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Learning Finite-Dimensional Coding Schemes with Nonlinear Reconstruction
Maps\ast 
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Abstract. This paper generalizes the Maurer--Pontil framework of finite-dimensional lossy coding schemes to
the setting where a high-dimensional random vector is mapped to an element of a compact set of
latent representations in a lower-dimensional Euclidean space, and the reconstruction map belongs to
a given class of nonlinear maps. Under this setup, which encompasses a broad class of unsupervised
representation learning problems, we establish a connection to approximate generative modeling
under structural constraints using the tools from the theory of optimal transportation. Next, we
consider the problem of learning a coding scheme on the basis of a finite collection of training samples
and present generalization bounds that hold with high probability. We then illustrate the general
theory in the setting where the reconstruction maps are implemented by deep neural nets.
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1. Introduction. The problem of lossy compression is about constructing succinct repre-
sentations of high-dimensional random vectors that retain the features of the data that are
relevant for some subsequent task, such as reconstruction subject to a fidelity criterion or
statistical inference. When the compressed representation is digital, with constraints imposed
by the limitations on the speed of digital transmission or on the available storage space, the
corresponding problem of lossy compression falls within the purview of rate-distortion theory
[8] and the theory of vector quantization [19]. On the other hand, given recent advances in
machine learning using deep neural nets [21], it is of interest to consider ``analog"" schemes for
lossy compression that map the original high-dimensional data to a continuous latent repre-
sentation of lower dimensionality [7], and where the reconstruction operations that send the
latent representation back to the original high-dimensional space are implemented by nonlin-
ear maps with a given structure. Moreover, even if one can show the existence of an optimal
coding scheme matched to a given data-generating distribution, this distribution is often un-
known, and one has to resort to empirical design (or learning) of coding schemes on the basis
of training samples. This approach encompasses both classical problems like clustering and
vector quantization [19, 30] or principal component analysis [24], and modern unsupervised
representation learning techniques, such as autoencoders [36]. In all of these scenarios, it is
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618 JAEHO LEE AND MAXIM RAGINSKY

of interest to obtain theoretical bounds on the optimality gap (or generalization error) of the
learned coding scheme.

Recently, Maurer and Pontil [32] studied the problem of learning finite-dimensional coding
schemes with compact low-dimensional representation spaces and linear reconstruction maps
and used empirical process techniques to derive the bounds on the generalization error. Follow-
up work by Vainsencher, Mannor, and Bruckstein [42] extended the results of [32] to the setting
of dictionary learning. In this paper, we consider the problem of learning finite-dimensional
coding schemes with low-dimensional compact representation spaces and nonlinear reconstruc-
tion maps, such as deep neural nets. Moreover, the utility of finite-dimensional coding schemes
is not limited to compression---one can also view them as approximate generative models for
a given signal class subject to suitable structural constraints. For example, it was shown by
Pollard [37] that an optimal k-point vector quantizer for a d-dimensional random vector Z
can be turned into a generative model that best approximates the probability law of Z by a
discrete probability measure supported by k points in \BbbR d (if q is the map that implements
the quantizer, then the probability law of q(Z) gives the best approximation of the law of Z
in the Euclidean 2-Wasserstein metric; see subsection 2.2.1 for a detailed discussion). One of
the contributions of this paper is to show that this generative viewpoint is valid for a much
wider class of lossy compression schemes with nonlinear reconstruction maps, e.g., deep neural
networks.

The remainder of the paper is organized as follows. In section 2, we present a comprehen-
sive theoretical framework of finite-dimensional coding schemes and discuss its close relation
to unsupervised learning of latent representations. We also discuss its connection to opti-
mal transport theory [45] and rate-distortion theory [8]. In particular, the optimal transport
viewpoint, detailed in subsection 2.2.1, provides the foundation for viewing finite-dimensional
coding schemes as approximate generative models for high-dimensional data subject to struc-
tural constraints. In section 3, we formulate the problem of empirical design or learning of a
coding scheme and provide two bounds on the generalization error, one based on the theory
of optimal transport and another based on exploiting the geometric complexity of the class
of reconstruction maps. In section 4, we exemplify the use of the latter generalization bound
in the context of finite-dimensional coding schemes with reconstruction maps implemented by
deep neural nets composed of fully connected layers or convolutional layers. All proofs are
relegated to Appendix A.

Notation. For a vector, \| \cdot \| denotes the \ell 2 norm unless specified otherwise. For a matrix
A, \| A\| denotes the spectral norm: \| A\| := sup\{ \| Au\| : \| u\| = 1\} . For p \geq 1, the norm
\| \cdot \| p for matrices denotes the entrywise \ell p norm; i.e., for an m \times n matrix A, \| A\| p :=\bigl( \sum n

j=1

\sum m
i=1 | aij | p

\bigr) 1/p
. For a set U of vectors, \| U\| \infty denotes the maximum \ell 2 norm of the

elements in U, i.e., supu\in U \| u\| . We will use the standard O(\cdot ) notation, and will use \~O(\cdot ) to
hide logarithmic factors. All logarithms are taken to base e.

2. The framework of \bfitk -dimensional coding schemes. We consider a class of coding
schemes for a random vector Z taking values in a subset Z of \BbbR d. A k-dimensional coding
scheme (with k \leq d) consists of a compact set H \subset \BbbR k (which will be referred to interchange-
ably as the codebook, the latent space, or the representation space) and a measurable map
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LEARNING CODING SCHEMES WITH NONLINEAR DECODERS 619

f : H \rightarrow \BbbR d (the reconstruction map) which is an element of a given class F of admissible
reconstruction maps. The reconstruction error of h \in H for Z is defined as

ef (Z, h) := \| Z  - f(h)\| 2,(2.1)

and we consider the minimal reconstruction error

ef (Z) := min
h\in H

ef (Z, h) = min
h\in H

\| Z  - f(h)\| 2.(2.2)

We assume enough regularity for the elements of F to guarantee the existence of the minimum
in (2.2)---since H is compact, it suffices to ensure that all functionals of the form h \mapsto \rightarrow ef (z, h)
(z \in Z, f \in F) are lower semicontinuous. Let P denote the probability law of Z. Then the
expected reconstruction error of f \in F is given by

R(P, f) = EP [ef (Z)] = EP

\biggl[ 
min
h\in H

\| Z  - f(h)\| 2
\biggr] 
.(2.3)

Given the class F, an optimal coding scheme for P is any element f \in F that attains the min-
imum reconstruction error R(P,F) := inff\in F R(P, f). In this sense, learning coding schemes
can be understood as an unsupervised statistical learning problem with induced hypothesis
space consisting of the minimal error functions ef for all f \in F.

2.1. Relationship to representation learning frameworks. This framework is closely re-
lated to the notion of k-dimensional coding schemes introduced by Maurer and Pontil [32]. In
that work, Z is a random element of the unit ball of a (possibly infinite-dimensional) Hilbert
space \BbbH , the codebook H is a compact subset of \BbbR k, and F is taken to consist of linear
operators f : \BbbR k \rightarrow \BbbH obeying the constraint

sup
f\in F

sup
h\in H

\| f(h)\| \BbbH < \infty .

Here, we restrict \BbbH to be finite-dimensional, but allow nonlinear reconstruction maps.
This extension enables us to treat modern variants of unsupervised representation learn-

ing, such as autoencoders [36], under the same framework as vector quantization or k-means
clustering, principal component analysis, nonnegative matrix factorization, and sparse coding,
by carefully selecting the latent space H and the class of reconstruction maps F. We present
three simple illustrative examples below:

Vector quantization. A k-point vector quantizer on \BbbR d is specified by a codebook C =
\{ u1, . . . , uk\} \subset \BbbR d and the (nearest-neighbor) encoding map

Z \mapsto \rightarrow argmin
1\leq j\leq k

\| Z  - uj\| 2,(2.4)

with a fixed but arbitrary tie-breaking rule. The reconstruction error is given by eC(z) =
min1\leq j\leq k \| z - uj\| 2. As shown by Maurer and Pontil [32], vector quantization is an instance of
a linear k-dimensional coding scheme with H = \{ e1, . . . , ek\} (the canonical orthonormal basis
of \BbbR k) and the linear reconstruction map f : \BbbR k \rightarrow \BbbR d defined by f(ej) := uj (1 \leq j \leq k) and
extended to all of \BbbR k by linearity. Indeed, by the construction of f ,

ef (z) = min
h\in H

\| z  - f(h)\| 2 = min
1\leq j\leq k

\| z  - f(ej)\| 2 = min
1\leq j\leq k

\| z  - uj\| 2 = eC(z).(2.5)
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620 JAEHO LEE AND MAXIM RAGINSKY

Principal component analysis. In principal component analysis (PCA), one aims to con-
struct a projection operator which maps vectors in the observation space \BbbR d to a k-dimensional
linear subspace K. The objective is to find a projection operator \Pi : \BbbR d \rightarrow \BbbR d with k-
dimensional range to maximize the energy of the projected vector E\| \Pi Z\| 2. From the defini-
tion of projection and the fact that any projection can be decomposed as \Pi = TT \ast for some
linear isometry T : \BbbR d \rightarrow \BbbR k and its adjoint T \ast : \BbbR k \rightarrow \BbbR d, we have

\| \Pi Z\| 2 = \| Z\| 2  - \| Z  - \Pi Z\| 2 = \| Z\| 2  - min
z\prime \in K

\| Z  - z\prime \| 2 = \| Z\| 2  - min
h\in \BbbR k

\| Z  - Th\| 2.

Suppose that Z is the unit ball of \BbbR d. Then we can restrict the minimization above to
H = \{ h \in \BbbR k : \| h\| \leq 1\} . Thus, as already observed by Maurer and Pontil [32] PCA is
equivalent to the task

min
f\in F\mathrm{i}\mathrm{s}\mathrm{o}

EP

\biggl[ 
min

h\in \BbbR k: \| h\| \leq 1
\| Z  - f(h)\| 2

\biggr] 
,

where F\mathrm{i}\mathrm{s}\mathrm{o} denotes the family of linear isometries \BbbR k \rightarrow \BbbR d.

