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Abstract
Access to massive computation allows researchers
and developers to succeeded in using technology
to enhance processes in many applications. How-
ever there have been claims as to the tapering of
the exponential decrease in the cost of hardware
(following Moore’s law) due to physical hard-
ware limitations. Next generation special purpose
systems making using of multiple kinds of co-
processors, known as heterogeneous system-on-
chips, have been in active research recently. In
this paper, we introduce a method to intelligently
schedule a stream of tasks to available processing
elements in such a system. We use deep reinforce-
ment learning which allows for complex decision
making and demonstrate that machine learning
can be used for scheduling decisions and provides
for a viable, likely better alternative to reducing
execution time, given a set of tasks.

1. Introduction
Numerous breakthroughs in deep learning would not be
possible without the help of hardware capable of massive
amounts of computation. Especially in machine learning,
neural networks have taken advantage of parallelization
through GPUs and, more recently, special purpose hardware
like TPUs have been used to perform millions of computa-
tions in a quicker manner. However, when we consider re-
cent real-world applications built with embedded hardware,
different considerations have to be made. For instance, cus-
tom ASICs and FPGAs have different performance capabil-
ities and power and energy consumption. So, essential care
must be taken in choosing which applications to develop
on which types of hardware. Concurrently, hardware per-
formance has been becoming cheaper, following Moore’s
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law (Schaller, 1997), but transistor density in micropro-
cessors has also recently reached the maximum projection
based on physical limitations.

The System-on-Chip (SoC) architecture has been revealed
as a novel approach to chip design which merges different
levels of computational cores (Borel, 1997). In addition,
domain-specific heterogeneous SoCs enable different func-
tionalities necessary in certain domains and provide for easy
software implementations. Heterogeneous chips have the
strength that they can attain the best performance for cer-
tain applications if the cores in the chip are systematically
scheduled once the task becomes available. Combinations
of operations are optimally scheduled to process jobs with
different requirements. Heterogeneous processors are ex-
pected to break traditional trade-offs such as that between
power and performance. Thus, how to optimally schedule
operations becomes a main research topic which is generally
known as an NP-hard problem. While there are many heuris-
tic or approximate algorithms that can make this problem
more tractable, we take the view that optimally distributing
ready-be-assigned tasks into available processing elements
in the heterogeneous SoC can be formalized as a sequential
decision making problem.

In this paper, we use deep reinforcement learning (DRL)
which provides for a powerful and flexible way to solve
complex sequential decision making problems. Here, we
especially consider tasks that have dependencies. Thus, the
scheduling agent must learn how to schedule the tasks given
that some tasks may require other tasks to have already run.
This makes the problem difficult due to long-term depen-
dencies and partial observability. Moreover, without pre-
emptions, the former entails that the agent cannot choose
scheduling actions at every time step but only when assigned
tasks are completed and new tasks ready to be scheduled
appear. The following sections describe the details of the
simulation environment which takes a job consisting of a
set of tasks and a resource matrix specifying the perfor-
mance and communication specifications of the processing
elements. Next, we formalize the reinforcement learning
(RL) setting and describe the policy-based algorithm we use
to tackle the sequential decision-making problem. In the
experiments, we compare our model, which we interchange-
ably refer to as Deep Resource Manager (DRM) or Neural
Heterogeneous Scheduler, with baselines to verify that the
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performance of the Deep RL agent we introduce is better
than different heuristic scheduling algorithms. We also pro-
vide saliency map and GANTT chart visualizations during
the learning process to reason about the agent’s decisions.

2. Background
Deep reinforcement learning (Deep RL) has been success-
fully applied to several domains such as robotics (Levine
et al., 2016) and games (Silver et al., 2017; Vinyals et al.,
2019). Most successful RL applications stand in the usual
RL framework of Markov decision processes. However,
in our case, actions can take various amounts of time to
complete. Scheduling chip processors in real-world appli-
cations involves a continually filling stream of tasks where
many activities progress simultaneously. Action decisions
are only performed when tasks are ready to be scheduled.
Given these properties and limitations of the environment,
this process can be defined as semi-Markov decision pro-
cess (SMDP) with temporally-extended actions or options.
When an assigned action is not completed, then the agent
essentially takes the ‘no-operation’ action.

Mathematically, the MDP setting can be formalized as a
5-tuple 〈S,A, R, P, γ〉 (Sutton & Barto, 2018; Puterman,
2014). Here, S denotes the state space, A, the action space,
R, the reward signal which is generally defined over states
or state-action pairs, P , a stochastic matrix specifying tran-
sition probabilities to next states given a state and action,
and γ ∈ [0, 1], the discount factor.

Normally, the SMDP framework would involve an option
framework, augmenting the action space, but instead, we
use simple options here that take no-op actions and hence
leave the option framework with preemption of running
tasks as future work.

