probabilistic Boosting Tree

PF: Particle Filtering

PPV Positive Predictive Value

PSO: Particle Swarm Optimization

RACAL: RAdius-based Clustering ALgorithm
RANSAC: RANdom SAmple Consensus

RF: Random Forest

ROC: Receiver Operating Characteristic

Se: Sensitivity

Sp: Specificity

STAPLE: Simultaneous Truth And Performance Level
Estimation

SVM: Support Vector Machine

TN: True Negative

T P: True Positive

US: Ultrasound

REFERENCES

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other
diseases,” Nature, vol. 407, no. 6801, pp. 249-257, 2000.

P. A. Campochiaro, “Molecular pathogenesis of retinal and choroidal
vascular diseases,” Progress in Retinal and Eye Research, 2015.

E. De Momi, C. Caborni, F. Cardinale, G. Casaceli, L. Cas-
tana, M. Cossu, R. Mai, F. Gozzo, S. Francione, L. Tassi et al.,
“Multi-trajectories automatic planner for StereoElectroEncephaloGra-
phy (SEEG),” International Journal of Computer Assisted Radiology
and Surgery, vol. 9, no. 6, pp. 1087-1097, 2014.



[4]

(3]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

C. Essert, S. Fernandez-Vidal, A. Capobianco, C. Haegelen, C. Karachi,
E. Bardinet, M. Marchal, and P. Jannin, “Statistical study of param-
eters for deep brain stimulation automatic preoperative planning of
electrodes trajectories,” International Journal of Computer Assisted
Radiology and Surgery, vol. 10, no. 12, pp. 1973-1983, 2015.

E. De Momi, C. Caborni, F. Cardinale, L. Castana, G. Casaceli,
M. Cossu, L. Antiga, and G. Ferrigno, “Automatic trajectory planner
for StereoElectroEncephaloGraphy procedures: a retrospective study,”
Transactions on Biomedical Engineering, vol. 60, no. 4, pp. 986-993,
2013.

C. Faria, O. Sadowsky, E. Bicho, G. Ferrigno, L. Joskowicz,
M. Shoham, R. Vivanti, and E. De Momi, “Validation of a stereo
camera system to quantify brain deformation due to breathing and
pulsatility,” Medical Physics, vol. 41, no. 11, p. 113502, 2014.

C. Piazza, F. Del Bon, G. Peretti, and P. Nicolai, “Narrow band
imaging in endoscopic evaluation of the larynx,” Current Opinion in
Otolaryngology & Head and Neck Surgery, vol. 20, no. 6, pp. 472-476,
2012.

F. Cardinale, G. Pero, L. Quilici, M. Piano, P. Colombo, A. Moscato,
L. Castana, G. Casaceli, D. Fuschillo, L. Gennari et al., “Cerebral
angiography for multimodal surgical planning in epilepsy surgery:
description of a new three-dimensional technique and literature review,”
World Neurosurgery, 2015.

M. V. Schaverien and S. J. McCulley, “Contrast-enhanced magnetic
resonance angiography for preoperative imaging in DIEP flap breast
reconstruction,” in Breast Reconstruction. Springer, 2016, pp. 163—
170.

M. Herndndez-Pérez, J. Puig, G. Blasco, N. P. de la Ossa, L. Dorado,
A. Dévalos, and J. Munuera, “Dynamic magnetic resonance angiog-
raphy provides collateral circulation and hemodynamic information in
acute ischemic stroke,” Stroke, vol. 47, no. 2, pp. 531-534, 2016.

C. E. Rochitte, R. T. George, M. Y. Chen, A. Arbab-Zadeh, M. Dewey,
J. M. Miller, H. Niinuma, K. Yoshioka, K. Kitagawa, S. Nakamori
et al., “Computed tomography angiography and perfusion to assess
coronary artery stenosis causing perfusion defects by single photon
emission computed tomography: the CORE320 study,” European Heart
Journal, vol. 35, no. 17, pp. 1120-1130, 2014.

M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rud-
nicka, C. G. Owen, and S. A. Barman, “Blood vessel segmentation
methodologies in retinal images—a survey,” Computer Methods and
Programs in Biomedicine, vol. 108, no. 1, pp. 407-433, 2012.

C. L. Srinidhi, P. Aparna, and J. Rajan, “Recent advancements in retinal
vessel segmentation,” Journal of Medical Systems, vol. 41, no. 4, p. 70,
2017.

C. Kirbas and F. Quek, “A review of vessel extraction techniques and
algorithms,” ACM Computing Surveys, vol. 36, no. 2, pp. 81-121, 2004.
N. Singh and L. Kaur, “A survey on blood vessel segmentation
methods in retinal images,” in Electronic Design, Computer Networks
& Automated Verification, 2015 International Conference on. 1EEE,
2015, pp. 23-28.

K. Biihler, P. Felkel, and A. La Cruz, “Geometric methods for vessel
visualization and quantification-a survey,” in Geometric Modeling for
Scientific Visualization. Springer, 2004, pp. 399-419.

J. S. Suri, K. Liu, L. Reden, and S. Laxminarayan, “A review on MR
vascular image processing: skeleton versus nonskeleton approaches:
part I1.” Transactions on Information Technology in Biomedicine, vol. 6,
no. 4, pp. 338-350, 2002.

F. Molinari, G. Zeng, and J. S. Suri, “A state of the art review on
intima: media thickness (imt) measurement and wall segmentation
techniques for carotid ultrasound,” Computer Methods and Programs
in Biomedicine, vol. 100, no. 3, pp. 201-221, 2010.

D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-Lea, “A review of 3D
vessel lumen segmentation techniques: Models, features and extraction
schemes,” Medical Image Analysis, vol. 13, no. 6, pp. 819-845, 2009.
X. Feng, W. Xing-ce, Z. Ming-quan, W. Zhongke, and L. Xin-yu, “Seg-
mentation algorithm of brain vessel image based on SEM statistical
mixture model,” in International Conference on Fuzzy Systems and
Knowledge Discovery, vol. 4. IEEE, 2010, pp. 1830-1833.

M. S. Hassouna, A. A. Farag, S. Hushek, and T. Moriarty, “Cerebrovas-
cular segmentation from TOF using stochastic models,” Medical Image
Analysis, vol. 10, no. 1, pp. 2-18, 2006.