Neural nets. Let \sigma : \BbbR d \rightarrow \BbbR d be a fixed nonlinearity. Let F\mathrm{n}\mathrm{n} consist of all mappings
f : \BbbR k \rightarrow \BbbR d of the form

f(h) =

m\sum 
i=1

ci\sigma (Aih+ bi),(2.6)

where m \in \BbbN , ci are arbitrary real coefficients, Ai \in \BbbR d\times k are arbitrary matrices of connection
weights, and bi \in \BbbR d are arbitrary vectors of biases. We can take H to be, for example,
the \ell 2 unit ball in \BbbR k, in which case the coding problem consists in finding a vector h \in \BbbR k

with \| h\| \leq 1, such that Z can be best approximated in L2(P ) by passing h through a
nonlinear map of the form (2.6). The class F\mathrm{n}\mathrm{n} corresponds to neural nets with one hidden
layer; we will consider multilayer neural nets in what follows. This class of coding schemes is
closely related to the recent work of Bojanowski et al. [12] on generative latent optimization
(GLO), where the aim is to minimize the expected reconstruction error (2.3) over the class F
consisting of multilayer neural nets. Thus, the framework of finite-dimensional coding schemes
is sufficiently broad to cover a variety of schemes for latent generative modeling, including
generative adversarial nets (GANs) [21]. Indeed, as shown in [12], the GLO framework enables
the training of a generator without the need to train the discriminator (which is usually a
computational bottleneck), while the learned generator inherits many desirable properties of
ordinary GANs, such as arithmetic operations on the representation space or sharpness of
generated images.

2.2. Some results on the expected reconstruction error. The expected reconstruction
error (2.3) can be connected to the theory of optimal transport [45] and to rate-distortion
theory [8]. While the primary objective of this paper is to study the learning of coding
schemes, not the (minimum) expected reconstruction error itself, we briefly discuss the ideas
and implications below.
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LEARNING CODING SCHEMES WITH NONLINEAR DECODERS 621

2.2.1. Connection to optimal transport. Using ideas from the theory of optimal trans-
port [45], we can characterize the expected reconstruction error of a given f \in F as the
minimum approximation error of the data-generating distribution P by probability distribu-
tions on \BbbR d that can be realized as pushforwards of probability measures supported on the
codebook H by the reconstruction map f . Before a formal presentation of the result, we
introduce the notions from the optimal transport theory: Let P(Z) be the space of all Borel
probability measures on Z, and let Pp(Z) with p \in [1,\infty ) be the space of all P \in P(Z) with
finite pth moment, i.e.,

\int 
Z
\| z\| pP (dz) < +\infty . Then we can define the p-Wasserstein distance

on Pp(Z) as

Wp(P,Q) := inf
M(\cdot \times Z)=P
M(Z\times \cdot )=Q

\bigl( 
EM\| Z  - Z \prime \| p

\bigr) 1
p ,

where the infimum is taken over all couplings of P and Q, i.e., probability measures on the
product space Z\times Z with the given marginals P and Q. The name ``optimal transport"" comes
from the fact that W p

p (P,Q) can be interpreted as the minimum cost of transporting a unit
amount of some material initially distributed as P to a final distribution Q, when the unit
cost of transporting the material from location z to another location z\prime is \| z  - z\prime \| p.

Now consider the following recipe for generating a random element of \BbbR d: Fix a probability
distribution \pi on the codebook H and select a measurable map f : H \rightarrow \BbbR d. Then draw a
random element H \sim \pi and pass it through f . The probability law of f(H) is called the
pushforward of \pi by f and denoted by f\sharp \pi : for any Borel set A \subseteq \BbbR d,

f\sharp \pi (A) := \pi (f - 1[A]),

where f - 1[A] is the preimage of A under f . Then we have the following result.

Proposition 2.1. Suppose that Z is a compact subset of \BbbR d. Then, for any Borel decoder
f : H \rightarrow Z,

R(P, f) = inf
\pi \in P(H)

W 2
2 (P, f\sharp \pi ).

Consequently, for any admissible class F of reconstruction maps,

R(P,F) = inf
Q\in F\sharp P(H)

W 2
2 (P,Q),

where F\sharp P(H) is the set of all Borel probability measures Q on \BbbR d that can be implemented as
a pushforward f\sharp \pi of some \pi \in P(H) by some f \in F.

Remark 2.2. The assumption that H is compact is introduced mainly for the sake of
simplicity, and the result may be easily extended to arbitrary Borel sets H under appropriate
moment conditions on f\sharp \pi .

Remark 2.3. While Proposition 2.1 provides a connection between the coding perspective
and approximate generative modeling, it should be contrasted with the widely used framework,
where one fixes a prior \pi on H and optimizes only over the encoders f \in F [41]. The choice of
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622 JAEHO LEE AND MAXIM RAGINSKY

\pi is usually dictated by the considerations of computational tractability---e.g., how easy it is
to generate samples from \pi . With this in mind, we can define the \pi -dependent 2-Wasserstein
reconstruction error

R\pi (P, f) := W 2
2 (P, f\sharp \pi )

and aim to minimize it over the reconstruction maps in F:

R\pi (P,F) := inf
f\in F

W 2
2 (P, f\sharp \pi ).

By Proposition 2.1, the optimal reconstruction risk R(P,F) is a lower bound on R\pi (P,F) for
any \pi . Thus, on the one hand, optimizing the expected reconstruction error EP [ef (Z)] over
f \in F results in the ``best"" approximate generative model for P , in the sense that one obtains
both the optimal prior and the optimal reconstruction map. On the other hand, the optimal
prior is only specified implicitly through the optimal reconstruction map (see the proof of
Proposition 2.1 for details), and it will generally not be easy to sample from it.

It is useful to compare the above proposition to the following classic result of Pollard
[37]: Given a Borel probability measure P \in P2(\BbbR d), let ek(P ) denote the minimum expected
reconstruction error for Z \sim P over all k-point vector quantizers:

ek(P ) := inf
C\subset \BbbR d:| C| =k

EP

\biggl[ 
min
u\in C

\| Z  - u\| 2
\biggr] 
.(2.7)

Let P(k) \subset P2(\BbbR d) denote the collection of all probability measures supported by (at most) k
points in \BbbR d. Then

ek(P ) = inf
Q\in P(k)

W 2
2 (P,Q).(2.8)

Recalling the example of vector quantization from section 2, take H = \{ e1, . . . , ek\} (the
canonical orthonormal basis in \BbbR d) and let F be the collection of all linear maps f : \BbbR k \rightarrow \BbbR d.
Then any Q \in P(k) supported on the set \{ u1, . . . , uk\} can evidently be realized as f\sharp \pi with
\pi (\{ ej\} ) = Q(\{ uj\} ) and f(ej) = uj , 1 \leq j \leq k. Since we can now rewrite (2.8) as

ek(P ) = inf
Q\in F\sharp P(H)

W 2
2 (P,Q) \equiv R(P,F),(2.9)

one can view Pollard's result (2.8) as a special case of Proposition 2.1, which allows infinite
codebooks and nonlinear reconstruction maps.

This Wasserstein distance characterization of the expected reconstruction error enables an
alternative approach to studying the generalization error in learning coding schemes. In par-
ticular, we can show that the expected reconstruction error with respect to the empirical dis-
tribution Pn converges to the expected reconstruction error with respect to the data-generating
distribution P using the convergence properties of the empirical measure in Wasserstein dis-
tance. The idea will be formalized in subsection 3.1.
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2.2.2. Connection to rate-distortion theory. For a codebook H with finite cardinality,
the minimum reconstruction error R(P,F) can be lower-bounded in terms of information-
theoretic quantities originating in rate-distortion theory [8]. We begin by introducing the
necessary information-theoretic notions [15]: For any two probability measures \mu , \nu on \BbbR m,
the Kullback--Leibler divergence (or relative entropy) is defined as

D(\mu \| \nu ) :=
\int 

d\mu log
d\mu 

d\nu 

if \mu is absolutely continuous with respect to \mu , where \mathrm{d}\mu 
\mathrm{d}\nu is the Radon--Nikodym derivative,

and D(\mu \| \nu ) = \infty otherwise. The (Shannon) mutual information between two random vectors
Z1, Z2 is defined as

I(Z1;Z2) := D (PZ1Z2\| PZ1 \otimes PZ2) ,

where PZ1 , PZ2 , PZ1Z2 denote the marginal distributions and the joint distribution of Z1, Z2,
respectively. Now, the (information) distortion-rate function [9], with respect to the squared
error, is defined as

\BbbD (R,P ) := inf
P \widehat Z| Z :I(Z; \widehat Z)\leq R

E\| Z  - \widehat Z\| 2.(2.10)

The quantity (2.10) arises as a minimum achievable average squared error among any possible
lossy source coding schemes, i.e., compression/decompression of an analog signal distributed
as P using R nats (unit of information corresponding to the natural logarithm). We can now
bound the minimum reconstruction error by the distortion-rate function.

Proposition 2.4. Suppose that the codebook H has finite cardinality k. Then, for any class
of reconstruction maps F and any data-generating distribution P , we have

R(P,F) \geq \BbbD (log k, P ).

Expressing the minimum reconstruction error in terms of the distortion-rate function has
several advantages. First, the optimization problem (2.10) specifying the lower bound is a
convex program, and thus can be efficiently approximated (see, e.g., [11]). Second, we can
estimate \BbbD (log k, P ) from below using the Shannon lower bound [23] and get the lower bound
R(P,F) \succeq O(k - 2/d), while the results from high-resolution vector quantization theory [19]
provide a matching upper bound as k \rightarrow \infty .

Also note that Proposition 2.4 can be extended to the case of continuous codebooks via a
simple covering number argument, to provide a (possibly loose yet simple) lower bound on the
minimum reconstruction risk. For example, suppose that the decoders in F are L-Lipschitz.
Let C\varepsilon be any finite \varepsilon -cover of the codebook H, i.e.,

sup
h\in H

min
c\in C\varepsilon 

\| h - c\| \leq \varepsilon .(2.11)
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624 JAEHO LEE AND MAXIM RAGINSKY

Then, for any z \in Z, h \in H, c \in C\varepsilon and any \lambda \in (0, 1), we have

\| z  - f(c)\| 2 \leq 1

\lambda 
\| z  - f(h)\| 2 + 1

1 - \lambda 
\| f(c) - f(h)\| 2

\leq 1

\lambda 
\| z  - f(h)\| 2 + 1

1 - \lambda 
L2\| c - h\| 2,

where we have used Jensen's inequality and the Lipschitz continuity of f . Minimizing both
sides over c \in C\varepsilon and h \in H and using (2.11), we obtain

min
c\in C\varepsilon 

\| z  - f(c)\| 2 \leq 1

\lambda 
\cdot min
h\in H

\| z  - f(h)\| 2 + 1

1 - \lambda 
L2\varepsilon 2.