In addition, the heterogeneous resource management en-
vironment is essentially partially observable, because the
agent can only observe the tasks ready-to-be-assigned to
a processing element. To address this, we augment the
state with the other task lists as well (not just the ready list
containing the ready-to-be-assigned tasks) and transition to
fully-observable problem.

3. Proposed Approach
3.1. Environment Setting

The heterogeneous SoC chip we consider is to be used in
various applications such as WiFi RX/TX or pulse doppler is
simulated in a realistic discrete-event environment, DASH-
Sim, which is described in 3.1.1. It is developed with the
SimPy library (Lnsdorf & Scherfke, 2018) to implement
running tasks in a continuous time frame setting. The spec-
ifications of the set of tasks and processing elements are

written within job and resource matrix files that are
described in 3.1.2.

3.1.1. SIMULATION

There are some manufactured embedded boards like Zynq
A53, Odroid A7, or Odroid A15 with their heterogeneous
chip sets, and their functionalities include encoder and de-
coder, scrambler and descrambler, interleaver and dein-
terleaver, QPSK modulation and demodulation, FFT and
inverse-FFT. We however consider simulation as in many
RL applications. The goal of an agent is to achieve a low
time to completion, given task combinations.

In the recent past, RL algorithms have been commonly
developed using the OpenAI Gym environment inter-
face (Brockman et al., 2016) and many assume the Markov
decision process framework, whereas we use SimPy envi-
ronment, which simulates sequential discrete-events. Each
event represents a task. Each task, upon execution, runs
till completion and the scheduler can only choose to sched-
ule tasks in the ready list. The simulator is visualized in
Figure 1.
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Figure 1. An overall diagram of the DASH-Sim environment which
runs with the SimPy discrete-event library. The simulator con-
structs task queues and processing elements based on the descrip-
tions in the job and resource matrix file lists. The scheduler
assigns tasks in the ready list to cores in SoC chip.

Prior to running a simulation, the information of pro-
cessing elements (PEs) and tasks are parsed with
resource matrix and job text files described in 3.1.2.
Each PE represents chipsets such as RAM, CPU, GPU, or
memory accelerators in heterogeneous SoC and have differ-
ent execution time, energy and power consumption. In this
paper, we only consider the execution time for the perfor-
mance.

At the start of a job, all the tasks are fed into the outstand-
ing list and the ones that do not have task dependencies
are pushed into the ready list. Then, the agent assigns a
processing element, through an ID, PE ID, to tasks that are
in the ready list and these tasks then proceed to the running
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list when the begin execution. During this time period, the
agent chooses a ‘no-operation’ action for the running tasks.
Once a task completes, it is moved to the completed list. If
all the tasks are in the completed list, the scheduling episode
is finished and the next resource matrix and job files
in the list are used for the next episode.

3.1.2. TASK AND RESOURCE MATRIX

Tasks are constantly generated and a scheduler distributes
them to different chipsets in the SoC. We assume tasks have
dependencies such as those shown in Figure 2. We describe
the list of tasks in a job file and the associated processing
elements in a resource matrix file. Their structures
are described in below.

Job list

• job name <job name>

• add new tasks <number of tasks>

• <task name> <task ID> <task predecessors>

• <task name> <earliest start time> <deadline>

Resource matrix list

• add new resource <resource ID> <number of
tasks>

• <task name> <performance>

In a job file, tasks have HEAD and TAIL flags that indicate
the start and end. In this paper, we consider 10 tasks of one
job with 3 processing elements. However, we add random-
ization to the resource matrix to train our agent be more
robust. This results in differing performances. Performance
here refers to the fact that the execution time taken to pro-
cess a given task in a given processing element varies. The
earliest start time, deadline, and performance are all given
in units of milliseconds.

3.2. Algorithm

In this paper, we develop a new agent using deep reinforce-
ment learning to allocate resources to a heterogeneous SoC,
a long-term credit assignment task. As described in the
Section 2, the environment in its most general form can be
thought of as a partially observable SMDP.

Figure 3 shows the interaction between DASH-Sim and
DRM scheduler. Task list transitions are controlled by
DASH-Sim environment. The scheduler agent takes the
tasks from the ready list as an input and assigns each task
a PE ID. Particularly, our DRM scheduler receives ready
tasks but also generates state representations with all the
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Figure 2. Task dependency visualization of the job Top file.
Each circle represents task numbers and arrows show task de-
pendencies.

task lists. We convert the task lists and resource matrix to
binary vector representations when representing integer val-
ues, multi-binary representations for state features that can
take on multiple values and concatenate the represenation to
form the final state representation vector. This information
from all the state lists not only addresses partial observabil-
ity in the DASH-Sim environment, but also gives additional
information about the relations between tasks through the
task list transitions.
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Figure 3. A diagram of the interaction of DRM architecture and
DASH-Sim environment. Tasks in the lists are controlled by
DASH-Sim environment and DRM assigns every PE ID to ready
tasks.

