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ABSTRACT

Large-scale ground truth data sets are of crucial importance for deep learning
based segmentation models, but annotating per-pixel masks is prohibitively time
consuming. In this paper, we investigate interactive graph-based segmentation al-
gorithms that enforce connectivity. To be more precise, we introduce an instance-
aware heuristic of a discrete Potts model, and a class-aware Integer Linear Pro-
gramming (ILP) formulation that ensures global optimum. Both algorithms can
take RGB, or utilize the feature maps from any DCNN, whether trained on the
target dataset or not, as input. We present competitive semantic (and panoptic)
segmentation results on the PASCAL VOC 2012 and Cityscapes dataset given ini-
tial scribbles. We also demonstrate that our interactive approach can reach 90.6%
mloU on VOC validation set with an overhead of just 3 correction scribbles. They
are thus suitable for interactive annotation on new or existing datasets, or can be
used inside any weakly supervised learning framework on new datasets.

1 INTRODUCTION

Deep Convolutional Neural Networks (DCNNs) excel at a wide range of image recognition tasks (He
et al., 20165 Ren et al, 2017; Shelhamer et al., |2017), such as semantic segmentation (Chen et al.,
2018b; |Shelhamer et al., 2017; Zhao et al.,[2017)) and panoptic segmentation (Kirillov et al.| [2019b;
Yang et al.;2019; Xiong et al., 2019} Kirillov et al.,|2019a)). Semantic segmentation studies the tasks
of assigning a class label to each pixel of an image, while instance segmentation (Chen et al.||2018a)
detects and segment each object instance. Panoptic segmentation unifies both tasks that investigate
to segment both things (such as person, cars) and stuff (such as road, sky) classes.

While DCNNs show outstanding results for semantic and panoptic segmentation, they have two con-
ceptional problems. First, they require huge amounts of annotated data. Annotating image segmen-
tation masks is a very time consuming and labor extensive task. For example, annotating a semantic
image mask took “more than 1.5h on average” on the Cityscapes dataset (Cordts et al., 2016). In
addition, DCNNs rely on their implicitly learned generalization probability and most of the state-
of-the-art architectures do not make use of any domain specific knowledge, such as neighborhood
relations and connectivity priors for segments. On the contrary, classical graph based segmenta-
tion models (Boykov et all 2001} [Yedidia et al., 2003) do not require any learning data and can
incorporate specific domain knowledge. Their major drawback is that they rely on human-designed
similarity features and require complex optimization algorithms or solvers, which are mainly CPU
based and non-suitable for real time applications.

In this work, we explore the combination of DCNNs and graph-based algorithms for annotating
ground truth segmentation. We propose two interactive algorithms that both enforce the connectivity
prior (to be more precise in Sec. [2.T). Specifically, we design a heuristic region growing method
based on the Potts model (Potts| [1952)), as well as an integer linear programming (ILP) formulation
of the markov random field (MRF) (Boykov et al.,|1998)). We utilize scribble based annotations from
human annotators as initialized or iterative hard constraints for our algorithms, which is typical in
a human-in-the-loop (HITL) annotation process. We explore two different scenarios. In the first
scenario, we assume that for the segmentation task, there is already a pre-trained DCNN with the
same class mapping. Thus, we could make full use of DCNN’s probability map and scribbles as
input to our algorithms. In the second scenario, we assume that no pre-trained DCNN for the same
objective is available. This is true for a lot of existing datasets, e.g., Cityscapes does not contain any
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Figure 1: Left: image with scribbles from Pascal VOC dataset. Mid-left: semantic segmentation
result of our heuristic with layer 3 of ResNet 101. Mid-right: result of our ILP with probability map
of DeepLab V2. Right: ILP without connectivity prior (with DeepLab V2 prob. map).

class labels for lane marking, which is crucial information for an autonomous vehicle. In this case,
we cannot use the class specific probability map, but the more generic low level features of a DCNN
can be utilized as feature description for the algorithm.