D. A. Oliveira, R. Q. Feitosa, and M. M. Correia, “Segmentation of
liver, its vessels and lesions from CT images for surgical planning,”
Biomed Eng Online, vol. 10, p. 30, 2011.

E. Goceri, Z. K. Shah, and M. N. Gurcan, “Vessel segmentation from
abdominal magnetic resonance images: adaptive and reconstructive

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

22

approach,” International journal for numerical methods in biomedical
engineering, vol. 33, no. 4, 2017.

P. Bruyninckx, D. Loeckx, D. Vandermeulen, and P. Suetens, “Segmen-
tation of liver portal veins by global optimization,” in SPIE Medical
Imaging. International Society for Optics and Photonics, 2010, pp.
76241Z-76241Z.

P. Bruyninckx, D. Loeckx, D. Vandermeulen, and P. Suetens, “Segmen-
tation of lung vessel trees by global optimization,” in SPIE Medical
Imaging, vol. 7259, 2009, p. 725912.

A. H. Asad, A. T. Azar, and A. E. Hassanien, “A new heuristic function
of ant colony system for retinal vessel segmentation,” in Medical
Imaging: Concepts, Methodologies, Tools, and Applications.  1GI
Global, 2017, pp. 2063-2081.

T. Mapayi, J.-R. Tapamo, and S. Viriri, “Retinal vessel segmentation: a
comparative study of fuzzy C-means and sum entropy information on
phase congruency,” International Journal of Advanced Robotic Systems,
vol. 12, no. 9, p. 133, 2015.

K. Sreejini and V. Govindan, “Improved multiscale matched filter for
retina vessel segmentation using PSO algorithm,” Egyptian Informatics
Journal, vol. 16, no. 3, pp. 253-260, 2015.

M. G. Cinsdikici and D. Aydin, “Detection of blood vessels in ophthal-
moscope images using MF/ant (matched filter/ant colony) algorithm,”
Computer Methods and Programs in Biomedicine, vol. 96, no. 2, pp.
85-95, 2009.

M. Al-Rawi and H. Karajeh, “Genetic algorithm matched filter opti-
mization for automated detection of blood vessels from digital retinal
images,” Computer Methods and Programs in Biomedicine, vol. 87,
no. 3, pp. 248-253, 2007.

S. Hanaoka, Y. Nomura, M. Nemoto, S. Miki, T. Yoshikawa,
N. Hayashi, K. Ohtomo, Y. Masutani, and A. Shimizu, “HoTPiG: A
novel geometrical feature for vessel morphometry and its application to
cerebral aneurysm detection,” in International Conference on Medical
Image Computing and Computer-Assisted Intervention.  Springer,
2015, pp. 103-110.

A. Sironi, V. Lepetit, and P. Fua, “Multiscale centerline detection by
learning a scale-space distance transform,” in International Conference
on Computer Vision and Pattern Recognition. 1EEE, 2014, pp. 2697—
2704.

J. Merkow, A. Marsden, D. Kriegman, and Z. Tu, “Dense volume-
to-volume vascular boundary detection,” in International Conference
on Medical Image Computing and Computer-Assisted Intervention.
Springer, 2016, pp. 371-379.

S. Sankaran, M. Schaap, S. C. Hunley, J. K. Min, C. A. Taylor,
and L. Grady, “Hale: Healthy area of lumen estimation for vessel
stenosis quantification,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, 2016, pp.
380-387.

M. Schaap, T. van Walsum, L. Neefjes, C. Metz, E. Capuano,
M. de Bruijne, and W. Niessen, “Robust shape regression for supervised
vessel segmentation and its application to coronary segmentation in
CTA,” Transactions on Medical Imaging, vol. 30, no. 11, pp. 1974—
1986, 2011.

Y. Zheng, M. Loziczonek, B. Georgescu, S. K. Zhou, F. Vega-Higuera,
and D. Comaniciu, “Machine learning based vesselness measurement
for coronary artery segmentation in cardiac CT volumes,” in SPIE
Medical Imaging, vol. 7962, 2011, pp. 79 621K-1.

R. Nekovei and Y. Sun, “Back-propagation network and its configura-
tion for blood vessel detection in angiograms,” Transactions on Neural
Networks, vol. 6, no. 1, pp. 64-72, 1995.

E. Smistad and L. Lgvstakken, “Vessel detection in ultrasound images
using deep convolutional neural networks,” in International Workshop
on Large-Scale Annotation of Biomedical Data and Expert Label
Synthesis. Springer, 2016, pp. 30-38.

P. Chu, Y. Pang, E. Cheng, Y. Zhu, Y. Zheng, and H. Ling, “Structure-
aware rank-1 tensor approximation for curvilinear structure track-
ing using learned hierarchical features,” in International Conference
on Medical Image Computing and Computer-Assisted Intervention.
Springer, 2016, pp. 413-421.

J. I. Orlando, E. Prokofyeva, and M. B. Blaschko, “A discriminatively
trained fully connected conditional random field model for blood
vessel segmentation in fundus images,” Transactions on Biomedical
Engineering, vol. 64, no. 1, pp. 16-27, 2017.

A. Dasgupta and S. Singh, “A fully convolutional neural network based
structured prediction approach towards the retinal vessel segmentation,”
in International Symposium on Biomedical Imaging. 1EEE, 2017, pp.
248-251.



[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

J. Mo and L. Zhang, “Multi-level deep supervised networks for reti-
nal vessel segmentation,” International Journal of Computer Assisted
Radiology and Surgery, pp. 1-13, 2017.

A. Lahiri, K. Ayush, P. K. Biswas, and P. Mitra, “Generative adversarial
learning for reducing manual annotation in semantic segmentation on
large scale miscroscopy images: Automated vessel segmentation in
retinal fundus image as test case,” in Conference on Computer Vision
and Pattern Recognition Workshops, 2017, pp. 42-48.

R. Annunziata, A. Kheirkhah, S. Aggarwal, P. Hamrah, and E. Trucco,
“A fully automated tortuosity quantification system with application to
corneal nerve fibres in confocal microscopy images,” Medical Image
Analysis, vol. 32, pp. 216-232, 2016.

H. Fu, Y. Xu, S. Lin, D. W. K. Wong, and J. Liu, “DeepVessel: Retinal
vessel segmentation via deep learning and conditional random field,” in
International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2016, pp. 132-139.

Y. Luo, L. Yang, L. Wang, and H. Cheng, “Efficient CNN-CRF
network for retinal image segmentation,” in International Conference
on Cognitive Systems and Signal Processing.  Springer, 2016, pp.
157-165.

