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Abstract
We introduce MTLAB, a new algorithm for learn-
ing multiple related tasks with strong theoretical
guarantees. Its key idea is to perform learning
sequentially over the data of all tasks, without
interruptions or restarts at task boundaries. Pre-
dictors for individual tasks are derived from this
process by an additional online-to-batch conver-
sion step.

By learning across task boundaries, MTLAB
achieves a sublinear regret of true risks in the
number of tasks. In the lifelong learning setting,
this leads to an improved generalization bound
that converges with the total number of samples
across all observed tasks, instead of the number
of examples per tasks or the number of tasks inde-
pendently. At the same time, it is widely applica-
ble: it can handle finite sets of tasks, as common
in multi-task learning, as well as stochastic task
sequences, as studied in lifelong learning.

1. Introduction
In recent years, machine learning has become a core tech-
nology in many commercially relevant applications. One
observation in this context was that real-world learning tasks
often do not occur in isolation, but rather as collections or
temporal sequences of many, often highly related tasks. Ex-
amples include click-through rate prediction for online ads,
personalized voice recognition for smart devices, or hand-
writing recognition of different languages.

Multi-task learning (Caruana, 1997) has been developed
exactly to handle such situations. It is based on an intuitive
idea that sharing information between tasks should help the
learning process and therefore lead to improved prediction
quality. In practice, however, this is not guaranteed and
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multi-task learning can even lead to a reduction of predic-
tion quality, so called negative transfer. The question when
negative transfer occurs and how it can be avoided has trig-
gered a surge of research interest to better understanding the
theoretical properties of multi-task learning, as well as re-
lated research areas, such as lifelong learning (Baxter, 2000;
Pentina & Lampert, 2014), where more and more tasks
occur sequentially, and task curriculum learning (Pentina
et al., 2015), where the order in which to learn tasks needs
to be determined.

In this work, we describe a new approach to multi-task
learning that has strong theoretical guarantees, in particular
improving the rate of convergence over some previous work.
Our core idea is to decouple the process of predictor learning
from the task structure. This is also the main difference of
our approach to previous work, which typically learned one
predictor for each task. We treat the available data for all
tasks as parts of a single large online-learning problem, in
which individual tasks simply correspond to subsets of the
data stream that is processed. To obtain predictors for the
individual tasks, we make use of online-to-batch conversion
methods. We name the method MTLAB (multi-task learning
across boundaries).

Our main contribution is a sublinear bound on the task regret
of MTLAB with true risks. As a corollary, we show that
MTLAB improves the existing convergence rates in the case
of lifelong learning. From the regret-type bounds, we derive
high probability bounds on the expected risk of each task,
which constitutes a second main contribution of our work.

For real-world problems, not all tasks might be related to
all previous ones. Our third contribution is a theoretically
well-founded, yet practical, mechanism to avoid negative
transfer in this case: we show that by splitting the set of
tasks into homogeneous groups and using MTLAB to learn
individual predictors on each of the resulting subsequences
of samples, one obtains the same strong guarantees for each
of the learned predictors while avoiding negative transfer.

2. Multi-task learning of sequential tasks
In this section we present the main notation and introduce
the MTLAB approach to information transfer between tasks.



Tasks Without Borders

We face a sequence of tasks k1, . . . , kn, . . . , where each kt
from a task environment K, and the sequence is a random
realization of a stochastic process over K. Note that this
general formulation includes the situations most commonly
studied in the literature: the case of finitely many fixed
tasks (in which case the distribution over the tasks sequence
is a delta peak) and the lifelong learning setting with i.i.d.
(Baxter, 2000; Pentina & Lampert, 2014) or non-i.i.d. tasks
(Pentina & Lampert, 2015).

All tasks share the same input set X , output set Y , and
hypothesis set H. Each task kt, however, has its own as-
sociated joint probability distribution, Dt, over X × Y ,
conditioned on kt. Whenever we observe a task kt, we
receive a set St = {(xt,i, yt,i)}mt

i=1 sampled i.i.d. from
the task distribution Dt, and we are given a loss function,
`t : H × X × Y → [0, 1] that measures the quality of
predictions. Alternatively, one can assume that all tasks
share the same, a priori known, loss function. Learning
a task kt means to identify a hypothesis h ∈ H with as
small as possible per-task risk ert(h), which is defined as
E(x,y)∼Dt

[`t(h, x, y)].