To investigate the general purpose of low level DCNN features, we compare DCNN trained on
ImageNet (Russakovsky et al.l |2015)) and COCO (Lin et al.| 2014)) with and without fine tuning on
the target dataset. Our experiments show that incorporating the connectivity prior as well as the
DCNN features greatly improves the algorithm performance. We present competitive semantic (and
panoptic) segmentation results on the PASCAL VOC 2012 (Everingham et al.}[2015) and Cityscapes
dataset. To the best of our knowledge, our method is the first “non-DCNN” panoptic segmentation
algorithm on Cityscapes with competing results, which shows the potential improvement gained by
a combined approach. See Fig. [I|for a visualization that uses initialized scribbles as input.

We also prototype our algorithms for the task of interactive annotation. Based on initial scribbles
and a baseline DCNN’s probability map, our algorithms acheive 90.9% mloU on VOC validation
set, with just 3 rounds (1 scribbles per image each round) of correction scribbles.

Summarized, our key contributions are

e anovel heuristic algorithm and a class-aware ILP formulation with connectivity prior,
e an in depth analysis of a combination of DCNN and graph-based segmentation algorithms,

e extensive evaluation of the scribble based interactive algorithms for semantic and panoptic
segmentations on two challenging datasets.

Our proposed algorithms have multiple use cases in annotating datasets for segmentation. First, they
can be used inside any HITL annotation tool, as the annotator interacts with the image in forms of
scribbles until satisfaction. Second, given initial scribbles, they can be used inside any weakly or
semi-supervised learning framework for semantic (and panoptic) segmentation.

Related Work. The procedure of annotating per pixel segmentation masks is similar to interac-
tive image segmentation, which is widely studied in the past decade. The method using bounding
boxes (Rother et al.,2004) is suitable for instance segmentation, which requires the user to draw the
box as tight as possible. Recently, 4 extreme points (Maninis et al., 2018; |Papadopoulos et al.,[2017)
clicking is used as an alternative which shows superior result. On the other hand, polygon based
methods (Russell et al.,|2008) require users to carefully click the extreme points of things and stuff,
and the accuracy heavily depends on the number of clicks. Among others, scribbles are recognized
as a more user-friendly way (Boykov & Jolly, 2001} |Levin et al.l 2008). Moreover, it is also natural
to annotate stuff classes using scribbles.

Modern annotation tools often adopt interactive deep learning based methods, including Polygon-
RNN++ (Acuna et al.| 2018) and Curve-GCN (Ling et al.l 2019), which allows the annotator to
click on the boundaries. Notably, a recent approach (Agustsson et al.,2019) enables both 4 extreme
points clicking and scribbles correction. Besides, they can also take advantage of ensemble learn-
ing (Zhou, 2009), to combine several inference results to produce a better segmentation. However,
these methods requires an existing ground truth dataset for DCNNs to learn on the first hand, which
may not be available when unknown domains or new classes are introduced.
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As a cheaper alternative, weakly supervised learning has drawn a lot of attention recently. (Dai et al.,
20155 |Khoreva et al.l 2017} L1 et al., 2018) claim that weakly iteratively trained by just bounding
boxes and image tags, the DCNN can achieve 95% segmentation score compared to fully supervised
on VOC. Since this method emphasizes on thing classes, it has worse score (or even none) on stuff
classes. Instead, (Lin et al. 2016} |Can et al., |2018) claim that iteratively training a DCNN by
scribble annotations suffers only a small degradation in performance on both thing and stuff classes.