P. Liskowski and K. Krawiec, “Segmenting retinal blood vessels with
deep neural networks,” Transactions on Medical Imaging, vol. 35,
no. 11, pp. 2369-2380, 2016.

Q. Li, B. Feng, L. Xie, P. Liang, H. Zhang, and T. Wang, “A cross-
modality learning approach for vessel segmentation in retinal images,”
Transactions on Medical Imaging, vol. 35, no. 1, pp. 109-118, 2016.
M. Javidi, H.-R. Pourreza, and A. Harati, “Vessel segmentation
and microaneurysm detection using discriminative dictionary learn-
ing and sparse representation,” Computer Methods and Programs in
Biomedicine, 2016.

K.-K. Maninis, J. Pont-Tuset, P. Arbeldez, and L. Van Gool, “Deep
retinal image understanding,” in International Conference on Medical
Image Computing and Computer-Assisted Intervention.  Springer,
2016, pp. 140-148.

P. Prentasi¢, M. Heisler, Z. Mammo, S. Lee, A. Merkur, E. Navajas,
M. E Beg, M. §arunic’, and S. Loncari¢, “Segmentation of the foveal
microvasculature using deep learning networks,” Journal of Biomedical
Optics, vol. 21, no. 7, pp. 075008-075 008, 2016.

A. Wu, Z. Xu, M. Gao, M. Buty, and D. J. Mollura, “Deep vessel
tracking: A generalized probabilistic approach via deep learning,” in
International Symposium on Biomedical Imaging. 1EEE, 2016, pp.
1363-1367.

R. Annunziata, A. Kheirkhah, P. Hamrah, and E. Trucco, “Scale
and curvature invariant ridge detector for tortuous and fragmented
structures,” in International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer, 2015, pp. 588-595.
R. Annunziata, A. Kheirkhah, P. Hamrah, and E. Trucco, “Boosting
hand-crafted features for curvilinear structure segmentation by learning
context filters,” in International Conference on Medical Image Comput-
ing and Computer-Assisted Intervention. Springer, 2015, pp. 596-603.
R. Vega, G. Sanchez-Ante, L. E. Falcon-Morales, H. Sossa, and E. Gue-
vara, “Retinal vessel extraction using lattice neural networks with
dendritic processing,” Computers in Biology and Medicine, vol. 58,
pp- 20-30, 2015.

S. Wang, Y. Yin, G. Cao, B. Wei, Y. Zheng, and G. Yang, “Hierarchical
retinal blood vessel segmentation based on feature and ensemble
learning,” Neurocomputing, vol. 149, pp. 708-717, 2015.

M. M. Fraz, A. R. Rudnicka, C. G. Owen, and S. A. Barman,
“Delineation of blood vessels in pediatric retinal images using decision
trees-based ensemble classification,” International Journal of Computer
Assisted Radiology and Surgery, vol. 9, no. 5, pp. 795-811, 2014.

Y. Ganin and V. Lempitsky, “N” 4-Fields: Neural Network Nearest
Neighbor Fields for Image Transforms,” in Asian Conference on
Computer Vision. Springer, 2014, pp. 536-551.

J. L. Orlando and M. Blaschko, “Learning fully-connected CRFs
for blood vessel segmentation in retinal images,” in Medical Image
Computing and Computer-Assisted Intervention. Springer, 2014, pp.
634-641.

C. Becker, R. Rigamonti, V. Lepetit, and P. Fua, “Supervised feature
learning for curvilinear structure segmentation,” in International Con-
ference on Medical Image Computing and Computer-Assisted Interven-
tion. Springer, 2013, pp. 526-533.

P. Rodrigues, P. Guimardes, T. Santos, S. Simao, T. Miranda, P. Ser-
ranho, and R. Bernardes, “Two-dimensional segmentation of the retinal
vascular network from optical coherence tomography,” Journal of
Biomedical Optics, vol. 18, no. 12, pp. 126011-126011, 2013.

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

23

M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rud-
nicka, C. G. Owen, and S. A. Barman, “An ensemble classification-
based approach applied to retinal blood vessel segmentation,” Trans-
actions on Biomedical Engineering, vol. 59, no. 9, pp. 2538-2548,
2012.

B. Zhang, F. Karray, Q. Li, and L. Zhang, “Sparse representation clas-
sifier for microaneurysm detection and retinal blood vessel extraction,”
Information Sciences, vol. 200, pp. 78-90, 2012.

D. Marin, A. Aquino, M. E. Geglindez-Arias, and J. M. Bravo, “A new
supervised method for blood vessel segmentation in retinal images by
using gray-level and moment invariants-based features,” Transactions
on Medical Imaging, vol. 30, no. 1, pp. 146-158, 2011.

C. A. Lupascu, D. Tegolo, and E. Trucco, “FABC: retinal vessel seg-
mentation using AdaBoost,” Transactions on Information Technology
in Biomedicine, vol. 14, no. 5, pp. 1267-1274, 2010.

N. Salem, S. Salem, and A. Nandi, “Segmentation of retinal blood ves-
sels based on analysis of the Hessian matrix and clustering algorithm,”
in European Signal Processing Conference, 2007, pp. 428—432.

J. V. Soares, J. J. Leandro, R. M. Cesar, H. F. Jelinek, and M. J.
Cree, “Retinal vessel segmentation using the 2-D Gabor wavelet and
supervised classification,” Transactions on Medical Imaging, vol. 25,
no. 9, pp. 1214-1222, 2006.

J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever, and B. van
Ginneken, “Ridge-based vessel segmentation in color images of the
retina,” Transactions on Medical Imaging, vol. 23, no. 4, pp. 501-509,
2004.

S.-H. Lee and S. Lee, “Adaptive Kalman snake for semi-autonomous
3D vessel tracking,” Computer Methods and Programs in Biomedicine,
vol. 122, no. 1, pp. 56-75, 2015.

L. F. Valencia, J. Montagnat, and M. Orkisz, “3D models for vascular
lumen segmentation in MRA images and for artery-stenting simula-
tion,” IRBM, vol. 28, no. 2, pp. 65-71, 2007.

M. W. Law and A. C. Chung, “An oriented flux symmetry based active
contour model for three dimensional vessel segmentation,” in European
Conference on Computer Vision. Springer, 2010, pp. 720-734.