This leads to a lower bound of \lambda \cdot \BbbD (log | C\varepsilon | , P )  - \lambda 
1 - \lambda L

2\varepsilon 2 on the minimum reconstruction
error, for any choice of \varepsilon > 0 and \lambda \in (0, 1).

3. Learning coding schemes. We now consider the problem of unsupervised learning of
a coding scheme in the situation when the data-generating distribution P is unknown, but
we have access to training samples Z1, . . . , Zn drawn independently from P . In particular, we
study the generalization error with respect to a class F of reconstruction maps:

gen(P,F) := sup
f\in F

| R(P, f) - R(Pn, f)| (3.1)

= sup
f\in F

\bigm| \bigm| \bigm| \bigm| \bigm| EP min
h\in H

\| Z  - f(h)\| 2  - 1

n

n\sum 
i=1

min
h\in H

\| Zi  - f(h)\| 2
\bigm| \bigm| \bigm| \bigm| \bigm| ,

where Pn is the empirical distribution of the samples, i.e., Pn(A) = 1
n

\sum n
i=1 1\{ Zi \in A\} for any

Borel set A \subseteq \BbbR d. In other words, the generalization error measures how accurately the em-
pirical reconstruction error (i.e., the reconstruction error for the training data) approximates
the true reconstruction error for the data-generating distribution P . For simplicity, we drop
P and simply write gen(F) when the data-generating distribution is clear from the context.

We remind the reader that any upper bound on the generalization error gen(P,F), e.g.,
one that holds in expectation or with high probability, provides a theoretical performance
guarantee for unsupervised learning using empirical risk minimization (ERM):

\widehat f := argmin
f\in F

R(Pn, f) = argmin
f\in F

n\sum 
i=1

min
h\in H

\| Zi  - f(h)\| 2.(3.2)

Suppose, for simplicity, that a minimizing \widehat f exists (otherwise, we can consider \varepsilon -minimizers
and then take \varepsilon \rightarrow 0). Likewise, assume that there exists some f\ast \in F that achieves R(P,F).
Then, using the fact that R(Pn, \widehat f) \leq R(Pn, f

\ast ) by the construction of \widehat f , we have

R(P, \widehat f) - R(P,F) = R(P, \widehat f) - R(P, f\ast )

= R(P, \widehat f) - R(Pn, \widehat f) + R(Pn, \widehat f) - R(Pn, f
\ast ) + R(Pn, f

\ast ) - R(P, f\ast )

\leq 2 sup
f\in F

| R(Pn, f) - R(P, f)| .
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LEARNING CODING SCHEMES WITH NONLINEAR DECODERS 625

In the setting when the representation space H is finite, the problem of learning a coding
scheme from data and the corresponding generalization error (3.1) have been studied exten-
sively in the literature on vector quantization and k-means clustering [37, 6, 10]. The problem
of learning a coding scheme with H being a compact subset of \BbbR k was addressed first by
Maurer and Pontil [32], with subsequent work of Vainsencher, Mannor, and Bruckstein [42]
on dictionary learning, where H was the unit sphere in \BbbR k and various sparsity constraints
were imposed on the admissible linear reconstruction maps. Related work by Mehta and Gray
[34] analyzed the generalization error in the context of predictive sparse coding. In all these
works, linearity of the reconstruction maps remained the central assumption. One notable
exception is the recent work of Mazumdar and Rawat [33], where the reconstruction maps
are taken to be single-layer neural nets with rectified linear unit (ReLU) activation functions.
In that work, however, the focus is on approximate recovery (in the Frobenius norm) of the
matrix product AH, where A is an m \times k matrix of neural network weights and H is the
k\times n representation matrix for the n observations Z1, . . . , Zn, i.e., the ith column of H is the
element of H corresponding to Zi. However, the problem formulation in [33] does not assume
a data-generating distribution P and cannot be interpreted in the form of (3.1).

3.1. A generalization bound in terms of Wasserstein convergence. In this section, we
show that, as the number of samples n increases, the generalization error gen(P,F) converges to
zero with high probability for any class F of admissible reconstruction maps. More specifically,
we have the following result.

Theorem 3.1. Let P be a probability measure supported on a bounded set Z \subset \BbbR d for d \geq 3.
Then for any q > 2 there exists a constant Cq,d, such that, for any class F of admissible
reconstruction maps f : H \rightarrow Z and any \delta \in (0, 1),

gen(P,F) \leq Cq,d \cdot diam(Z)

\biggl( \int 
Z

\| z\| qP (dz)

\biggr) 1
q

n - 1
d + diam2(Z)

\sqrt{} 
2 log(1/\delta )

n

with probability at least 1 - \delta .

Remark 3.2. The constant Cq,d is related to the so-called Pierce constant [16] that appears
in the context of high-resolution vector quantization and is given explicitly in the proof.

The generalization bound of Theorem 3.1 demonstrates the tension between the richness
of the class of decoders F and the sample complexity of learning the best reconstruction map.
A similar phenomenon has been pointed out before in the context of generative adversarial
nets [2]. In that context, the problem of interest is to minimize the 1-Wasserstein distance
W1(P, f\sharp \pi ) over a class of ``generators"" f : H \rightarrow Z, where the prior \pi \in P(H) is fixed. The
key issue is that, for any f , the empirical counterpart W1(Pn, f\sharp \pi ) converges to W1(P, f\sharp \pi )
at the slow rate of n - 1/d; in fact, W1(Pn, P ) cannot converge to zero at a rate faster than
n - 1/d [18]. In this instance, we can pinpoint the source of the difficulty to the well-known
Kantorovich dual representation [45]

W1(P,Q) = sup
g:Z\rightarrow \BbbR 

1-\mathrm{L}\mathrm{i}\mathrm{p}\mathrm{s}\mathrm{c}\mathrm{h}\mathrm{i}\mathrm{t}\mathrm{z}

\bigm| \bigm| \bigm| \bigm| \int g dP  - 
\int 

g dQ

\bigm| \bigm| \bigm| \bigm| ,(3.3)
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626 JAEHO LEE AND MAXIM RAGINSKY

where the supremum is over all 1-Lipschitz functions g : Z \rightarrow \BbbR , i.e., | g(z) - g(z\prime )| \leq \| z - z\prime \| .
This function class is too massive for the n - 1/2 rate of convergence to take place. Based on
this observation, Arora et al. [2] proposed replacing W1 with what they termed the neural
net distance WG(P,Q) := supg\in G | 

\int 
Z
g dP  - 

\int 
Z
g dQ| , where the class of ``discriminators"" G

consists of multilayer neural nets with a fixed architecture with appropriately constrained
weights. The advantage of this relaxation is that, in many instances, one can show that
WG(Pn, P ) converges to zero at the dimension-free rate of n - 1/2. The problem of choosing
G to ``match"" F, so that WG(P, f\sharp \pi ) can be bounded from above and from below in terms
of W1(P, f\sharp \pi ) for any f \in F, was recently considered by Bai, Ma, and Risteski [3]. This is
possible, however, only if one restricts the complexity of F in some way.

Theorem 3.1 has already been partially foreshadowed by the characterization of the recon-
struction error in terms of the Wasserstein distance (Proposition 2.1). Indeed, for any Borel
reconstruction map f : H \rightarrow Z, we have the following estimate:

sup
\pi 

| W 2
2 (P, f\sharp \pi ) - W 2

2 (Pn, f\sharp \pi )| \leq 2 diam(Z) \cdot sup
\pi 

| W2(P, f\sharp \pi ) - W2(Pn, f\sharp \pi )| 

\leq 2 diam(Z) \cdot W2(P, Pn),

where the first inequality uses the identity a2 - b2 = (a - b)(a+ b), while the second inequality
is by the triangle inequality. Thus, the generalization error can be controlled by the 2-
Wasserstein distance between the empirical distribution Pn and the true distribution P ; the
actual proof, however, goes through the 1-Wasserstein distance for a more refined bound.

As Theorem 3.1 relies on the W1 convergence of Pn to P , the rate of n - 1/d can be improved
if we impose additional restrictions on the data-generating distribution P . For example, if
the upper Wasserstein dimension d\ast 1(P ) [47] is smaller than d (e.g., if P is supported on a
lower-dimensional submanifold of \BbbR d), then the asymptotic dependency of the bound can
be improved to n - 1/d\ast 1(P ). Also note that the convergence in Wasserstein distance (and the
generalization bound) can also take place when Z is a subset of an infinite-dimensional Hilbert
space under suitable assumptions on the moments of P ; see, e.g., [39, 28].

3.2. Generalization error for reconstruction maps with additional structure. Theo-
rem 3.1 shows that ERM is asymptotically consistent under minimal regularity assumptions
on the class of reconstruction maps F. However, the bound requires an exponential growth in
the number of training samples as the dimensionality of the data space Z grows.1 On the other
hand, if the complexity of F is constrained in some way, it is possible to use the techniques
from empirical process theory to show that the generalization error converges to zero at the
rate of n - 1/2 with high probability [44, 25]. Indeed, existing generalization guarantees for the
problem (3.1) are of order n - 1/2. For example, Maurer and Pontil [32] show that, when F

is a family of norm-constrained linear maps and H is a unit ball in \BbbR k, the generalization
bound of order O(k2/

\surd 
n) or O(k

\sqrt{} 
log n/n) (depending on the type of norm constraints) can

be attained. While the expressive capabilities of linear reconstruction maps are limited, the
bound is scalable, as it is completely independent of the dimensionality of the data space Z.