For graph-based methods, the (discrete) Potts model (Potts| |1952) is widely used for denoising and
segmentation. The authors of (Shen et al.,[2017) formulate the problem as an ILP and try to solve the
global optimum, but only to a reduced image size, while (Nguyen & Brown, 2015) proposed an effi-
cient region-fusion-based heuristic algorithm. The MAP-MRF (maximizing a posterior in an MRF)
has been well studied for image segmentation. Previous methods focus on local priors (Boykov &
Veksler, 2006 |[Krahenbiihl & Koltunl 2011)), and efficient approximate algorithms exist, e.g., graph
cut (Boykov et al.|[2001) and belief propagation (Yedidia et al.|[2003). MRF with connectivity prior
has been studied in (Rempfler et al., 2016; |Nowozin & Lampert, 2009) and formulated as an ILP,
which can be solved by any ILP solver (Anand et al., [2017). Since solving an ILP exactly is in
general N'P-hard (Cand & Doig| [1960), they either solve a relaxation of the ILP, or focus on the
binary MRF case.

Our proposed interactive (in forms of scribble) multi-label annotation algorithms are graph based,
with global connectivity prior, i.e., they enforce pixels of the same label to be connected, which
allows the annotator to better control over the final segmentation.

2 PROPOSED APPROACH

2.1 PREREQUISITE

Given an image, we build an undirected graph G = (V| E) where the node set V' represents a
set of pixels (or superpixels) and E a set of edges consisting of un-ordered pairs of nodes. Image
segmentation can be transformed into a graph labeling problem, where the label set C'is pre-defined.

When talking about segmentation, we need to first distinguish between class, instance, and region
ID of a node. In semantic segmentation, the task is to assign a class label to each node in a graph. In
panoptic segmentation, one has to further assign an instance ID to the node that belong to the “thing”
class. In this paper, our algorithms require an additional region ID, which is linked to a scribble and
we assume nodes with the same region ID must be connected (to be explained in Sec.[3.2). This is to
deal with the case where an object of the ‘thing” or “stuff” class is separated into several connected
regions, e.g., the car in Fig. [2] is separated into two regions by a tree. Afterwards, the class and
region labels can be used to generate a panoptic segmentation.

2.2 CONNECTIVITY-CONSTRAINED OPTIMIZATION ALGORITHMS

We first discuss the formal definition of connectivity, and the two proposed algorithms in details,
i.e., the class-agnostic heuristic algorithm of the discrete Potts model and the class-aware ILP of
MREF with connectivity constraints.

2.2.1 THE CONNECTIVITY PRIOR

Two nodes u, v in a graph G are connected if there is a (u, v)-path in G. G is called connected if
every pair of nodes are connected in GG, otherwise it is disconnected. Let Gy C G be a connected
subgraph where every node is labeled ¢ € C. Then, the image segmentation with connectivity
constrains corresponds to find a partition of G into k (k = |C|) connected (and disjoint) subgraphs.
Enforcing connectivity constraints itself is proven to be A'P-hard in (Nowozin & Lampert, [2009).

2.2.2 THE £y REGION FUSION BASED HEURISTIC

Given a graph G(V, E), let y; be the information (either RGB or features from any DCNN) of node ¢,
and w; be its estimated value, the discrete Potts model (Potts} |1952) has the following form:

Hxlni/nzievHwi_yiHQ—’_Z(ij)EE)\Hwi — willo W
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where A is the regularization parameter. Here, the first term is the data fitting and the second is the
regularization term. We recall that the £, norm of a vector gives its number of nonzero entries.

In this paper, we introduce an iterative scribble based region fusion heuristic algorithm (which we
call £y H) with the “class” and “region” ID for each node. In the beginning, the nodes covered by
the same scribble are grouped together and labeled with the same IDs, while all other nodes are
unlabeled and in their individual group. Note that different regions can share the same class ID.
Then, the algorithm iterates over each group (outer loop) and its neighbors (inner loop) and decide
whether to merge the neighbors or not, by checking their region IDs. If both groups have region IDs
and are different, they cannot be merged. In all other cases, i.e., if both groups have no region ID or
only one has it, the following merging criteria (Nguyen & Brown, 2015)) are checked:

o0 [|Yi = Yjlly < B vij - (00 + 05). (2)

where o; denotes the number of pixels in group ¢, Y; the mean of image information (e.g., RGB
color) of group ¢, and y;; denotes the number of neighboring pixels between groups ¢ and j. Here, 8
is the regularization parameter, and it increases over the outer loop number.