R. Moreno, C. Wang, and O. Smedby, “Vessel wall segmentation using
implicit models and total curvature penalizers,” in Image Analysis.
Springer, 2013, pp. 299-308.

C. Wang, R. Moreno, and O. Smedby, “Vessel segmentation using
implicit model-guided level sets,” in MICCAI Workshop” 3D Cardio-
vascular Imaging”, Nice France, 1st of October 2012., 2012.

Y. Cheng, X. Hu, J. Wang, Y. Wang, and S. Tamura, “Accurate
vessel segmentation with constrained B-snake,” Transaction on Image
Processing, vol. 24, no. 8, pp. 2440-2455, 2015.

X. Zhu, Z. Xue, X. Gao, Y. Zhu, and S. T. Wong, “Voles: Vascularity-
oriented level set algorithm for pulmonary vessel segmentation in
image guided intervention therapy,” in International Symposium on
Biomedical Imaging. 1EEE, 2009, pp. 1247-1250.

J. Zhang, Z. Tang, W. Gui, and J. Liu, “Retinal vessel image segmen-
tation based on correlational open active contours model,” in Chinese
Automation Congress. 1EEE, 2015, pp. 993-998.

K. A. Patwardhan, Y. Yu, S. Gupta, A. Dentinger, and D. Mills, “4d
vessel segmentation and tracking in ultrasound,” in Image Processing.
Proceeding of the 19th International Conference on. 1EEE, 2012, pp.
2317-2320.

A. Klepaczko, P. Szczypifiski, A. Deistung, J. R. Reichenbach, and
A. Materka, “Simulation of MR angiography imaging for validation
of cerebral arteries segmentation algorithms,” Computer Methods and
Programs in Biomedicine, vol. 137, pp. 293-309, 2016.

Y. Tian, Q. Chen, W. Wang, Y. Peng, Q. Wang, F. Duan, Z. Wu, and
M. Zhou, “A Vessel Active Contour Model for Vascular Segmentation,”
BioMed Research International, 2014.

M. W. Law and A. C. Chung, “Weighted local variance-based edge
detection and its application to vascular segmentation in magnetic
resonance angiography,” Transactions on Medical Imaging, vol. 26,
no. 9, pp. 1224-1241, 2007.

L. Wang, L. He, A. Mishra, and C. Li, “Active contours driven by
local Gaussian distribution fitting energy,” Signal Processing, vol. 89,
no. 12, pp. 2435-2447, 2009.

Y. Liang, F. Wang, D. Treanor, D. Magee, G. Teodoro, Y. Zhu, and
J. Kong, “A 3D primary vessel reconstruction framework with serial
microscopy images,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, 2015, pp.
251-259.

Y. Zhao, Y. Liu, X. Wu, S. P. Harding, and Y. Zheng, “Retinal vessel
segmentation: An efficient graph cut approach with retinex and local
phase,” PloS One, vol. 10, no. 4, p. e0122332, 2015.



[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

Y. Zhao, L. Rada, K. Chen, S. P. Harding, and Y. Zheng, “Automated
vessel segmentation using infinite perimeter active contour model
with hybrid region information with application to retinal images,”
Transactions on Medical Imaging, vol. 34, no. 9, pp. 1797-1807, 2015.
L. Wang, H. Zhang, K. He, Y. Chang, and X. Yang, “Active Contours
Driven by Multi-Feature Gaussian Distribution Fitting Energy with
Application to Vessel Segmentation,” PloS One, vol. 10, no. 11, p.
e0143105, 2015.

Z. Xiao, M. Adel, and S. Bourennane, “Bayesian method with spatial
constraint for retinal vessel segmentation,” Computational and Mathe-
matical Methods in Medicine, vol. 2013, 2013.

W. K. Law and A. C. Chung, “Segmentation of vessels using weighted
local variances and an active contour model,” in Conference on
Computer Vision and Pattern Recognition Workshop. 1EEE, 2006,
pp. 83-83.

D. Robben, E. Tiiretken, S. Sunaert, V. Thijs, G. Wilms, P. Fua,
F. Maes, and P. Suetens, “Simultaneous segmentation and anatomical
labeling of the cerebral vasculature,” Medical Image Analysis, vol. 32,
pp. 201-215, 2016.

M. Rempfler, M. Schneider, G. D. Ielacqua, X. Xiao, S. R. Stock,
J. Klohs, G. Székely, B. Andres, and B. H. Menze, “Reconstructing
cerebrovascular networks under local physiological constraints by
integer programming,” Medical Image Analysis, vol. 25, no. 1, pp.
86-94, 2015.

A. Yureidini, E. Kerrien, and S. Cotin, “Robust RANSAC-based blood
vessel segmentation,” in SPIE Medical Imaging. International Society
for Optics and Photonics, 2012, pp. 83 141M-83 141M.

S. Cetin and G. Unal, “A higher-order tensor vessel tractography for
segmentation of vascular structures,” Transactions on Medical Imaging,
vol. 34, no. 10, pp. 2172-2185, 2015.

S. Cetin, A. Demir, A. Yezzi, M. Degertekin, and G. Unal, “Vessel
tractography using an intensity based tensor model with branch detec-
tion,” Transactions on Medical Imaging, vol. 32, no. 2, pp. 348-363,
2013.

H. Shim, D. Kwon, I. D. Yun, and S. U. Lee, “Robust segmentation of
cerebral arterial segments by a sequential Monte Carlo method: Particle
filtering,” Computer Methods and Programs in Niomedicine, vol. 84,
no. 2, pp. 135-145, 2006.

K. M. Cherry, B. Peplinski, L. Kim, S. Wang, L. Lu, W. Zhang, J. Liu,
Z. Wei, and R. M. Summers, “Sequential Monte Carlo tracking of the
marginal artery by multiple cue fusion and random forest regression,”
Medical Image Analysis, vol. 19, no. 1, pp. 164-175, 2015.

S. Y. Shin, S. Lee, K. J. Noh, I. D. Yun, and K. M. Lee, “Extraction
of coronary vessels in fluoroscopic X-Ray sequences using vessel
correspondence optimization,” in International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer,
2016, pp. 308-316.

J. F. Carrillo, M. H. Hoyos, E. E. Ddvila, and M. Orkisz, “Recursive
tracking of vascular tree axes in 3D medical images,” International
Journal of Computer Assisted Radiology and Surgery, vol. 1, no. 6,
pp- 331-339, 2007.