The PAC-Bayes framework, originated in (McAllester,
1999b; Shawe-Taylor & Williamson, 1997), studies the per-
formance of stochastic (Gibbs) predictors. A stochastic
predictor is defined by a probability distribution Q over the
hypotheses set. For any Gibbs predictor with a distribution
Q we define the corresponding true risk of a predictor as

ert(Q) = Eh∼Q [ert(h)] . (1)

As described in the introduction, we do not require that data
for all tasks is available at the same time. Instead, we adopt
an online learning protocol for tasks: at step t we observe
the dataset St for task kt, and we output the distribution Q̂t.

2.1. Learning across task boundaries

Our first goal is, at any step n, to bound the regret of a
learned sequence of predictors Q̂1, . . . , Q̂n with respect to
any fixed reference distribution Q from some set, ∆, of
distributions, i.e.

Rn(Q) =

n∑
t=1

ert(Q̂t)−
n∑
t=1

ert(Q). (2)

Note that the regret is defined using true risks, that we do
not observe, in contrast to empirical risks. This makes the
problem setting very different from the traditional online
learning where the empirical performance is considered.

The main idea of MTLAB is to run an online learning algo-
rithm on the samples from all tasks, essentially ignoring
the task structure of the problem, and then use a prop-
erly defined online-to-batch conversion to obtain predic-
tors for the individual tasks. In this paper, we work with

Input: decision set ∆, initial distribution P , learning rate η
Initialization: Q1,0 = P
At any time point t = 1, 2, . . . :

• receive dataset St of size mt

• compute for i = 1, . . . ,mt

Qt,i = argmin
Q̃∈∆

{ η
mt

Eh∼Q̃ [`t(h, zt,i)]+KL(Q̃|Qt,i−1)}

• output the batch solution: Q̂t ← 1
mt

∑mt

i=1Qt,i
• set prior of the next task: Qt+1,0 ← Qt,mt

Figure 1. MTLAB algorithm

a Proximal Point Algorithm (Martinet, 1970) run on the
level of samples. Let P be some prior distribution over
H. We set Q1,0 = P and, once we receive a dataset
St = {(xt,1, yt,1), . . . , (xt,mt , yt,mt)} on step t, we com-
pute a sequence of predictors Qt,i each being a solution to

min
Q̃∈∆
{ η
mt

Eh∼Q̃ [`t(h, xt,i, yt,i)] + KL(Q̃|Qt,i−1)}, (3)

for all i = 1, . . . ,mt with η > 0. Afterwards, the algorithm
outputs a predictor Q̂t = 1

mt

∑mt

i=1Qt,i for task t, and sets
Qt+1,0 = Qt,mt , to be used as a starting distribution for the
next task.

We call the above procedure MTLAB (multi-task learning
across task boundaries) and summarize it in Figure 1. Our
first main result is a regret bound for the true risks of the
sequence of distributions that it produces.

Theorem 1. Let m̄ = n/(
∑n
t=1 1/mt) be the harmonic

mean of m1, . . . ,mn and let P be a fixed prior distribution
that is chosen independently of the data. The predictors
produced by MTLAB satisfy with probability 1− δ (over the
random training sets) uniformly over Q ∈ ∆

Rn(Q) ≤ ηn

4m̄
+

2KL(Q|P ) + log 2
δ

η
. (4)

Corollary. Set η =
√

m̄
n . Then, with probability 1 − δ, it

holds uniformly over Q ∈ ∆

1

n
Rn(Q) ≤ 1√

nm̄
(
1

4
+ 2KL(Q|P ) + log

2

δ
). (5)

To put this result into perspective, we compare it to the
average regret bounds given in (Alquier et al., 2017), where
the goal is to find the best possible data representation for
tasks. Even though the settings are a bit different, it gives
a good idea of the qualitative nature of our result. (Alquier
et al., 2017) provides O( 1√

n
+ 1√

m
) bound (if all tasks are

of the same size m) that can be sometimes improved to
O( 1√

n
+ 1

m ). In either case, convergence happen only in
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the regime when the number of tasks and the amount of
data for each task both tend to infinity. In contrast to this,
the right hand side of inequality (5) converges to zero even
if only one of the two quantities grows, so in particular for
the most common case that the number of tasks grows to
infinity, but the amount of data per task remains bounded.

The examples of real-world implementations of MTLAB
are provided in the supplementary material.