If () is satisfied, two groups are merged, and their labels are updated according to the following
rule. If both groups have no “region” ID, the merged group still have none, hence unlabeled. If only
one group has region ID, the merged group inherits the label, hence labeled.

After one outer loop over all groups, 3 will increase and follows the exponential growing strategy
of (Nguyen & Brown, 2015), i.e., 8 = (‘%)2'2 * 1, where “iter” is the current number of outer
loop and 7 is the growing parameter. The procedure goes on until all groups are labeled, and the

complexity of o H is O(n), where n is the number of nodes.

Note that the above algorithm is approximate to problem (I)), and connectivity of each region is
enforced at every step. Given desired scribbles, /o H is able to generate panoptic segmentations (and
also semantic segmentations). Also note that the class ID does not play any role in the algorithm, it
inherits from the scribble and propagates with the region ID. Hence, this algorithm is class-agnostic.

2.2.3 THE ILP FORMULATION WITH CONNECTIVITY CONSTRAINTS

The MRF with pairwise data term can be formulated as the following ILP:

: £, 0 gl ol
min,, Zeec Ziev ;T + A ZZGC Z(i’j)eE dijl|z; x]\ 3)
f= ) 3
Zeec”i_l’ VieV, Bk
zte{0,1}, VieV, tcC, Bb)

where cf denotes the unary data term for assigning class label £ to node 4 (hence class-aware), d;;
the simplified pairwise term for assigning 7, j different labels, and A is the regularization parameter.
Constraint enforces that to each node is assigned exactly one label, i.e., ¢ = 1 if and only if
node ¢ is labeled /. Note that the absolute term can be easily transformed into linear terms by intro-
ducing additional continuous variables. The model above does, however, not guarantee connectivity,
which is instead enforced as follows.

Connectivity constraints with root node Let r (the first node of scribble ¢) denote the root node
of subgraph G. Then, the following constraints of (Rempfler et al.,2016) suffice to characterize the
set of all connected subgraphs of label ¢ that contain r

x; < ZSES zg, Yie VA\r:(i,r) ¢ E, VS € S(i,r), 4)
where S is the vertex-separator set of {i,r}, i.e., if the removal of S from G disconnects ¢ and 7.
And S(i, r) is the collection of all vertex-separator sets of {i,r}.

The number of constraints (@) is exponential with respect to the number of nodes in G, hence it is
not possible to include into problem (3)) all of them at in once. In practice, they are added iteratively
when needed (called the cutting planes method (Kelley, [1960)). In this paper, we adopt the K-
nearest cut generation strategy (Rempfler et al [2016) to add a few of them at each iteration. See
appendix for more details.
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Figure 2: Left: our scribble policy to draw as many scribbles as there are separated regions. Right:
ILP-P that introduces pseudo edges which connect multiple regions of the same class.

For the simple case where the region ID coincides with the class ID, i.e., the number of regions
equals that of classes, problem (3) with connectivity prior is solved as follows. We first solve (3)
and check if all subgraphs G, are connected. If not, we identify disconnected components, adds
constraints (@), and solve the resulting ILP again. This procedure continues until all subgraphs are
connected. This method ensures global optimumality if no time limit is restricted.

For the case where k regions share the same class ID, we introduce an improved formulation (we
call it ILP-P) where we add k& — 1 pseudo edges that “connect” all separated regions of the same class
(illustrated in Fig.[2). In particular, this does not increase the number of variables and is class-aware.
Then, the solving process follows the aforementioned framework. But ILP-P is only designed for
semantic segmentations, i.e., it is not region-aware. Post-processing methods are needed to separate
instances within the same class for panoptic segmentation.

3 OVERALL WORKFLOW

In this section, we describe the pre-processing steps as well as the scribble policy for our panoptic
and interactive segmentation.