A. Amir-Khalili, G. Hamarneh, and R. Abugharbieh, “Automatic
vessel segmentation from pulsatile radial distension,” in International
Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer, 2015, pp. 403-410.

F. Benmansour and L. D. Cohen, “Tubular structure segmentation based
on minimal path method and anisotropic enhancement,” International
Journal of Computer Vision, vol. 92, no. 2, pp. 192-210, 2011.

A. Biesdorf, S. Worz, H. von Tengg-Kobligk, K. Rohr, and C. Schnorr,
“3D segmentation of vessels by incremental implicit polynomial fitting
and convex optimization,” in International Symposium on Biomedical
Imaging. 1EEE, 2015, pp. 1540-1543.

F. Lugauer, Y. Zheng, J. Hornegger, and B. M. Kelm, “Precise lumen
segmentation in coronary computed tomography angiography,” in In-
ternational MICCAI Workshop on Medical Computer Vision. Springer,
2014, pp. 137-147.

H. Tang, T. van Walsum, R. S. van Onkelen, R. Hameeteman, S. Klein,
M. Schaap, F. L. Tori, Q. J. van den Bouwhuijsen, J. C. Witteman,
A. van der Lugt et al., “Semiautomatic carotid lumen segmentation
for quantification of lumen geometry in multispectral MRL” Medical
Image Analysis, vol. 16, no. 6, pp. 1202-1215, 2012.

X. Wang, T. Heimann, P. Lo, M. Sumkauskaite, M. Puderbach,
M. de Bruijne, H. Meinzer, and 1. Wegner, “Statistical tracking of tree-
like tubular structures with efficient branching detection in 3D medical
image data,” Physics in Medicine and Biology, vol. 57, no. 16, p. 5325,
2012.

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

24

O. Friman, M. Hindennach, C. Kiihnel, and H.-O. Peitgen, “Multiple
hypothesis template tracking of small 3D vessel structures,” Medical
Image Analysis, vol. 14, no. 2, pp. 160-171, 2010.

H. Li, A. Yezzi, and L. Cohen, “3D multi-branch tubular surface and
centerline extraction with 4D iterative key points,” in International
Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer, 2009, pp. 1042-1050.

O. Wink, A. F. Frangi, B. Verdonck, M. A. Viergever, and W. J.
Niessen, “3D MRA coronary axis determination using a minimum cost
path approach,” Magnetic Resonance in Medicine, vol. 47, no. 6, pp.
1169-1175, 2002.

Y.-z. Zeng, Y.-q. Zhao, P. Tang, M. Liao, Y.-x. Liang, S.-h. Liao,
and B.-j. Zou, “Liver vessel segmentation and identification based
on oriented flux symmetry and graph cuts,” Computer Methods and
Programs in Biomedicine, vol. 150, pp. 31-39, 2017.

C. Bauer, T. Pock, E. Sorantin, H. Bischof, and R. Beichel, “Segmen-
tation of interwoven 3D tubular tree structures utilizing shape priors
and graph cuts,” Medical Image Analysis, vol. 14, no. 2, pp. 172-184,
2010.

A. Amir-Khalili, G. Hamarneh, J.-M. Peyrat, J. Abinahed, O. Al-
Alao, A. Al-Ansari, and R. Abugharbieh, “Automatic segmentation of
occluded vasculature via pulsatile motion analysis in endoscopic robot-
assisted partial nephrectomy video,” Medical Image Analysis, vol. 25,
no. 1, pp. 103-110, 2015.

D. Chen, J.-M. Mirebeau, and L. D. Cohen, “Vessel tree extraction
using radius-lifted keypoints searching scheme and anisotropic fast
marching method,” Journal of Algorithms & Computational Technol-
ogy, p. 1748301816656289, 2016.

D. Chen, L. D. Cohen, and J.-M. Mirebeau, “Vessel extraction using
anisotropic minimal paths and path score,” in International Conference
on Image Processing. 1EEE, 2014, pp. 1570-1574.

A. Bhuiyan, R. Kawasaki, E. Lamoureux, K. Ramamohanarao, and
T. Y. Wong, “Retinal artery—vein caliber grading using color fundus
imaging,” Computer Methods and Programs in Biomedicine, vol. 111,
no. 1, pp. 104-114, 2013.

W. Liao, K. Rohr, and S. Worz, “Globally optimal curvature-
regularized fast marching for vessel segmentation,” in International
Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer, 2013, pp. 550-557.

Y. Rouchdy and L. D. Cohen, “Geodesic voting for the automatic
extraction of tree structures. Methods and applications,” Computer
Vision and Image Understanding, vol. 117, no. 10, pp. 1453-1467,
2013.

J. Stuhmer, P. Schroder, and D. Cremers, “Tree shape priors with
connectivity constraints using convex relaxation on general graphs,”
in International Conference on Computer Vision, pp. 2336-2343.

E. Turetken, F. Benmansour, B. Andres, H. Pfister, and P. Fua, “Recon-
structing loopy curvilinear structures using integer programming,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2013, pp. 1822-1829.

W. Liao, S. Worz, and K. Rohr, “Globally minimal path method using
dynamic speed functions based on progressive wave propagation,” in
Asian Conference on Computer Vision. Springer, 2012, pp. 25-37.
V. Kaul, A. Yezzi, and Y. Tsai, “Detecting curves with unknown
endpoints and arbitrary topology using minimal paths,” Transactions
on Pattern Analysis and Machine Intelligence, vol. 34, no. 10, pp.
1952-1965, 2012.

K. K. Delibasis, A. I. Kechriniotis, C. Tsonos, and N. Assimakis, “Au-
tomatic model-based tracing algorithm for vessel segmentation and di-
ameter estimation,” Computer Methods and Programs in Biomedicine,
vol. 100, no. 2, pp. 108-122, 2010.

D. Breitenreicher, M. Sofka, S. Britzen, and S. K. Zhou, “Hierarchi-
cal discriminative framework for detecting tubular structures in 3D
images,” in International Conference on Information Processing in
Medical Imaging. Springer, 2013, pp. 328-339.

F. Benmansour and L. D. Cohen, “Fast object segmentation by growing
minimal paths from a single point on 2D or 3D images,” Journal of
Mathematical Imaging and Vision, vol. 33, no. 2, pp. 209-221, 2009.
O. Wink, W. J. Niessen, and M. A. Viergever, “Multiscale vessel
tracking,” Transactions on Medical Imaging, vol. 23, no. 1, pp. 130-
133, 2004.