2.2. Connection to traditional PAC-Bayes bounds

We obtain further insight into the behavior of MTLAB by
comparing it to the situation in which each task is learned
independently. A more traditional PAC-Bayes bound (e.g.
(McAllester, 1999a)) states that with probability 1− δ the
following inequality holds for all Q

ert(Q) ≤ 1

mt

mt∑
i=1

EQ [`t(h, xt,i, yt,i)]+
KL(Q|P ) + log 1

δ√
mt

.

(6)
This inequality suggests a learning algorithm, namely to
minimize the upper bound with respect to Q. In principle,
MTLAB is based on a similar objective, but it acts on the
sample level and it automatically provides relevant prior
distributions for each task. Thereby it is able to achieve
better guarantee than one could get by combining separate
bounds of the form (6) for multiple tasks.

2.3. MTLAB for lifelong learning

The bound of Theorem 1 holds for any stochastic process
over the tasks. In particular, it holds in special case where
tasks are sampled independently from a hyper distribution
over the task environment, which is usually called lifelong
learning (Baxter, 2000; Pentina & Lampert, 2014). In this
setting, we have a fixed distribution T over K, and the
sequence k1, . . . , kn is an i.i.d. sample from this distribution.
One can then define the lifelong risk as

E(h) = Ek∼T
[
E(x,y)∼Dk

[`k(h(x), y)]
]
, (7)

where Dk and `k are the distribution and loss function for a
task k, respectively. The risk of the Gibbs predictor is then
E(Q) = Eh∼Q [E(h)]. Let Q̂1, . . . , Q̂n be the output of
MTLAB, then we define the corresponding batch solution
as Q̄n = 1

n

∑n
t=1 Q̂t and observe

E(Q̄n) =
1

n

n∑
t=1

E(Q̂t) = E

[
1

n

n∑
t=1

ert(Q̂t)

]
. (8)

Using Theorem 1 we obtain the following guarantee.

Theorem 2. In the lifelong learning setting, if we run MT-
LAB with η =

√
m̄√
n

, for any fixed prior distribution P that is
chosen independently from the data, with probability 1− δ

uniformly over Q ∈ ∆

E(Q̄n)− E(Q) ≤ 1√
nm̄

(
1

4
+ 2KL(Q|P ) + log

2

δ
). (9)

Typical results for this setting, such as shown in (Pentina &
Lampert, 2014; Maurer et al., 2016; Alquier et al., 2017),
show the additive convergence rate O( 1√

n
+ 1√

m̄
), which

goes to zero only in the case of infinite data and infinite
tasks. In contrast, the generalization error for MTLAB
converges in the most realistic scenario of finite data per
task and increasing number of tasks.

3. Per-task bounds
The results of the previous section provide guarantees on
MTLAB’s multi-task regret. In this section we compliment
those results by presenting a modification that provides
guarantees for individual risks of each task. The detailed
proofs of all statements can be found in the supplementary
material.

As a start, let us consider a bound that can be obtained
immediately from Theorem 1. We make use of the following
notion of relatedness between tasks that is commonly used
in the field of domain adaptation (Ben-David et al., 2007).

Definition 1. For a fixed hypothesis class H, the discrep-
ancy between tasks ki and kj is defined as

disc(ki, kj) = sup
h∈H
|eri(h)− erj(h)| . (10)

The following theorem is an immediate corollary of Theo-
rem 1.

Theorem 3. Let P be a fixed prior distribution that is cho-
sen independently of the data. Let Q̂t be a sequence of

predictors produced by MTLAB run with η =
√

m̄
n and let

Q̄n = 1
n

∑n
t=1 Q̂t. Then the following inequality holds with

probability 1− δ, uniformly over Q ∈ ∆

ern(Q̄n) ≤ ern(Q) +
2

n

n∑
i=1

disc(ki, kn) (11)

+
1√
nm̄

(
1

4
+ 2KL(Q|P ) + log

2

δ
).

This bound resembles the guarantees typical in the setting
of learning from drifting distributions (Mohri & Medina,
2012). It converges if 1

n

∑n
i=1 disc(ki, kn) → 0 with n,

so if either tasks are identical to each other, or if tasks get
suitably more similar on average with growing n. This is
a good example of possible negative transfer: when the
previous tasks are not related to the current one as measured
by the discrepancies, the average discrepancy term will
prevent the bound from convergence.
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The main question is if we can avoid the negative trans-
fer and improve upon the bound of Theorem 3 in the case
when 1

n

∑n
i=1 disc(ki, kn) does not vanish over time. Con-

sider, for example, a simple case of two alternating tasks,
i.e. 1

n

∑n
i=1 disc(ki, kn) → 1

2 for n → ∞. If we split the
sequence of tasks into two subsequences, one for tasks with
even and one for tasks with odd indices, and then run MT-
LAB separately for each sequence, we could nevertheless
guarantee the convergence of the error rate for the result-
ing procedure. Unfortunately, it is rather easy to construct
examples in which convergence to zero is not achievable,
even with the best possible split of the sequence of tasks
into subsequences. Consequently, we redefine our goal to
prove error rates that converge below a given threshold ε.