3.1 SUPERPIXELS AS DIMENSION REDUCTION

Superpixels have long been used for image segmentation (Stutz et al.,[2017; [Achanta et al.}[2012), as
they can greatly reduce the problem size while not sacrificing much of the accuracy. In this paper, we

adopt SEEDS (den Bergh et al, 2012) to generate superpixels on the PASCAL VOC 2012 dataset,
while using a deep learning based method on the more challenging Cityscapes
dataset. We then build a region adjacency graph (RAG) G(V, E) of the superpixels, where each
superpixel forms a node (vertex) and edges connect two adjacent superpixels.

3.2 EXTRACTING IMAGE FEATURES USING SCRIBBLES

Our segmentation algorithms are scribble supervised, which are two folded. On the one hand, the
node labels, such as class, instance and region IDs are fixed if the nodes are covered by the corre-
sponding scribbles. On the other hand, for the ILP algorithm, if no high level image information
(i.e., probability map) exists, the scribbled superpixels will be used to extract information for the
class, i.e., one can use the average of the scribbled superpixels information to represent each class.

Although the input to the algorithms can be as simple as image RGB information, one can also take
advantage of the modern DCNN to extract deeper features. We distinguish two scenarios:

e No previous training data is available — one starts annotating images in a new dataset.
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e Training data available — one continues annotating more images of an existing dataset.

In the former case, other than RGB, one can also adopt any base network (i.e., ResNet 101 (He et al.}
2016)) pre-trained on other datasets (i.e., ImageNet) and use the output of the low level features that
extracts image edges, textures, etc. In the later case, one can fully utilize any modern DCNN trained
on the existing dataset, and use the output of the final layer (i.e., probability map).

Scribble generation policy For panoptic segmentation, first of all, the scribble itself must be
connected. Second, one has to draw as many scribbles as there are connected regions (both “thing”
and “stuff” class) presented in the image. For example, if an object is cut into separated regions, one
has to draw a scribble on each region. One sample image with scribbles is shown in Fig.[2]

3.3 INTERACTIVE SEGMENTATION USING SCRIBBLES

In a HITL annotation framework, it is typical that the annotator makes corrections to the current
segmentation until satisfaction. In this paper, we simulate the human correction scribbles (described
in Appendix [A.3). We then report analysis of the segmentation results up to 3 rounds of scribbles
correction in Sec. 4.4l

4  SEMANTIC AND PANOPTIC SEGMENTATION EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In this session, we conduct extensive experiments on the Pascal VOC 2012 and Cityscapes validation
set. In all our experiments, when we mention base network, we refer to the publicly released ResNet
101 that is pre-trained on ImageNet and COCO dataset. We adopt DeepLab V2 (Chen et al.| | 2018b)
(without CRF as post-processing) and DRN (Yu et al |2017) as our baseline DCNN to get the
probability maps, trained on their corresponding training sets. We adopt IBM Cplex (Bliek et al.|
2014])) version 12.8 to solve the ILP. All computational experiments are performed on a Intel(R)
Xeon(R) CPU E5-2620 v4 machine, with 64 GB memory.

We report the semantic and panoptic segmentation scores, where the pixel mean intersection over
union (mloU) is commonly used for semantic segmentation, and the panoptic quality (PQ) metric
is newly introduce in (Kirillov et al.;2019b) and is a combination of segmentation quality (SQ) and
recognition quality (RQ). The parameters for both heuristic and ILP is described in Appendix[A.4]

4.2 RESULTS ON PAscAL VOC 2012

Pascal VOC 2012 has 20 “thing” classes and a single “background” class for all other classes. We
evaluate our algorithms on the 1449 validation images. We first apply (den Bergh et al.l [2012) to
produce around 700 superpixels, and use the public scribbles set provided by (Lin et al.,[2016) as ini-
tial scribbles. Since some of these scribbles do not meet our policy (described in Sec.[3.2), only the
semantic segmentation is reported, in terms of mloU averaged across the 21 classes. Visualization
of 2 experiments are presented in Appendix[A.3]

No training data In this case, one can either use RGB or the output of lower level features of a
base network as input (y;) to our algorithms. We compare our class-agnostic heuristic (¢ H) using
RGB or different low level features from ResNet 101 as input, against ILP-P. We do not set any time
or step limit for the heuristic, but a time limit of 10 seconds for ILP-P (denoted ILP-P-10). We report
in Table E] the detailed comparison, where we use the RGB, first and third layer of ResNet 101 as
input to £o H, and “Dim” is the dimension of the input feature map.