In light of this, we are now going to develop theoretical upper bounds on the generaliza-
tion error (with polynomial dependence on the dimensionality of Z) for a class of structured

1In fact, the constant Cq,d also grows exponentially in d.
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LEARNING CODING SCHEMES WITH NONLINEAR DECODERS 627

reconstruction maps that are richer than the class of linear decoders. More specifically, we
provide a generalization bound proportional to a suitable complexity measure of space F and
with rate n - 1/2. The complexity measure adopted in this work is related to the entropy in-
tegral [40] from the theory of empirical processes. Before presenting it, we need to introduce
some definitions first. Let A be a subset of a pseudometric space2 (T, d). A finite set S \subset T
is an \varepsilon -net of A if

sup
t\in A

min
s\in S

d(s, t) \leq \varepsilon .

The \varepsilon -covering number of A is then defined as

N(A, d, \varepsilon ) := min \{ | S| : S is an \varepsilon -net of A\} .

With these definitions in place, we take our complexity measure of F to be

\frakC (F) := inf
\alpha \geq 0

\Biggl\{ 
\alpha 
\surd 
n

6
+

\int diam(Z)
2

\alpha 

\sqrt{} 
logN(F, \| \cdot \| H, u) du

\Biggr\} 
,(3.4)

where N(F, \| \cdot \| H, \cdot ) is the covering number of F in the pseudometric

\| f  - f \prime \| H := sup
h\in H

\| f(h) - f \prime (h)\| .

The entropy integral (3.4) can be linked to other complexity measures used in empirical
process theory, such as Rademacher and Gaussian complexities, via Dudley's entropy integral
methods [17] and Sudakov minoration [26]. By using the entropy integral as a complexity
measure, we can prove the following general result, which will be applied to specific examples
of reconstruction maps in section 4.

Theorem 3.3. Let Z \subset \BbbR d be a bounded set. Then, for any class F of admissible recon-
struction maps and any \delta \in (0, 1),

gen(F) \leq 96 diam(Z)\surd 
n

\frakC (F) + diam2(Z)

\sqrt{} 
2 log(2/\delta )

n
, w.p. 1 - \delta .

Theorem 3.3 extends and refines the bound of Vainsencher, Mannor, and Bruckstein [42,
Lemma 21] based on covering numbers. More specifically, Theorem 3.3 could be used to
provide generalization guarantees for a family of nonlinear reconstruction maps, and the proof
incorporates the chaining of successively finer covers [40] instead of a single covering step, as
in [42]. This chaining-based bound is particularly useful when one considers a more general
class of reconstruction maps than linear maps with a given upper bound on the operator norm.
For example, consider the following setup: Let F be a family of d\times k matrices with entrywise
\ell 1 norm at most M , and let H be a unit ball in \BbbR k. Also, assume that we are using \ell 2 norms
on both the input and the output spaces. Then, using the empirical method of Maurey (see

2A pseudometric on a set T is a map d : T \times T \rightarrow \BbbR + that satisfies the triangle inequality, d(s, t) \leq 
d(s, t\prime ) + d(t\prime , t) for all s, t, t\prime \in T , but d(s, t) = 0 does not necessarily imply that s = t.
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628 JAEHO LEE AND MAXIM RAGINSKY

[49] and references therein), one can show that the logarithm of the covering number can be
bounded as

logN(F, \| \cdot \| H, \varepsilon ) \leq logN(F, \| \cdot \| 2, \varepsilon ) \leq 
\biggl\lceil 
M2

\varepsilon 2

\biggr\rceil 
log

\biggl( 
1 +

2dk\varepsilon 2

M2

\biggr) 
,(3.5)

where the first inequality holds by the relationship between the \ell 2-induced operator norm
and the entrywise \ell 2 norm (which in this case coincides with the Frobenius norm), which we
denote by \| \cdot \| 2. Combined with Theorem 3.3, this leads to a generalization bound of order
O(M

\surd 
log dk log n/

\surd 
n). On the other hand, the method based on single-step covering does

not provide a bound of the same order for any possible covering radius \varepsilon .

4. Deep neural nets as reconstruction maps. We now consider a family of nonlinear
reconstruction maps constructed by composing multiple layers of nonlinear transformations
with a given structure. Such multilayer generative models are commonly used in the domain
of autoencoders [46, 36] or GANs [22], including the case of GLO [12], which uses a generator
composed mainly of stacked transposed convolutional layers. Formally, we consider a family
of nonlinear maps of the form

f\ell (h;A1:\ell ) := F\ell 

\bigl( 
F\ell  - 1

\bigl( 
\cdot \cdot \cdot F1(h;A1) \cdot \cdot \cdot ;A\ell  - 1

\bigr) 
;A\ell 

\bigr) 
,(4.1)

where \ell \in \BbbN is the depth (or the number of layers). Here A1:\ell = \{ A1, . . . , A\ell \} is the collection
of the layerwise parameters, and, for each j \in \{ 1, . . . , \ell \} , Fj(\cdot ;Aj) : \BbbR wj - 1 \rightarrow \BbbR wj is a nonlinear
map parametrized by Aj . Here, wj is the width of the jth layer, and we take w0 = k (the
input dimension) and w\ell = d (the output dimension). The family of all depth-\ell reconstruction
maps is then defined as

F\ell :=
\Bigl\{ 
\pi Z \circ f\ell (\cdot ;A1:\ell )

\bigm| \bigm| \bigm| Aj \in Aj \forall j \in \{ 1, . . . , \ell \} 
\Bigr\} 
,(4.2)

where A1, . . . ,A\ell are a fixed family of layerwise parameter sets, and

\pi Z(\xi ) := argmin
z\in Z

\| \xi  - z\| (4.3)

is the projection onto Z. Generalization bounds involving such ``deep"" neural networks have
been studied extensively in the context of supervised learning, where one is given n independent
and identically distributed (i.i.d.) samples (X1, Y1), . . . , (Xn, Yn), and the objective is to learn
the parameters \widehat A1:\ell of a neural net \widehat f , such that \widehat Y = \widehat f(X) is an accurate prediction of Y ,
and the generalization error is given by

sup
A1:\ell \in A1:\ell 

\bigm| \bigm| \bigm| \bigm| \bigm| 1n
n\sum 

i=1

\| Yi  - f\ell (Xi;A1:\ell )\| 2  - E\| Y  - f\ell (X;A1:\ell )\| 2
\bigm| \bigm| \bigm| \bigm| \bigm| .(4.4)

One of the classical results in this direction is the work of Anthony and Bartlett [1], which
provides upper bounds on the Rademacher averages of neural network predictors via the
Vapnik--Chervonenkis dimension. More recent works focus on providing scalable generaliza-
tion bounds with weaker dependencies on the depth and width (dimensionality of layerwise
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LEARNING CODING SCHEMES WITH NONLINEAR DECODERS 629

outputs) of neural nets as an attempt to explain the empirically observed ability of neural
nets to generalize well. In these works, Rademacher averages of neural nets are bounded
via the contraction principle [35, 20], covering number arguments [5, 29], or approximations
by simpler classes of functions [20, 4]. By contrast, the problem of learning a k-dimensional
representation with neural nets as reconstruction maps is an unsupervised learning problem,
and its analysis involves the supremum

sup
f\in F\ell 

\bigm| \bigm| \bigm| \bigm| \bigm| 1n
n\sum 

i=1

ef (Zi) - EP [ef (Z)]

\bigm| \bigm| \bigm| \bigm| \bigm| (4.5)

= sup
A1:\ell \in A1:\ell 

\bigm| \bigm| \bigm| \bigm| \bigm| 1n
n\sum 

i=1

min
h\in H

\| Zi  - \pi Z(f\ell (h;A1:\ell ))\| 2  - EP

\biggl[ 
min
h\in H

\| Z  - \pi Z(f(h;A1:\ell ))\| 2
\biggr] \bigm| \bigm| \bigm| \bigm| \bigm| .

Most of the ideas used in the analysis of (4.4), with the exception of covering number results
via Theorem 3.3, cannot be employed directly for the analysis of (4.5), as the terms of the
form minh\in H \| Zi - \pi Z\circ f(h)\| 2 preclude the efficient ``peeling off"" [35] of neural network layers.

4.1. Fully connected neural nets. We first consider the simplest scenario of fully con-
nected (or dense) neural nets, which is one of the elementary building blocks of deep neural
architectures. In layer j, each neuron calculates a weighted sum of the outputs from all the
neurons in layer j  - 1 and passes it through a nonlinearity \sigma j : \BbbR wj \rightarrow \BbbR wj (referred to as
the activation function). The layerwise operation of fully connected neural networks can be
described as

Fj(\xi ;A) = \sigma j(A\xi ),(4.6)

where the parameter of Fj is the weight matrix A \in \BbbR wj\times wj - 1 , with Aik denoting the con-
nection weight from the kth neuron in the (j  - 1)th layer to the ith neuron in the jth layer.
We assume that the weight matrix A lies in the parameter space Aj with entrywise \ell 1 norm
constraints, i.e.,

Aj \subseteq 
\bigl\{ 
A | A \in \BbbR wj\times wj - 1 , \| A\| 1 \leq Mj

\bigr\} 
, j = 1, . . . , \ell ,

for some M1, . . . ,M\ell > 0. Each activation function \sigma j(\cdot ) is assumed to be Lj-Lipschitz (with
respect to the \ell 2 norm on both the input and the output) and to have the zero-in/zero-out
(ZIZO) property, i.e., \sigma j(0) = 0. Examples of such activation functions include the ReLU,
which applies the map u \mapsto \rightarrow u1\{ u\geq 0\} componentwise, the leaky ReLU, which applies the map
u \mapsto \rightarrow u1\{ u\geq 0\} + \delta u1\{ u<0\} for some small \delta > 0, and the hyperbolic tangent activation function
that applies the map u \mapsto \rightarrow tanhu componentwise. An example of an activation function
that does not have the ZIZO property is the sigmoid activation function that applies the
map u \mapsto \rightarrow 1

1+e - u componentwise; we will discuss the generalization bounds for neural net
reconstruction maps with such activation functions in subsection 4.3.