S. Krig, “Image Pre-Processing,” in Computer Vision Metrics.
Springer, 2014, pp. 39-83.

S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum,
“Detection of blood vessels in retinal images using two-dimensional
matched filters,” Transactions on Medical Imaging, vol. 8, no. 3, pp.
263-269, 1989.



[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever,
“Multiscale vessel enhancement filtering,” in International Conference
on Medical Image Computing and Computer-Assisted Interventation.
Springer, 1998, pp. 130-137.

K. Krissian, G. Malandain, and N. Ayache, “Directional anisotropic
diffusion applied to segmentation of vessels in 3D images,” in In-
ternational Conference on Scale-Space Theories in Computer Vision.
Springer, 1997, pp. 345-348.

L. P. Cordella, P. Foggia, C. Sansone, F. Tortorella, and M. Vento,
“Reliability parameters to improve combination strategies in multi-
expert systems,” Pattern Analysis & Applications, vol. 2, no. 3, pp.
205-214, 1999.

S. K. Warfield, K. H. Zou, and W. M. Wells, “Simultaneous truth and
performance level estimation (STAPLE): an algorithm for the validation
of image segmentation,” Transactions on Medical Imaging, vol. 23,
no. 7, pp. 903-921, 2004.

D. Faraggi and B. Reiser, “Estimation of the area under the ROC
curve,” Statistics in Medicine, vol. 21, no. 20, pp. 3093-3106, 2002.
D. M. Powers, “Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation,” 2011.

J. Cohen, “Weighted kappa: Nominal scale agreement provision for
scaled disagreement or partial credit.” Psychological Bulletin, vol. 70,
no. 4, p. 213, 1968.

L. R. Dice, “Measures of the amount of ecologic association between
species,” Ecology, vol. 26, no. 3, pp. 297-302, 1945.

M. E. Gegtlindez-Arias, A. Aquino, J. M. Bravo, and D. Marin,
“A function for quality evaluation of retinal vessel segmentations,”
Transactions on Medical Imaging, vol. 31, no. 2, pp. 231-239, 2012.
R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis
using mathematical morphology,” Transactions on Pattern Analysis and
Machine Intelligence, no. 4, pp. 532-550, 1987.

C. Metz, M. Schaap, T. van Walsum, A. van der Giessen, A. Weustink,
N. Mollet, G. Krestin, and W. Niessen, “3D segmentation in the clinic:
A grand challenge II-coronary artery tracking,” Insight Journal, vol. 1,
no. 5, p. 6, 2008.

T. van Walsum, M. Schaap, C. Metz, A. van der Giessen, and
W. Niessen, “Averaging centerlines: mean shift on paths,” International
Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 900-907, 2008.

A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels
in retinal images by piecewise threshold probing of a matched filter
response,” Transactions on Medical Imaging, vol. 19, no. 3, pp. 203—
210, 2000.

D. J. Farnell, F. Hatfield, P. Knox, M. Reakes, S. Spencer, D. Parry,
and S. Harding, “Enhancement of blood vessels in digital fundus
photographs via the application of multiscale line operators,” Journal
of the Franklin Institute, vol. 345, no. 7, pp. 748-765, 2008.

C. G. Owen, A. R. Rudnicka, R. Mullen, S. A. Barman, D. Monekosso,
P. H. Whincup, J. Ng, and C. Paterson, “Measuring retinal vessel
tortuosity in 10-year-old children: validation of the Computer-Assisted
Image Analysis of the Retina (CAIAR) program,” Investigative Oph-
thalmology & Visual Science, vol. 50, no. 5, pp. 2004-2010, 2009.

J. Odstreilik, R. Kolar, A. Budai, J. Hornegger, J. Jan, J. Gazarek,
T. Kubena, P. Cernosek, O. Svoboda, and E. Angelopoulou, “Retinal
vessel segmentation by improved matched filtering: evaluation on a
new high-resolution fundus image database,” IET Image Processing,
vol. 7, no. 4, pp. 373-383, 2013.

R. V. J. P. H. Kilvidinen and H. Uusitalo, “DIARETDBI1 diabetic
retinopathy database and evaluation protocol,” Medical Image Under-
standing and Analysis, p. 61, 2007.

B. Al-Diri, A. Hunter, D. Steel, M. Habib, T. Hudaib, and S. Berry,
“REVIEW-a reference data set for retinal vessel profiles,” in Interna-
tional Conference of the IEEE Engineering in Medicine and Biology
Society. 1EEE, 2008, pp. 2262-2265.

M. Niemeijer, B. Van Ginneken, M. J. Cree, A. Mizutani, G. Quellec,
C. L. Sanchez, B. Zhang, R. Hornero, M. Lamard, C. Muramatsu et al.,
“Retinopathy online challenge: automatic detection of microaneurysms
in digital color fundus photographs,” Transaction on Medical Imaging,
vol. 29, no. 1, pp. 185-195, 2010.

H. Kirigli, M. Schaap, C. Metz, A. Dharampal, W. B. Meijboom,
S. Papadopoulou, A. Dedic, K. Nieman, M. De Graaf, M. Meijs et al.,
“Standardized evaluation framework for evaluating coronary artery
stenosis detection, stenosis quantification and lumen segmentation
algorithms in computed tomography angiography,” Medical Image
Analysis, vol. 17, no. 8, pp. 859-876, 2013.

M. Schaap, C. T. Metz, T. van Walsum, A. G. van der Giessen, A. C.
Weustink, N. R. Mollet, C. Bauer, H. Bogunovi¢, C. Castro, X. Deng

[145]

[146]
[147]
[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

25

et al., “Standardized evaluation methodology and reference database for
evaluating coronary artery centerline extraction algorithms,” Medical
Image Analysis, vol. 13, no. 5, pp. 701-714, 2009.

R. D. Rudyanto, S. Kerkstra, E. M. Van Rikxoort, C. Fetita, P.-
Y. Brillet, C. Lefevre, W. Xue, X. Zhu, J. Liang, 1. Oksiiz er al.,
“Comparing algorithms for automated vessel segmentation in computed
tomography scans of the lung: the VESSEL12 study,” Medical Image
Analysis, vol. 18, no. 7, pp. 1217-1232, 2014.