We can see in Table|l|the advantage by incorporating lower level features maps of ResNet 101, that
improves ¢o H of RGB by 1.8%, even though it is pre-trained on completely different dataset. ILP-P
adopts £ H-layer 3 as initial solution, and further increase the mIoU by 0.3%.

With training data If training data is available, we use the probability map of DeepLab V2 (with
baseline mIoU 70.5%) trained on VOC training set as input to our algorithms, £o H get another huge
boost of 10.1% to 81.7% compared to using layer 3. We compare ILP without connectivity
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Table 1: Comparison on VOC 2012 val set when Table 2: Comparison when training data avail-

no training data is available. able, baseline DeepLab V2 (Chen et al |, [2018b).
Model Dim Time mloU Model Time (s) mloU (%)
loH-RGB 3 2.2 69.8 DeepLab V2 - 70.5
{yH-layer 1 64 29 70.8 MRF-prob 0.2 80.8
loH-layer3 256 39 71.6 4o H-prob 0.8 81.7
ILP-P-10 - 9.7 71.9 ILP-P-10 7.9 84.6

Figure 3: Top: Cityscapes original image and image with superpixels and artificial scribbles, Bot-
tom: semantic and panoptic segmentation of £y H-prob, with DCNN’s probability map as input.

that is solved to optimum (MRF-prob) with £y H and found out it is 0.9% worse, which shows the
importance of the connectivity prior. We then compare ILP-P with ¢y H as initial solutions (81.7%
mloU) and a time limit of 10 seconds, Table [2] suggests that ILP-P-10 improves the baseline of
DeepLab V2 by 14.1% and ¢y H-prob by 2.9%. An example of visual comparison is illustrated in
Fig.|1} Since ILP (E[) is class-aware and encodes pairwise term d;;, further boost on the performance
can be expected, given better baseline DCNN and an edge detector.

4.3 RESULTS ON CITYSCAPES

Cityscapes has 8 “thing” classes, and 11 “stuff” classes. While there is no public scribbles set, we
simulate our own that meet the policy in Sec.[3.2] The procedure is described in Appendix [A.2} and
one can see Fig. 3] for an example. We evaluate our algorithms on the 500 validation images with

the scribbles, where we first apply (Tu et al.,[2018) to produce around 2000 superpixels.

No training data We use RGB and output of layer 3 of Resnet 101 as input to £y H, and report
in Table [3] both mIoU and PQ. We also compare ¢y H to one recent weakly supervised learning
method 2018). It uses a more powerful PSPNet supervised by bounding
boxes and image tags, but requires end to end training. £y H shows superior results on both semantic
and panoptic segmentation, both around 10% boost compared to 2018). Note that it is not
a fair comparison since ours requires scribbles while does not at inference time.

2017) as our baseline (71.4% mloU), and run £oH and ILP-P using its probability map. Table

shows ¢y H-prob improves the baseline by 4.4%, and by 1.5% compared to ¢y H-layer 3 . Besides,
PQ also increases from 49.6% to 51.2%. Because of the rich class and instance information (more
than 15 classes per image) of Cityscapes and also that we use around 2000 superpixels (around 30k

With training data We use the public full-supervised (trained on Cityscapes) DRN (Yu et al.
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Table 3: Comparison on Cityscapes val set with and without its training data set. The later is based
on DRN (Yu et al,[2017)’s probability map.