We now present the following generalization bound, which can be thought of as a
representation-learning counterpart of [5].
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Theorem 4.1 (wide net). Let Z be a compact convex subset of \BbbR d containing 0. Under the
above assumptions, for any \delta \in (0, 1),

gen(F\ell ) \leq 
48
\surd 
2 \cdot \ell log n\surd 

n
\cdot diam(Z)\| H\| \infty 

\left(  \ell \prod 
j=1

LjMj

\right)  \sqrt{}    \ell \sum 
j=1

log(2wj - 1wj + 1)

+
8 diam2(Z)\surd 

n
+ diam2(Z)

\sqrt{} 
2 log(2/\delta )

n

with probability at least 1 - \delta . Here, \| H\| \infty := suph\in H \| h\| .
If LjMj \leq 1 for each j, this bound is of order \~O(

\sqrt{} 
\ell 3/n) and is only logarithmically

dependent on the width of the neural network, as are the state-of-the-art bounds [5, 4] on the
generalization error for supervised learning using neural nets.

On the other hand, there are two scenarios where Theorem 4.1 falls short of being op-
timal, as we will see in Theorem 4.2 below. First, this depth dependence of \ell 3/2 is not
optimal in general if one is willing to sacrifice in terms of width-dependency. Indeed, the
number of parameters in the whole network is

\sum \ell 
i=1wi - 1wi, which implies that the optimal

dependence on depth may be of order \ell 1/2 for small width. Second, the multiplicative term
\| H\| \infty (

\prod \ell 
j=1 LjMj), which is a Lipschitz constant for the composite reconstruction map f\ell , is

excessively large in the case where the diameter of data space diam(Z) is small by comparison.
In the case of supervised learning with neural nets, Barron and Klusowski [4] recently showed
that one can replace the product-of-norm constant with norm-of-product, via sparsification
methods combined with a technique specifically developed for the ReLU activation functions.
For the problem of learning a coding scheme, however, it turns out that one can easily replace
the constant \| H\| \infty (

\prod \ell 
j=1 LjMi) with diam(Z).

The following generalization bound, based on the volumetric estimate for the covering
numbers and the one-step approximation argument of Vainsencher, Mannor, and Bruckstein
[42], complements Theorem 4.1 in the above two aspects.

Theorem 4.2 (deep net). Suppose that Aj is a family of matrices with spectral norms at
most Mj, instead of the \ell 1 norm, for each j \in \{ 1, . . . , \ell \} . Then, for any \delta \in (0, 1),

gen(F\ell ) \leq diam2(Z)

\sqrt{} 
2
\sum \ell 

j=1wj - 1wj
\surd 
n

\sqrt{}     log

\left(  3\ell 
\surd 
n\| H\| \infty 

\left(  \ell \prod 
j=1

LjMj

\right)  \right)  
+ diam2(Z)

\sqrt{} 
2 log(2/\delta )

n
+

4\surd 
n
, w.p. 1 - \delta .

Note that the \ell 1 norm constraint on the weight matrices automatically implies that the
spectral norm of the weight matrices are bounded from above by the same constant.

4.2. Convolutional neural nets. As Theorem 4.2 implies, the generalization error can be
upper-bounded by the term proportional to the square root of the number of parameters, even
when the neurons are not fully connected and the effective number of parameters is strictly
smaller than

\sum \ell 
j=1wj - 1wj . One important example of this is the case of convolutional neural
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networks (also referred to as CNNs or ConvNets) [27, 21], which are widely used in the context
of image data. Rather than calculating the full inner product of the inputs and the weights,
each neuron in a convolutional layer takes the inner product of a limited number of outputs
from the spatially close neurons in the previous layer and the filter weights of the convolution
filter, which are shared among all neurons. Often, more than one channel of convolution
filters is used; the outputs of such a layer will be equipped with an internal depth equal to
the number of filters being used. The layerwise operation has the form

Fj

\Bigl( 
\xi ;A(1:vj)

\Bigr) 
= \sigma 

\Bigl( 
conv

\Bigl( 
\xi ;A(1:vj)

\Bigr) \Bigr) 
(4.7)

for some convolution operator conv (specified below), input \xi , convolution filters A(1:vj), and
an activation function \sigma . For simplicity, we assume that all the \sigma are 1-Lipschitz with respect
to the \ell 2 norm and have the ZIZO property.

First, we consider the simplest case of one-dimensional convolutions, where the input \xi to
the jth layer is a wj - 1 \times vj - 1 matrix, and each of the vj convolution filters A(1), . . . , A(vj) is
a uj \times vj - 1 matrix for some filter width uj . The convolution operation \xi \mapsto \rightarrow conv

\bigl( 
\xi ;A(1:vj)

\bigr) 
\in 

\BbbR wj\times vj is then specified by\Bigl( 
conv

\Bigl( 
\xi ;A(1:vj)

\Bigr) \Bigr) 
i,k

=

uj\sum 
i\prime =1

vj - 1\sum 
j\prime =1

A
(k)
i\prime ,j\prime \xi i\prime +s(i - 1)+

1 - uj
2

,j\prime 
, i = 1, . . . , wj ; k = 1, . . . , vj ,(4.8)

for some stride s denoting the scale of the convolution filter shift for each output entry. Note
that we are using the convention \xi i,k = 0 when i /\in \{ 1, . . . , wj - 1\} or k /\in \{ 1, . . . , vj - 1\} . We
also assume that the convolution filters have constrained \ell 1 norms in the following sense:

Aj \subseteq 

\left\{   A(1:vj) | A(k) \in \BbbR uj\times vj - 1 ,

\sqrt{}    vj\sum 
k=1

\| A(k)\| 21 \leq Mj

\right\}   
for some constants M1, . . . ,M\ell > 0. Then we can prove the following result.

Theorem 4.3 (spatial dimension 1). Under the above assumptions, for any \delta \in (0, 1),

gen(F\ell ) \leq diam2(Z)

\sqrt{} 
2
\sum \ell 

j=1 ujvj - 1vj
\surd 
n

\sqrt{}     log

\left(  3\ell 
\surd 
n\| H\| \infty 

\left(  \ell \prod 
j=1

Mj

\right)  \right)  
+ diam2(Z)

\sqrt{} 
2 log(2/\delta )

n
+

4\surd 
n

w.p. 1 - \delta .

Notice that the generalization bound in Theorem 4.3 is now proportional to the square
root of

\sum \ell 
j=1 ujvj - 1vj , which is the number of parameters in the filter matrices of all layers,

and which is strictly smaller than the total number
\sum \ell 

j=1wj - 1vj - 1wjvj of all possible neural
connections. The proof of Theorem 4.3 relies on the following variant of Young's convolution
inequality:

\| conv(\xi ;A(1:v))\| 2 \leq 

\sqrt{}    v\sum 
k=1

\| A(k)\| 21 \cdot \| \xi \| 2.(4.9)
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632 JAEHO LEE AND MAXIM RAGINSKY

Inequality (4.9) enables the use of the usual ``peeling-off"" machinery used for the analysis of
fully connected neural networks (see the proof of Theorem 4.3 in the appendices for details
and the proof of (4.9)). Note further that (4.9) has also been discovered independently in the
work by Long and Sedghi [31], where the inequality is used to provide a size-free generalization
bound for predictors composed of convolutional neural nets.

Comparing with the generalization error bounds for supervised learning in the recent
work of Li et al. [29] that analyzes convolutional neural nets for prediction, we emphasize
two key differences. First, our method does not require orthogonality of the convolutional
filters and can be applied to an arbitrary collection of norm-constrained matrices. Second,
as the convolution inequality (4.9) can be extended naturally to higher-order tensors, the
generalization bound can be provided for the cases of higher spatial dimensions, e.g., images
(spatial dimension 2) or videos (spatial dimension 3).

To formalize the second point, consider the following setup: For the jth layer, the in-
put \xi takes the form of a tensor of order m + 1 for some spatial dimension m, i.e., \xi \in 
\BbbR wj - 1,1\times \cdot \cdot \cdot \times wj - 1,m\times vj - 1 . The parameter space Aj is composed of vj channels of weight tensors
A(k) of dimension uj,1 \times \cdot \cdot \cdot \times uj,m \times vj - 1 with some filter width uj,1, . . . , uj,m, and with a
norm constraint

Aj \subseteq 

\left\{   A(1:vj)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\sqrt{}    vj\sum 

k=1

\| A(k)\| 21 \leq Mj

\right\}   .

Given strides sj,1, . . . , si,m for each spatial dimension, the convolution can be characterized as

\Bigl( 
conv

\Bigl( 
\xi ;A(1:vj)

\Bigr) \Bigr) 
r1:rm,k

:=

uj,1\sum 
r\prime 1=1

\cdot \cdot \cdot 
uj,m\sum 
r\prime m=1

vj - 1\sum 
j\prime =1

A
(k)
r\prime 1:r

\prime 
m,j\prime 

\cdot \xi 
r\prime 1+s1(r1 - 1)+

1 - uj,1
2

,...,r\prime m+sm(rm - 1)+
1 - uj,m

2
,j\prime 
.(4.10)

Then we can prove the following result.

Theorem 4.4 (spatial dimension l). Under the above assumptions, for any \delta \in (0, 1),

gen(F\ell ) \leq diam2(Z)

\sqrt{} 
2
\sum \ell 

i=1 vi - 1vi(
\prod l

j=1 ui,j)\surd 
n

\sqrt{}    log

\Biggl( 
3\ell 
\surd 
n\| H\| \infty 

\Biggl( 
\ell \prod 

i=1

Mi

\Biggr) \Biggr) 

+ diam2(Z)

\sqrt{} 
2 log(2/\delta )

n
+

4\surd 
n

w.p. 1 - \delta .

Remark 4.5. Along with proper shifts, formula (4.10) is general enough to cover the case of
fractional strides (also called transposed convolution or deconvolutional networks) [48], which
is a building block of generative adversarial networks [22], with the convention \xi i,j = 0 for
noninteger values i, j.

Remark 4.6. Max-pooling layers, which are commonly inserted between convolutional lay-
ers to reduce the dimensionality of the representation [21, Chap. 9], are 1-Lipschitz mappings
with the ZIZO property. Hence, their presence does not affect the generalization bound.
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4.3. Nonlinearities without the ZIZO property. In subsections 4.1 and 4.2, it was as-
sumed that the activation functions had the ZIZO property, i.e., \sigma (0) = 0; in the proof of
Theorem 4.1, this assumption enables a recursive breakdown of suph\in H \| f\ell (h) - \~f\ell (h)\| for any
two \ell -layer neural nets f\ell and \~f\ell into \ell terms, each proportional to the \ell 1 distance between
the weight matrices. The ZIZO property provides a ready way to upper-bound the magnitude
of the outputs from each layer.