We present an online algorithm, MTLAB.MS (for MTLAB
with Multiple Sequences), that splits the tasks into subse-
quences on the fly given some distance dist(ki, kj) between
tasks. MTLAB.MS keeps a representative task for each
subsequence, and we use the distances to the representatives
to decide which subsequence to extend with the new task,
or if a new subsequence needs to be initialized.

Pseudo-code for MTLAB.MS is provided in Algorithm 2.
The notation Q̃, P ′ = MTLAB(S, P ) denotes a single run
of MTLAB that takes a dataset S, runs its learning procedure
starting from distribution P and outputs two distributions:
the final distribution P ′ to be used in the subsequent runs
and the aggregate distribution Q̃ that is a final predictor for
the task. Further notation used are: In are the indices of
the tasks in the subsequence chosen at step n, sn = |In| is
the size of this subsequence, m̄n is the harmonic average
of the sizes of tasks in the chosen subsequence and ηn is
the learning rate of MTLAB associated with the chosen
subsequence.

The following theorem shows that if MTLAB.MS could be
run with the task discrepancies as distances, it would, for any
given threshold ε, yield subsequences with generalization
error below ε.
Theorem 4. Let P be a fixed prior distribution that is cho-
sen independently of the data. If we run MTLAB.MS with
dist(ki, kj) = disc(ki, kj), we get with probability 1 − δ,
uniformly over Q ∈ ∆

ern(Q̄n) ≤ ern(Q) + 2ε+
2ηn
m̄n

+
2KL(Q|P ) + log n

δ

ηnsn
.

This theorem works when the transfer algorithm uses a fixed
learning rate η for each subsequence. It is possible to prove
a similar statement for the case when the parameters are
optimized for the length of each subsequence using the ma-
chinery developed in (Zimin & Lampert, 2017). However,
the final statement gets more complicated and adds little to
the discussions in the current paper. Therefore, we leave
this extension for future work.

Input: task distance dist, prior distribution P , threshold ε
Initialization:
set of representative tasks R = ∅
set of priors P = ∅
At any time point t = 1, 2, . . . :

• receive dataset St.
• set I = {r ∈ R : dist(kr, kt) ≤ ε}
• if I = ∅ then

– add t to the set of representatives R
– set P(t) = P

• choose the closest representatives
r? = argmin

r∈I
dist(kr, kt) (12)

• run the transfer algorithm:
Q̄t, P

′ = MTLAB(St,P(r?)) (13)

• set P(r?) = P ′

• output Q̄t

Figure 2. MTLAB.MS algorithm

Theorem 4 confirms that it is possible to avoid effects of
negative transfer by carefully choosing the tasks we transfer
knowledge from at each step. MTLAB.MS is a computa-
tionally efficient way of doing this.

In practice, however, the true discrepancy values are un-
known. The most direct method to determine the right sub-
sequence for each task is to estimate the discrepancies from
the data and use the estimates in the MTLAB.MS algorithm.
In the supplementary material we detail two approaches
for discrepancy estimation: a) using a part of the labelled
training data and b) using separate unlabelled datasets. In
both cases it is possible to prove the statements similar to
Theorem 4.

4. Conclusion
We introduced a new and widely applicable algorithm for
sequentially learning of multiple tasks. By performing learn-
ing across tasks boundaries it is able to achieve a sublinear
regret bound and improves the convergence rates in the life-
long learning scenario. MTLAB’s way of not interrupting
or restarting the learning process at task boundaries results
in faster convergence rates than what can be achieved by
learning individual predictors for each task: in particular,
the generalization error decreases with the product of the
number of tasks and the number of samples per task, instead
of separately in each of these quantities. We also intro-
duced a mechanism for the situation when the tasks to be
learned are not all related to each other. We show that by
constructing suitable subsequences of task, the convergence
properties can hold even in this case.
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