Model Time mloU PQ SQ RQ
loH-RGB 6.5 74.2 49.6 743 63.8
loH-layer 3 7.2 74.3 49.6 745 63.7
Weakly (Liet al.|[2018) — 63.6 40.5 - -
DRN (baseline) - 714 - - -

Ly H-prob 7.2 75.8 51.2 756 64.8

binary variables), ILP struggles to find any better solution within the time limit of 10 seconds. The
score remains unchanged compared to £y H, and hence is not shown in the table. More visualization
examples can be seen in Appendix [A.6]

4.4 RESULTS ON INTERACTIVE SEGMENTATION

As described in Appendix [A.3] we simulate 3 rounds of scribbles (1 scribble per image per round)
to correct the largest error of previous segmentation. We report their mloU, compared to the base-
line DCNN (DeepLab V2) and current reported state-of-the-art (SOTA) deep learning approach
(DeepLab V3+ with 84.6%) (Chen et al.l 2018¢c) on VOC validation set. Results show that our al-
gorithms benefit from addition scribbles and the performance increases significantly. The best result
is reported by ILP-P-10 at iteration 3 (90.6%), a 6.0% mloU gain with just 3 correction scribbles.

VOC 2012 val set

95.0%

90.6%

90.0% 89.6%
? 50.2%

89.0%
84.6%

8 86.6%
85.0% @g7 6%

84.6%

mloU

=@=Deeplabv2
80.0%

=g= | H-layer3

==@=|,H-prob
75.0% bH-p

ILP-P-10
71.6%
70.0% =8=50TA

iter0 iterl iter2 iter3

Figure 4: Interactive segmentation on VOC 2012 val set. The mloU increases significantly with just
one correction scribble per iteration. Blue dot is our baseline and red dot the current SOTA DCNN.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed two interactive multi-label graph based algorithms with connectivity
prior. With DCNN’s features and initial scribbles as input, both achieve competitive semantic (and
panoptic) segmentation results on VOC and Cityscapes validation set. The interactive approach
further boost the performance with little overhead of correction scribbles. It would be interesting to
investigate our approach in a weakly supervised setting, where connectivity constraints are imposed
on the outputs of a deep network to leverage unlabeled data. Training with such discrete high-order
constraints can be explored via ADM (Alternating Direction Method) schemes, for instance, in way
similar to Marin et al.| (2019), which showed promising performances of imposing discrete MRF
on the outputs of convolutional networks. Finally, note that all the reported performance are upper
bounded by the accuracy of superpixels. Hence, using better superpixel algorithms or increasing its
number may further influence the performance.
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A APPENDIX

A.1 K-NEAREST CUT GENERATION ALGORITHM

We restrict ourselves to label ¢ only, and the approach described below will be repeated for the other
labels. Upon solving problem , we denote those with 2* = 1 as active nodes, and we look for all
connected components in Gy. We then iterate over all active components pair (H, ), and use the
following strategy to select K constraints {) each time.

Precisely, we run a breath-first search algorithm starting from H to collect K disjoint sets S,
(m = 1,...,K) where S,, contains all the inactive nodes with distance m to H. The search
terminates if K equals the number of nodes in H or if another active node is reached. The idea is
illustrated in Fig. [5] where active nodes are shown in black and r denotes the root node. The two
separator sets are marked in red and blue. Here K = 2, because it reaches the number of nodes
in H. The K-Nearest strategy is reported in (Rempfler et al.,[2016) to be one of the most successful
(among five) in terms of solved instances and computational efficiency.

oS £ 4

Figure 5: K-Nearest cut generation strategy. Active nodes are shown in black, and the two vertex
separator sets are marked in red and blue.