P. Jassi and G. Hamarneh, “Vascusynth: Vascular tree synthesis soft-
ware,” Insight Journal, vol. January-June, pp. 1-12, 2011.

T. K. Moon, “The expectation-maximization algorithm,” Signal Pro-
cessing Magazine, vol. 13, no. 6, pp. 47-60, 1996.

S. Z. Li, Markov random field modeling in image analysis.
Science & Business Media, 2009.

B. S. Everitt, Finite mixture distributions. Wiley Online Library, 1981.
P. Kovesi, “Image features from phase congruency,” Videre: Journal of
Computer Vision Research, vol. 1, no. 3, pp. 1-26, 1999.

R. Annunziata, A. Kheirkhah, S. Aggarwal, B. M. Cavalcanti, P. Ham-
rah, and E. Trucco, “Tortuosity classification of corneal nerves images
using a multiple-scale-multiple-window approach,” 2014.

R. Rigamonti and V. Lepetit, “Accurate and efficient linear structure
segmentation by leveraging ad hoc features with learned filters,”
International Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 189-197, 2012.

T. Joachims, T. Finley, and C.-N. J. Yu, “Cutting-plane training of
structural SVMS,” Machine Learning, vol. 77, no. 1, pp. 27-59, 2009.
S. A. Salem and A. K. Nandi, “Novel clustering algorithm (RACAL)
and a partial supervision strategy for classification,” in Machine Learn-
ing for Signal Processing. Proceedings of the Signal Processing Society
Workshop on. 1EEE, 2006, pp. 313-318.

Z. Tu and X. Bai, “Auto-context and its application to high-level
vision tasks and 3D brain image segmentation,” Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 10, pp. 1744-1757,
2010.

M. W. Law and A. C. Chung, “Three dimensional curvilinear structure
detection using optimally oriented flux,” in Computer Vision. Springer,
2008, pp. 368-382.

D.-X. Xue, R. Zhang, H. Feng, and Y.-L. Wang, “Cnn-SVM for
microvascular morphological type recognition with data augmentation,”
Journal of Medical and Biological Engineering, vol. 36, no. 6, pp. 755—
764, 2016.

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
arXiv Preprint arXiv:1511.06434, 2015.

C. Xu, D. L. Pham, and J. L. Prince, “Image segmentation using
deformable models,” Handbook of Medical Imaging, vol. 2, pp. 129—
174, 2000.

M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” International Journal of Computer Vision, vol. 1, no. 4, pp.
321-331, 1988.

P. Brigger, J. Hoeg, and M. Unser, “B-spline snakes: a flexible tool
for parametric contour detection,” Transactions on Image Processing,
vol. 9, no. 9, pp. 1484-1496, 2000.

C. Xu and J. L. Prince, “Generalized gradient vector flow external
forces for active contours,” Signal Processing, vol. 71, no. 2, pp. 131-
139, 1998.

V. Caselles, F. Catté, T. Coll, and F. Dibos, “A geometric model for
active contours in image processing,” Numerische Mathematik, vol. 66,
no. 1, pp. 1-31, 1993.

R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with
front propagation: A level set approach,” Transaction on Pattern
Analysis and Machine Intelligence, vol. 17, no. 2, pp. 158-175, 1995.
A. Tannenbaum, “Three snippets of curve evolution theory in computer
vision,” Mathematical and Computer Modelling, vol. 24, no. 5, pp.
103-119, 1996.

S. Osher and J. A. Sethian, “Fronts propagating with curvature-
dependent speed: algorithms based on Hamilton-Jacobi formulations,”
Journal of Computational Physics, vol. 79, no. 1, pp. 12-49, 1988.
V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,”
International Journal of Computer Vision, vol. 22, no. 1, pp. 61-79,
1997.

A. Yezzi Jr, S. Kichenassamy, A. Kumar, P. Olver, and A. Tannenbaum,
“A geometric snake model for segmentation of medical imagery,”
Transactions on Medical Imaging, vol. 16, no. 2, pp. 199-209, 1997.
T. Deschamps and L. D. Cohen, “Fast extraction of tubular and tree 3D
surfaces with front propagation methods,” in International Conference
on Pattern Recognition. Proceedings, vol. 1. 1EEE, 2002, pp. 731-734.

Springer



[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

T. Deschamps, P. Schwartz, D. Trebotich, P. Colella, D. Saloner, and
R. Malladi, “Vessel segmentation and blood flow simulation using
level-sets and embedded boundary methods,” in International Congress
Series, vol. 1268. Elsevier, 2004, pp. 75-80.

M. B. Milwer, L. F. Valencia, M. H. Hoyos, I. E. Magnin, and
M. Orkisz, “Fast-marching contours for the segmentation of vessel

lumen in CTA cross-sections,” in Annual International Conference of

the IEEE Engineering in Medicine and Biology Society. 1EEE, 2007,
pp- 791-794.

M. Orkisz, L. Flérez Valencia, and M. Herndndez Hoyos, “Models,
algorithms and applications in vascular image segmentation,” Machine
Graphics and Vision, vol. 17, no. 1, pp. 5-33, 2008.

J. A. Sethian, “Fast marching methods,” SIAM Review, vol. 41, no. 2,
pp- 199-235, 1999.

D. Chopp and J. A. Sethian, “Motion by intrinsic Laplacian of
curvature,” Interfaces and Free Boundaries, vol. 1, no. 1, pp. 107-123,
1999.

M. W. Law and A. C. Chung, “Efficient implementation for spherical
flux computation and its application to vascular segmentation,” Trans-
actions on Image Processing, vol. 18, no. 3, pp. 596-612, 2009.

S. Bouix, K. Siddiqi, and A. Tannenbaum, “Flux driven automatic
centerline extraction,” Medical Image Analysis, vol. 9, no. 3, pp. 209—
221, 2005.

S. Bouix, K. Siddiqi, and A. Tannenbaum, “Flux driven fly throughs,” in
International Conference on Computer Vision and Pattern Recognition.,
vol. 1. IEEE, 2003, pp. [-449.

M. S. Hassouna and A. A. Farag, “Robust centerline extraction frame-
work using level sets,” in Computer Society Conference on Computer
Vision and Pattern Recognition, vol. 1. IEEE, 2005, pp. 458—465.
A. Vasilevskiy and K. Siddigi, “Flux maximizing geometric flows,”
Transactions on Pattern Analysis and Machine Intelligence, vol. 24,
no. 12, pp. 1565-1578, 2002.