However, there are several commonly used activation functions, e.g., the sigmoid (u \mapsto \rightarrow 
1

1+e - u applied entrywise), which do not satisfy this assumption. On the other hand, the
outputs from such activation functions are often uniformly bounded, which opens up an al-
ternative path to control the pseudometric suph\in H \| f\ell (h) - \~f\ell (h)\| .

To formalize the idea, let us revisit the setting of fully connected neural nets as recon-
struction maps: We assume that the layerwise operation is given as Fj(\xi ;A) = \sigma j(A\xi ), where
the weight matrix A \in \BbbR wj\times wj - 1 has \ell 1 norm no greater than Mj . In addition, we assume
that the activation functions \sigma j for each layer are Lj-Lipschitz (with respect to the \ell 2 norm),
and that their outputs are bounded in norm by Bj , i.e., \| \sigma j(x)\| \leq Bj for any x \in \BbbR wj . Then
we can prove the following generalization bound.

Theorem 4.7. Under the above assumptions, for any \delta \in (0, 1),

gen(F\ell ) \leq 
48
\surd 
2 log n\surd 
n

\left(  \ell \sum 
i=1

Bi - 1

\left(  \ell \prod 
j=i

LjMj

\right)  \right)  
\sqrt{}    \ell \sum 

i=1

log(2wi - 1wi + 1)

+
8 diam2(Z)\surd 

n
+ diam2(Z)

\sqrt{} 
2 log(2/\delta )

n
, w.p. 1 - \delta .

Unlike Theorem 4.1, which was independent of the width of the neural net up to loga-
rithmic factors, the above generalization bound may grow as the width of the neural net gets
larger; for example, the \ell 2 norm of the w-dimensional vector processed by sigmoid activations
can be as large as

\surd 
w, which gives the generalization bound roughly of order \~O(

\sqrt{} 
\ell 2w/n).

Appendix A. Proofs.

A.1. Proof of Proposition 2.1. As Z is compact, we automatically have P, f\sharp \pi \in P2(\BbbR d)
for any \pi \in P(H) and any measurable f : \BbbR k \rightarrow Z. Also, by the measurable selection theorem
[38], for any \varepsilon > 0 there exists a measurable map \phi \varepsilon : Z \rightarrow H such that \| z  - f(\phi \varepsilon (z))\| 2 \leq 
minh\in H \| z  - f(h)\| 2 + \varepsilon for all z \in Z. Denote by \pi \varepsilon the pushforward (\phi \varepsilon )\sharp P . Evidently,
\pi \varepsilon \in P(H). Then, since the joint law of Z and f(\phi \varepsilon (Z)) is a coupling of P and f\sharp \pi \varepsilon , we have

EP min
h\in H

\| Z  - f(h)\| 2 + \varepsilon \geq inf
M(\cdot \times H)=P
M(Z\times \cdot )=\pi \varepsilon 

EM\| Z  - f(H)\| 2 \geq inf
\pi 

W 2
2 (P, f\sharp \pi )

by the definition of \pi \varepsilon . Taking \varepsilon \rightarrow 0, we get R(P, f) \geq infQ\in F\sharp P(H)W
2
2 (P,Q). The other

direction is straightforward, as for any distribution \~\pi \in P(H) and any z \in Z, we have
minh\in H \| z  - f(h)\| 2 \leq E\~\pi \| z  - f(h)\| 2.

A.2. Proof of Proposition 2.4. Consider the Markov chain

Z
g\in G - \rightarrow H

f\in F - \rightarrow \widehat Z,
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634 JAEHO LEE AND MAXIM RAGINSKY

where Z is distributed as P , and G is a family of all measurable maps Z \rightarrow H. Then we have
I(Z; \widehat Z) \leq I(Z;H) \leq log k, where the first inequality is due to data-processing inequality and
the second inequality is by the properties of mutual information [15]. Then we have

inf
f\in F

EP

\biggl[ 
min
h\in H

\| Z  - f(h)\| 2
\biggr] 
\geq inf

f,g:| H| \leq k
EP \| Z  - f(g(Z))\| 2 \geq inf

P \widehat Z| Z :I(Z; \widehat Z)\leq \mathrm{l}\mathrm{o}\mathrm{g} k
EP \| Z  - \widehat Z\| 2\underbrace{}  \underbrace{}  

=D(\mathrm{l}\mathrm{o}\mathrm{g} k,P )

.

A.3. Proof of Theorem 3.1. Let \Pi (Pn, P ) be a set of all couplings of Pn and P , i.e., all
joint distributions M \in P(Z\times Z), such that M(\cdot \times Z) = Pn and M(Z\times \cdot ) = P . Then, for any
M \in \Pi (Pn, P ) and any admissible decoder f \in F, we have

| R(Pn, f) - R(P, f)| \leq 
\int 
Z\times Z

M(dz,dz\prime )

\bigm| \bigm| \bigm| \bigm| min
h\in H

\| z  - f(h)\| 2  - min
h\prime \in H

\| z\prime  - f(h\prime )\| 2
\bigm| \bigm| \bigm| \bigm| 

\leq 
\int 
Z\times Z

M(dz,dz\prime )max
h\in H

\bigm| \bigm| \| z  - f(h)\| 2  - \| z\prime  - f(h)\| 2
\bigm| \bigm| 

\leq 2 diam(Z)

\int 
Z\times Z

M(dz, dz\prime )max
h\in H

\bigm| \bigm| \| z  - f(h)\|  - \| z\prime  - f(h)\| 
\bigm| \bigm| 

\leq 2 diam(Z)

\int 
Z\times Z

M(dz, dz\prime )\| z  - z\prime \| ,

where the third inequality uses the identity \| u\| 2 - \| v\| 2 = \langle u+v, u - v\rangle and Cauchy--Schwarz.
Taking the infimum of both sides over all M \in \Pi (Pn, P ), f \in F, we have

sup
f\in F

| R(Pn, f) - R(P, f)| \leq 2 diam(Z) \cdot W1(Pn, P ).

Since both P and Pn are supported on Z, the value of the function (Z1, . . . , Zn) \mapsto \rightarrow W1(Pn, P )
changes by at most 1

ndiam(Z) if we replace any Zi by an arbitrary z\prime \in Z. Thus, by McDiar-
mid's inequality,

P
\Bigl( 
W1(Pn, P ) - EW1(Pn, P ) > t

\Bigr) 
\leq exp

\biggl( 
 - 2nt2

diam2(Z)

\biggr) 
.(A.1)

Combining (A.1) with the Wasserstein convergence results of Dereich, Scheutzow, and Schott-
stedt [16, Theorems 1--3] (with p = 1), we get the claimed result with the constant

Cq,d := 18d \cdot 2d 2
d - 1
d

q

1
2  - 2 - 

d - 1
d

q
+ 6d \cdot 2

d
2

2
q
2

1 - 2
2 - q
2

.

A.4. Proof of Theorem 3.3. The proof uses a standard chaining argument [43, 5], except
additional care must be taken to relate the properties of the induced class EF := \{ ef : f \in F\} 
to those of F. Given Z1, . . . , Zn, define the random process Xf := n - 1/2 \cdot 

\sum n
i=1 \varepsilon i \cdot ef (Zi),

where \{ \varepsilon i\} ni=1 are i.i.d. Rademacher random variables, i.e., P[\varepsilon i = \pm 1] = 1/2, independent of
Z1, . . . , Zn. By the symmetrization inequality, we have

EZn sup
f\in F

[R(P, f) - R(Pn, f)] \leq 
2\surd 
n
EZnE\varepsilon n sup

f\in F
Xf .(A.2)
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Now, for all t \in \{ 0, 1, 2, . . .\} , let Nt be a minimal (diam(Z) \cdot 2 - t)-net of F in \| \cdot \| H, and let \pi t :
F \rightarrow Nt be the corresponding nearest neighbor matching, i.e., \pi t(f) := argminf \prime \in Nt

\| f - f \prime \| H.
Then we can telescope E supf\in F Xf as

E sup
f\in F

Xf \leq E sup
f\in F

X\pi 0(f) +E sup
f\in F

\bigl( 
Xf  - X\pi T (f)

\bigr) 
+

T\sum 
t=1

E sup
f\in F

\bigl( 
X\pi t(f)  - X\pi t - 1(f)

\bigr) 
(A.3)

for some T \in \BbbN (to be tuned later). Since | N0| = 1 (we can take any singleton \{ f\} \subset F to be
a minimal diam(Z)-net of F), the first term is zero. To handle the remaining two terms, we
will need the following estimate: For any z \in Z and f, f \prime \in F,

| ef (z) - ef \prime (z)| \leq 2 diam(Z) \cdot \| f  - f \prime \| H.(A.4)

To prove this inequality, we write

| ef (z) - ef \prime (z)| =
\bigm| \bigm| \bigm| \bigm| min
h\in H

max
h\prime \in H

\bigl( 
\| z  - f(h)\| 2  - \| z  - f \prime (h\prime )\| 2

\bigr) \bigm| \bigm| \bigm| \bigm| 
\leq max

h\in H

\bigm| \bigm| \| z  - f(h)\| 2  - \| z  - f \prime (h)\| 2
\bigm| \bigm| 

= max
h\in H

\bigm| \bigm| \langle (z  - f(h)) + (z  - f \prime (h)), f \prime (h) - f(h)\rangle 
\bigm| \bigm| 

\leq 2 diam(Z) \cdot \| f  - f \prime \| H.