A.2 SIMULATING SCRIBBLE GENERATIONS

Since there is no public scribble set for Cityscapes, we hack the ground truth instance segment and
apply erosion and skeleton algorithms to simulate scribbles that meet our policy in Sec.[3.2]

We generated artificial scribbles for both training and validation sets of Cityscapes. We adopt kernel
size adapted erosion and skeleton method and apply them on the instance-level ground truth masks
of Cityscapes. Therefore, the format of the scribbles are also the same as Cityscapes, which is 16
bit grayscale PNG images with both class and instance labels. The code that generates the scribbles
will be open-source. All scribbles can be downloaded online

A.3 SIMULATING CORRECTION SCRIBBLES

For VOC 2012, we simulate only one scribble per image per iteration. Given the VOC ground
truth and current segmentation mask, we first identify the largest error region which is connected
and mislabelled. To simulate scribble from the error region, we first apply opening morphological
operation to smooth the region. Then, we use skeletonization to shrink the region to 1 pixel wide
without breaking the connectivity. We can then get the scribble by cutting branches in the skeleton
tree. One can see Fig. [6 for an illustration of generating correction scribbles. The code will also be
open-source soon.

A.4 PARAMETERS SETTING FOR THE EXPERIMENTS

Parameter y; is the information contained in pixel ¢, which could come from a vector of RGB
channels, layer 1 or layer 3 feature of ResNet 101, or from the probability map of a trained DCNN.

'https://drive.google.com/file/d/17sE1DDvqMDzdkpSNtrR 7ulFxtfxDJ49P/view 2usp=sharing
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Figure 6: Top: Images from VOC with initial scribbles and 2 rounds of scribbles correction. Bottom:
Their corresponding panoptic segmentation result.

For VOC 2012, the probability map comes from a trained DeepLab V2. For Cityscapes, we use
DRN to get the probability map inference.

For ¢y H, after several trials, the growing parameter 7 is set to 0.1, 20, 100 and 0.3 for RGB, layer
1, layer 3 and probability map of both VOC 2012 and cityscapes.

For ILP, when training data is available, we can use the probability map p; and ¢f = ||1¢ — p;|

9
where 17 is an k (k being the number of classes) dimensional vector with ||1¢||, = 1 and the ¢’s
position equals 1. When there is no training data, we compute the average of the nodes information
(y;) covered by scribbles of the same class (i.e., class ¢), and use this to represent class ¢ (denote as
Yz). Then ¢! = ||y; — Yi||,. The regularization parameter A for all the ILP is set to 100, and the

pairwise term d;; = e~ I1i~¥ill2,

A.5 VISUALIZATION OF EXPERIMENTS ON PASCAL VOC 2012
In this section, we present 2 experiments on Pascal VOC using our optimization algorithms, shown

in Fig.[7] The figures are displayed in order of Table ] where ILP-P-prob adopts the result of
£y H-prob as its initial solution.

Table 4: Layout of the Pascal experimental images

Left Middle Right
Top Original image ¢oH-RGB (o H-layer 3
Bottom ¢y H-prob MRF-prob  ILP-P-prob-5

In both experiments, we could see that using probability map is better than using low level feature
maps. ILP-P-prob improves the result in the first one, while verifies the optimally in the second
experiment, i.e., the initial solution of £y H-prob is already the global optimization for ILP-P-prob.

We observe that ILP-P-prob-5 has the same solution as MRF-prob in the first experiment, while
improves MRF-prob in the second one.

A.6  VISUALIZATION OF EXPERIMENTS ON CITYSCAPES
In this section, we present 3 experiments on Cityscapes using our optimization algorithms. The

figures are displayed in order of Table [5] where “SEEG” and “Panoptic” denotes semantic and
panoptic segmentation, respectively.
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Figure 7: Visualization of 2 experiments on Pascal VOC validation set.

Supervised by scribbles, both semantic and panoptic segmentation have already good shape and
sharp boundaries, even using just low level features of DCNN (pre-trained on other completely dif-
ferent datasets). The probability map from Cityscapes trained DCNN further improves the perfor-
mance. But they are still limited by the quality of superpixels, especially for small and thin objects.

Table 5: Layout of the Cityscapes experimental images
Left Right

Top Original image Our artificial Scribbles

Middle ¢oH-layer 3 SSEG ¢, H-layer 3 Panoptic

Bottom ¢y H-prob SSEG £y H-prob Panoptic
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