R. Moreno and O. Smedby, “Gradient-based enhancement of tubular
structures in medical images,” Medical Image Analysis, vol. 26, no. 1,
pp. 19-29, 2015.

T. F. Chan and L. A. Vese, “Active contours without edges,” Transac-
tion on Image processing, vol. 10, no. 2, pp. 266-277, 2001.

J. Mille and L. D. Cohen, “A local normal-based region term for
active contours.” in International Conference on Energy Minimization
Methods in Computer Vision and Pattern Recognition. Springer, 2009,
pp. 168-181.

C. Li, C.-Y. Kao, J. C. Gore, and Z. Ding, “Minimization of region-
scalable fitting energy for image segmentation,” Transaction on Image
Processing, vol. 17, no. 10, pp. 1940-1949, 2008.

G. Lithén, J. Jonasson, and M. Borga, “Blood vessel segmentation
using multi-scale quadrature filtering,” Pattern Recognition Letters,
vol. 31, no. 8, pp. 762-767, 2010.

M. Schaap, L. Neefjes, C. Metz, A. van der Giessen, A. Weustink,
N. Mollet, J. Wentzel, T. van Walsum, and W. Niessen, “Coronary
lumen segmentation using graph cuts and robust kernel regression,”
in Information Processing in Medical Imaging. Springer, 2009, pp.
528-539.

K. Hameeteman, M. Freiman, M. Zuluaga, L. Joskowicz, S. Rozie,
M. Van Gils, L. Van den Borne, J. Sosna, P. Berman, N. Cohen
et al., “Carotid lumen segmentation and stenosis grading challenge,”
The Midas Journal, 2009.

D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-Lea, “Design and
study of flux-based features for 3D vascular tracking,” in International
Symposium on Biomedical Imaging. 1EEE, 2009, pp. 286-289.

A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for bayesian filtering,” Statistics and Computing,
vol. 10, no. 3, pp. 197-208, 2000.

R. C. Bolles and M. A. Fischler, “A RANSAC-Based Approach to
Model Fitting and Its Application to Finding Cylinders in Range Data.”
in International Joint Conference on Artificial Intelligence,, vol. 1981,
1981, pp. 637-643.

Y. Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal
boundary & region segmentation of objects in nd images,” in Inter-
national Conference on Computer Vision, vol. 1. IEEE, 2001, pp.
105-112.

M. Felsberg and G. Sommer, “The monogenic signal,” Transactions on
Signal Processing, vol. 49, no. 12, pp. 3136-3144, 2001.

L. D. Cohen and R. Kimmel, “Global minimum for active contour
models: A minimal path approach,” International Journal of Computer
Vision, vol. 24, no. 1, pp. 57-78, 1997.

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]
[207]

[208]

26

T. Deschamps and L. D. Cohen, “Fast extraction of minimal paths
in 3D images and applications to virtual endoscopy,” Medical Image
Analysis, vol. 5, no. 4, pp. 281-299, 2001.

L. D. Cohen and T. Deschamps, “Grouping connected components
using minimal path techniques. Application to reconstruction of vessels
in 2D and 3D images,” in Computer Vision and Pattern Recognition.

J. A. Sethian, “A fast marching level set method for monotonically
advancing fronts,” Proceedings of the National Academy of Sciences,
vol. 93, no. 4, pp. 1591-1595, 1996.

J. N. Tsitsiklis, “Efficient algorithms for globally optimal trajectories,”
Transactions on Automatic Control, vol. 40, no. 9, pp. 1528-1538,
1995.

S. M. Hassouna and A. A. Farag, “Multistencils fast marching meth-
ods: A highly accurate solution to the eikonal equation on cartesian
domains,” Transactions on Pattern Analysis and Machine Intelligence,
vol. 29, no. 9, pp. 1563-1574, 2007.

J. A. Sethian and A. Vladimirsky, “Fast methods for the eikonal and re-
lated Hamilton—Jacobi equations on unstructured meshes,” Proceedings
of the National Academy of Sciences, vol. 97, no. 11, pp. 5699-5703,
2000.

H. Li and A. Yezzi, “Vessels as 4-D curves: Global minimal 4-D
paths to extract 3-D tubular surfaces and centerlines,” Transactions
on Medical Imaging, vol. 26, no. 9, pp. 1213-1223, 2007.

E. Konukoglu, M. Sermesant, O. Clatz, J.-M. Peyrat, H. Delingette,
and N. Ayache, “A recursive anisotropic fast marching approach to
reaction diffusion equation: Application to tumor growth modeling,”
in Information Processing in Medical Imaging. Springer, 2007, pp.
687-699.

A. Jameson, W. Schmidt, E. Turkel et al., “Numerical solutions of
the Euler equations by finite volume methods using Runge-Kutta time-
stepping schemes,” AIAA Paper, vol. 1259, p. 1981, 1981.

M. A. Giilsiin and H. Tek, “Robust vessel tree modeling,” in Inter-
national Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2008, pp. 602-611.

H. Tang, T. Van Walsum, R. S. Van Onkelen, S. Klein, R. Hameeteman,
M. Schaap, Q. J. Van den Bouwhuijsen, J. C. Witteman, A. Van der
Lugt, L. J. van Vliet et al., “Multispectral MRI centerline tracking in
carotid arteries,” in SPIE Medical Imaging. International Society for
Optics and Photonics, 2011, pp. 79 621N-79 621N.

E. Smistad, T. L. Falch, M. Bozorgi, A. C. Elster, and F. Lindseth,
“Medical image segmentation on GPUs—a comprehensive review,”
Medical Image Analysis, vol. 20, no. 1, pp. 1-18, 2015.

J. Weston, F. Ratle, H. Mobahi, and R. Collobert, “Deep learning via
semi-supervised embedding,” in Neural Networks: Tricks of the Trade.
Springer, 2012, pp. 639-655.

Y. Bengio, “Learning deep architectures for AL’ Foundations and
Trends in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85-117, 2015.

J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in Conference on
Computer Vision and Pattern Recognition, 2015, pp. 2625-2634.



	Introduction
	Algorithm workflow
	Evaluation Metrics
	Evaluation datasets
	Machine learning
	Unsupervised
	Supervised

	Deformable model
	Edge-based
	Parametric
	Geometric

	Region-based

	Tracking
	Model-based
	Minimum cost path

	Conclusion
	References