Now we can estimate the second term in (A.3) as follows:

E\varepsilon n sup
f\in F

(Xf  - X\pi T (f)) =
1\surd 
n
E\varepsilon n sup

f\in F

n\sum 
i=1

\varepsilon i
\bigl( 
ef (Zi) - e\pi T (f)(Zi)

\bigr) 
\leq 1\surd 

n
E\varepsilon n

\sqrt{}    n\sum 
i=1

\varepsilon 2i

\sqrt{}    sup
f\in F

n\sum 
i=1

\bigl( 
ef (Zi) - e\pi T (f)(Zi)

\bigr) 2
\leq 2

\surd 
n \cdot diam2(Z)2 - T ,

where the first inequality is by Cauchy--Schwarz, while the second inequality follows from
(A.4) applied to f \prime = \pi T (f). For the third term of (A.3), we have for any t \in \BbbN \bigm| \bigm| e\pi t(f)  - e\pi t - 1(f)

\bigm| \bigm| \leq 2 diam(Z) \cdot \| \pi t(f) - \pi t - 1(f)\| H
\leq 2 diam(Z) \cdot (\| \pi t(f) - f\| H + \| f  - \pi t - 1(f)\| H)
\leq 6 diam2(Z) \cdot 2 - t.

By Hoeffding's lemma, it follows that each X\pi t(f) - X\pi t - 1(f) is a 36 diam4(Z)2 - 2t-sub-Gaussian
random variable. By using the maximal inequality for sub-Gaussian random variables [13,
sect. 2.5], we can upper bound (A.3) by

E sup
f\in F

Xf \leq 2
\surd 
n \cdot diam2(Z)2 - T + 12 diam2(Z)

T\sum 
t=1

2 - t
\sqrt{} 
logN(F, \| \cdot \| H, diam(Z)2 - t).
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Turning into the entropy integral form,

E sup
f\in F

Xf \leq 2
\surd 
n \cdot diam2(Z)2 - T + 24 diam(Z)

\int diam(Z)/2

diam(Z)\cdot 2 - T - 1

\sqrt{} 
logN(F, \| \cdot \| H, u)du.

Selecting T = \lceil log2 (diam(Z)/2\alpha )\rceil and plugging into (A.2), we get

EZn sup
f\in F

[R(P, f) - R(Pn, f)] \leq 
48\surd 
n
diam(Z) \cdot \frakC (F).

By combining with McDiarmid's inequality (see (A.1)), and handling the other direction
supf\in F R(Pn, f) - R(P, f) similarly, we get what we want.

A.5. Proof of Theorem 4.1. Let f\ell (\cdot ) = f(\cdot ;A1:\ell ) \in F\ell be a neural net with weight
matrices A1:\ell . For each j \in \{ 1, . . . , \ell \} , we will use the shorthand notation Fj for the layerwise
transformation Fj(\cdot ;Aj), so that \pi Z \circ f\ell = \pi Z \circ F\ell \circ F\ell  - 1 \circ \cdot \cdot \cdot \circ F1(h). Then, using the fact
that Z \ni 0, we can write

\| \pi Z(f\ell (h))\| = \| \pi Z(f\ell (h)) - \pi Z(f\ell (0))\| 
\leq \| f\ell (h) - f\ell (0)\| 
= \| \sigma \ell (A\ell F\ell  - 1(h)) - \sigma \ell (A\ell 0)\| 
\leq L\ell \| A\ell \| \| F\ell  - 1(h)\| 

\leq 

\left(  \ell \prod 
j=1

LjMj

\right)  \| h\| ,(A.5)

where we have used the fact that the projection map \pi Z onto a closed convex set Z is non-
expansive, i.e., \| \pi Z(u)  - \pi Z(v)\| \leq \| u  - v\| for all u, v, and where the last inequality follows
from the relationship \| A\| \leq \| A\| 2 \leq \| A\| 1 and from applying the same argument recursively.
Also note that \| \pi Z(f\ell (h))\| \leq diam(Z), since \pi Z projects f\ell (h) onto Z. Then it follows that
the diameter of the class F\ell in \| \cdot \| H, i.e., supf,f \prime \in F\ell 

\| f  - f \prime \| H, is bounded from above by

2(
\prod \ell 

j=1 LjMj)\| H\| \infty =: 2D. Now let \~f\ell be another neural net with matrices \~A1:\ell , such that

\pi Z \circ \~f\ell = \pi Z \circ \~F\ell \circ \~F\ell  - 1 \circ \cdot \cdot \cdot \circ \~F1. Then, using the nonexpansiveness of the projection \pi Z and
Lipschitz continuity again, we can proceed as

\| \pi Z(f\ell (h)) - \pi Z( \~f\ell (h))\| \leq \| \sigma \ell (A\ell F\ell  - 1(h)) - \sigma \ell ( \~A\ell 
\~F\ell  - 1(h))\| 

\leq L\ell \| A\ell F\ell  - 1(h) - \~A\ell F\ell  - 1(h)\| + L\ell \| \~A\ell F\ell  - 1(h) - \~A\ell 
\~F\ell  - 1(h)\| 

\leq L\ell \| A\ell  - \~A\ell \| \cdot \| F\ell  - 1(h)\| + L\ell M\ell \| F\ell  - 1(h) - \~F\ell  - 1(h)\| 

\leq D
\ell \sum 

j=1

\| Aj  - \~Aj\| 
Mj

,(A.6)

where the last inequality follows by (A.5) and recursion. From (A.6), we see that the covering
number of F in \| \cdot \| H can be estimated as

N(F, \| \cdot \| H, \varepsilon ) \leq 
\ell \prod 

j=1

N

\biggl( 
Aj

Mj
, \| \cdot \| , \omega j\varepsilon 

D

\biggr) 
\leq 

\ell \prod 
j=1

N

\biggl( 
Aj

Mj
, \| \cdot \| 2,

\omega j\varepsilon 

D

\biggr) 
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for any choice of positive weights \omega 1, . . . , \omega \ell summing up to 1, where Aj/Mj := \{ Aj/Mj :
Aj \in Aj\} . Then, for any \alpha > 0 and weights \omega 1, . . . , \omega \ell > 0, the entropy integral \frakC (F) can be
upper-bounded as follows:

\frakC (F) \leq \alpha 
\surd 
n

6
+

\int diam(Z)
2

\alpha 

\sqrt{}    \ell \sum 
j=1

logN

\biggl( 
Aj

Mj
, \| \cdot \| 2,

\omega j\varepsilon 

D

\biggr) 
d\varepsilon .

Selecting the weights \omega j = 1/\ell and simplifying further,

\frakC (F) \leq \alpha 
\surd 
n

6
+

\int diam(Z)
2

\alpha 

\sqrt{}    \ell \sum 
j=1

logN

\biggl( 
Aj

Mj
, \| \cdot \| 2,

\varepsilon 

\ell D

\biggr) 
d\varepsilon 

\leq \alpha 
\surd 
n

6
+

\int diam(Z)
2

\wedge \ell \cdot D

\alpha 

\sqrt{} \biggl\lceil 
\ell 2D2

\varepsilon 

\biggr\rceil \sqrt{}    \ell \sum 
j=1

log

\biggl( 
1 +

2wj - 1w0\varepsilon 2

\ell 2D2

\biggr) 
d\varepsilon 

\leq \alpha 
\surd 
n

6
+ (\ell D

\surd 
2)

\sqrt{}    \ell \sum 
j=1

log (1 + 2wj - 1w0) \cdot 
\int diam(Z)

2\ell D
\wedge 1

\alpha 
\ell D

1

u
du,

where for the second inequality we used the Maurey-type bounds on the covering numbers
(see, e.g., [49] or Appendix A.10 for a short derivation), and for the last inequality we used
the substitution u = \ell D \cdot \varepsilon and the fact that \lceil x\rceil \leq 2x for x \geq 1. Evaluating the integral with
the choice \alpha = diam(Z)/2

\surd 
n, we get the claimed bound.

A.6. Proof of Theorem 4.2. First, note that for any f = \pi Z\circ f\ell \in F\ell , ef (z) \in [0, diam2(Z)]
for any z \in Z, as \| z  - \pi Z(f\ell (h))\| 2 \leq diam2(Z) holds for any z \in Z and h \in H. Moreover, the
estimate (A.6) from the proof of Theorem 4.1 still holds (again, let D := \| H\| \infty (

\prod \ell 
j=1 LjMj)).

Now, we use the volumetric covering number estimates for balls in finite-dimensional Banach
spaces [14] to proceed as

N(F\ell , \| \cdot \| H, \varepsilon ) \leq 
\ell \prod 

j=1

N

\biggl( 
Aj

Mj
, \| \cdot \| , \omega j\varepsilon 

D

\biggr) 
\leq 

\ell \prod 
j=1

\biggl( 
3D

\omega j\varepsilon 

\biggr) wj - 1wj

.

With the (suboptimal) choice \omega j = 1/\ell , we get N(F\ell , \| \cdot \| H, \varepsilon ) \leq (3\ell D/\varepsilon )
\sum \ell 

j=1 wj - 1wj . Com-
bining this with Lemma 21 of [42] (see Appendix A.11), we get the claimed result.

A.7. Proof of Theorem 4.3. First, notice that the convolution operation is linear in both
\xi and A, so that, for pairs of inputs \xi , \~\xi and convolution filters A(1:v), \~A(1:v), we have

\| conv(\xi ;A(1:v)) - conv(\~\xi ; \~A(1:v))\| 2 \leq \| conv(\xi ;A(1:v)  - \~A(1:v))\| 2 + \| conv(\xi  - \~\xi ; \~A(1:v))\| 2.
(A.7)
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Now, we show that the convolution inequality (4.9) holds: For an input \xi \in \BbbR w0\times v0 a mapping
conv(\cdot ;A(1:v)) : \BbbR w0\times v0 \rightarrow \BbbR w\times v with v channels of convolution filters A(k) \in \BbbR u\times v0 ,

\| conv(\xi ;A(1:v))\| 22 \leq 
v\sum 

j=1

w\sum 
i=1

\left(  u\sum 
i\prime =1

v0\sum 
j\prime =1

\sqrt{} 
| A(j)

i\prime ,j\prime | 
\sqrt{} 

| A(j)
i\prime ,j\prime | 

\bigm| \bigm| \bigm| \xi i\prime +s(i - 1)+ 1 - u
2

,j\prime 

\bigm| \bigm| \bigm| 
\right)  2

\leq 
v\sum 

j=1

w\sum 
i=1

\bigm\| \bigm\| \bigm\| A(j)
\bigm\| \bigm\| \bigm\| 
1
\cdot 

\left[  u\sum 
i\prime =1

v0\sum 
j\prime =1

\bigm| \bigm| \bigm| A(j)
i\prime ,j\prime 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \xi i\prime +s(i - 1)+ 1 - u
2

,j\prime 

\bigm| \bigm| \bigm| 2
\right]  

\leq 

\left(  v\sum 
j=1

\bigm\| \bigm\| \bigm\| A(j)
\bigm\| \bigm\| \bigm\| 2
1

\right)  \cdot max
i\prime \in [u],j\prime \in [v0]

\Biggl( 
w\sum 
i=1

\bigm| \bigm| \bigm| \xi i\prime +s(i - 1)+ 1 - u
2

,j\prime 

\bigm| \bigm| \bigm| 2\Biggr) 

\leq 

\left(  v\sum 
j=1

\bigm\| \bigm\| \bigm\| A(j)
\bigm\| \bigm\| \bigm\| 2
1

\right)  \cdot \| \xi \| 22,

where we have used the Cauchy--Schwarz inequality in the second step and H\"older's inequality
in the third step. Taking the square root of each side, we get (4.9).

Now, analogously to (A.6), we can proceed by combining (A.7) and (4.9). First, define

the norm \| A(1:v)\| 1,2 :=
\sqrt{} \sum v

k=1 \| A(k)\| 21 for v channels of convolution matrices. Then, for any

f\ell , \~f\ell indexed by the filter weights \{ A(1:vj)
j \} \ell j=1, \{ \~A

(1:vj)
j \} \ell j=1, we have\bigm\| \bigm\| \bigm\| \pi Z(f\ell (h)) - \pi Z( \~f\ell (h))

\bigm\| \bigm\| \bigm\| \leq 
\bigm\| \bigm\| \bigm\| A(1:v\ell )

\ell  - \~A
(1:v\ell )
\ell 

\bigm\| \bigm\| \bigm\| 
1,2

\| F\ell  - 1(h)\| 2 +M\ell 

\bigm\| \bigm\| \bigm\| F\ell  - 1(h) - \~F\ell  - 1(h)
\bigm\| \bigm\| \bigm\| 
2

\leq D

\ell \sum 
j=1

\bigm\| \bigm\| \bigm\| A(1:vj)
j  - \~A

(1:vj)
j

\bigm\| \bigm\| \bigm\| 
1,2

Mj
,

where D = \| H\| \infty \cdot 
\prod \ell 

j=1Mj . The remaining steps are identical to those in the proof of
Theorem 4.2 (see Appendix A.6) by invoking the bound on the covering numbers in the
normed spaces (\BbbR ujvj - 1vj , \| \cdot \| 1,2).

A.8. Proof of Theorem 4.4. The proof is the same as the proof of Theorem 4.4, except
that we need a higher-order version of Young's convolution inequality. For an input \xi \in 
\BbbR w0,1\times \cdot \cdot \cdot \times w0,m\times v0 , v channels of convolution weight tensors A(k) \in \BbbR u1\times \cdot \cdot \cdot \times um\times v0 , and filter
strides s1, . . . , sm, we have

\| conv(\xi ;A(1:v))\| 22

\leq 
v\sum 

j=1

w1:m\sum 
i1:m=1

\left(  u1:m\sum 
i\prime 1:m=1

v0\sum 
j\prime =1

\biggl( \sqrt{} 
| A(j)

i\prime 1,...,i
\prime 
m,j\prime | 

\biggr) 2 \bigm| \bigm| \bigm| \xi i\prime 1+s1(i1 - 1)+
1 - u1

2
,...,i\prime m+sm(im - 1)+ 1 - um

2
,j\prime 

\bigm| \bigm| \bigm| 
\right)  2

\leq 
v\sum 

j=1

w1:m\sum 
i1:m=1

\| A(j)\| 1 \cdot 

\left[  u1:m\sum 
i\prime 1:m=1

v0\sum 
j\prime =1

\bigm| \bigm| \bigm| A(j)
i\prime 1,...,i

\prime 
m,j\prime 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \xi i\prime 1+s1(i1 - 1)+
1 - u1

2
,...,i\prime m+sm(im - 1)+ 1 - um

2
,j\prime 

\bigm| \bigm| \bigm| 2
\right]  
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\leq 

\left(  v\sum 
j=1

\| A(j)\| 21

\right)  \cdot max
i\prime 1:m\in [u1:m]

j\prime \in [v0]

\Biggl( 
w1:m\sum 
i1:m=1

| \xi 
i\prime 1+s1(i1 - 1)+

1 - u1
2

,...,i\prime m+sm(im - 1)+ 1 - um
2

,j\prime 
| 2
\Biggr) 

\leq 

\left(  v\sum 
j=1

\| A(j)\| 21

\right)  \cdot \| \xi \| 22,

analogously to the procedure in Appendix A.7, where we have introduced the following short-
hand notation: We use

\sum w1:m
i1:m=1 to denote

\sum w1
i1=1 \cdot \cdot \cdot 

\sum wm
im=1, and use maxi\prime 1:m\in [u1:m] to denote

maxi\prime 1\in [u1] \cdot \cdot \cdot maxi\prime m\in [um]. Then we can proceed as in Appendix A.6.

A.9. Proof of Theorem 4.7. Similar to (A.6), we proceed as follows: For any f\ell , \~f\ell 
indexed by A1:\ell , \~A1:\ell , we have

\| \pi Z(f\ell (h)) - \pi Z( \~f\ell (h))\| \leq L\ell \cdot \| A\ell  - \~A\ell \| \cdot \| F\ell  - 1(h)\| + L\ell \| \~A\ell \| \| F\ell  - 1(h) - \~F\ell  - 1(h)\| 
\leq L\ell B\ell  - 1\| A\ell  - \~A\ell \| + L\ell M\ell \| F\ell  - 1(h) - \~F\ell  - 1(h)\| 

\leq 
\ell \sum 

i=1

\left(  \ell \prod 
j=i

LjMj

\right)  Bi - 1
\| Ai  - \~Ai\| 

Mi
,

where the last inequality is by recursion, with B0 := \| H\| \infty . We now use the shorthand
notation Di := Bi - 1(

\prod \ell 
j=i LjMj). For any choice of weights \omega 1, . . . , \omega \ell > 0, we can upper-

bound the covering number as

N(F\ell , \| \cdot \| H, \varepsilon ) \leq 
\ell \prod 

i=1

N

\biggl( 
Ai

Mi
, \| \cdot \| , \omega i \cdot \varepsilon 

Di

\biggr) 
\leq 

\ell \prod 
i=1

N

\biggl( 
Ai

Mi
, \| \cdot \| 2,

\omega i \cdot \varepsilon 
Di

\biggr) 
,

using the relationship of the operator norm and the entrywise \ell 2 norm. Now, we choose
\omega i = Di/

\sum \ell 
j=1Dj and invoke Maurey's empirical method (Appendix A.10) to proceed as

logN(F\ell , \| \cdot \| H, \varepsilon ) \leq 

\Biggl\lceil 
(
\sum \ell 

j=1Dj)
2

\varepsilon 2

\Biggr\rceil 
\cdot 

\ell \sum 
i=1

log

\Biggl( 
1 +

2wi - 1wi\varepsilon 
2

(
\sum \ell 

j=1Dj)2

\Biggr) 

for \varepsilon \leq 
\sum \ell 

j=1Dj (otherwise, the covering number is 1). Evaluating the entropy integral with
the choice \alpha = diam(Z)/2

\surd 
n and plugging the estimate into the Theorem 3.3, we get the

claimed bound.

A.10. Covering number bounds based on Maurey's empirical method. Here, we provide
a short derivation of an upper bound (3.5) on the covering number of an \ell 1 ball by smaller
\ell 2 balls with radius \varepsilon . The proof goes through the standard sparsification steps (see [49] and
references therein) and is included only for completeness.

First note that we can assume that the radius of the \ell 1 ball (denoted henceforth by B1)
to be 1 without loss of generality, as we can rescale the \ell 2 balls to have radius \varepsilon /M . Let
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\{ e1, . . . , ed\} be the standard basis of \BbbR d. Now, for an arbitrary v \in B1, let U be a random
vector in \BbbR d constructed as

U =

\Biggl\{ 
sign(vi)ei w.p. | vi| \forall i \in \{ 1, . . . , d\} ,
0 w.p. 1 - \| v\| 1

satisfying EU = v. Let U(1), . . . , U(k) be i.i.d. copies of U for some fixed v and some k \in \BbbN 
(to be tuned later), and let \=U = 1

k

\sum k
j=1 U(j). Then

E\| \=U  - v\| 2 =
d\sum 

i=1

E\| \=Ui  - vi\| 2 =
1

k

d\sum 
i=1

E(Ui  - vi)
2 \leq 1

k
,

where the last inequality holds as E(Ui  - vi)
2 = | 1 - vi| \cdot | vi| \leq | vi| . If we choose k = \lceil 1/\varepsilon 2\rceil ,

then E\| \=U  - v\| 2 \leq \varepsilon 2, which implies that there is at least one realization of \=U , such that
\| \=U  - v\| \leq \varepsilon . As the number of distinct values that \=U can take is upper-bounded by (2d+1)k

(irrespective of the choice of v), we get what we want.

A.11. A high-probability uniform deviation bound. For completeness, we state Lemma 21
of Vainsencher, Mannor, and Bruckstein [42] based on the single covering step, which has been
referred to in the discussion following Theorem 3.3 and the proof in Appendix A.6. Note that
the lemma has been slightly adapted for the sake of notational coherence.

Lemma A.1. Let G be a class of functions g : Z \rightarrow [0, B] with the covering number bound

N(G, \| \cdot \| \infty , \varepsilon ) \leq 
\biggl( 
C

\varepsilon 

\biggr) d

for some constant d,C, whenever (C/\varepsilon )d > e/B2 holds. Then, for every \delta \in (0, 1),

sup
g\in G

[EP g(Z) - EPng(Z)] \leq B

\Biggl( \sqrt{} 
d ln(C

\surd 
n)

2n
+

\sqrt{} 
log(1/\delta )

2n

\Biggr) 
+

2\surd 
n
.
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