We use an actor-critic algorithm described in Equation 1.
The agents action is taken for tasks in ready list. We use
a simple reward of -1 per timestep to encourage the agent
to complete tasks quickly. At the end of the episode, the
agent is updated by looking over the past state represen-
tation when action choices were made and the resulting
discounted reward for the scheduling decision made. These
updates follow the traditional actor-critic losses and hap-
pen on-policy as the function approximator is not updated
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during an episode. Additionally, we use a decaying temper-
ature in the SoftMax action selection to gradually reduce
exploration and move between SoftMax to argmax. This is
similar to the addition of entropy and lets the agent avoid
skewed action distribution early in learning and introduces
more exploration at the beginning of the simulation while
slowly relying on exploitation later in training.

∇θJ(θ) = Eπθ
[∇θ log πθ(at|st)At(st)], (1)

Above, the objective is to find θ that parameterizes the neural
network to maximize J . At is the advantage that subtracts
the state-value of state st, V (st), from Gt, the empirically
observed discounted reward, the baseline V (st) serving
to reduce potentially high variance. The above specifies
the actor-loss in the actor-critic framework. The critic is
updated to minimize the advantage, i.e., (Gt − V (st))

2

is minimized. The overall algorithm with DASH-Sim is
described in Algorithm 1.

Algorithm 1 Deep Resource Management
Input: jobs, resource matrices, and DASH-Sim
environment
for each episode do

initialize environment with next job and
resource matrix file
repeat

for tasks in ready list do
Construct state
Choose action action w.r.t. task
Assign action to PE ID for this task
Save state, action

end for
Penalize -1 for reward

until all tasks are the in the completed list or
max simulation length
Compute losses using Eq. 1 with saved states and
actions
Update agent by backpropagating with the losses

end for

4. Experiments
To the best of our knowledge, this paper is the first to ap-
ply reinforcement learning to heterogeneous resource man-
agement where long-term scheduling decisions need to be
made. In this section, we show the experimental results of
the comparison of the DRM scheduler with other heuris-
tic schedulers, Earliest Finish Time (EFT), Earliest Time
First (ETF), and Minimum Execution Time (MET) (But-
tazzo, 2011). Both EFT and ETF pick the resource which
is expected to give the earliest finish time for the task. ETF
additionally schedules the task with the lowest earliest fin-
ish time first. MET assigns the processing element ID with
minimum execution time for the current task.
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Figure 4. Execution Time versus Episode during training for the
simpler case where the resource matrix specifying performance and
communication characteristics is fixed (Top) and is randomized
before each run (Bottom)

As shown in Figure 4, the deep RL scheduler has the best
performance overall. We tried different experiment settings:
one with fixed data shown in top and another with random-
ized data in bottom. According to the fixed input, the DRM
agent is trained to have about 94ms performance and sat-
urated starting at about 720 episodes. Because the static
data does not have much variation, the agent does not have
much variance in performance but eventually overfits to a
certain extent. Interestingly, MET has better performance
than DRM agent, because MET picks a resource which has
the minimum execution time for the tasks in ready list. We
presume the MET corresponds to a locally optimal action at
every timestep whereas DRM could not exceed this optimal
value.

When we experimented with the randomized data, our DRM
scheduler had the best performance. Despite fluctuating re-
sults of all schedulers, the DRM agent is the only one that
had improved performance, of course, over time as learning
progressed. The DRM agent applies an RL algorithm to ex-
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plore various policies given different jobs and PEs, allowing
for better generalization and better adaptivity. To provide
convincing results, we performed 30 trials with different
random seeds. We expect to apply ensembles in the training
experiences to provide much more reliable model.
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Figure 5. A visualization of the state representation which has
information about task lists and PEs. Initialized state representation
(Top) and the result of GradCam (Selvaraju et al., 2017) performed
with the DRM feature layers (Bottom).
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Figure 6. GANTT chart representing when tasks ran on the dif-
ferent processing elements for the first episode (Top) and the last
episode (Bottom) when training DRM
We provide a visualization of the saliency to reason about
the action decisions, shown in Figure 5. The top figure
shows the initial state representation formed by the task lists
and resource matrix information. After passing the state to
DRM agent, we perform GradCam (Selvaraju et al., 2017)
and retrieve the saliency, mapped onto the input, shown in
the bottom of Figure 5. Notice that the agent oversees tasks
which are not shown in initial representation. Described
with different color intensities, we presume that the DRM
agent actually understand the tasks belonging to different
status lists and that this more complex decision making
input allows for better policies.

Finally, the GANTT chart showcases how the policy im-
proves over training for the fixed resource matrix case. Ini-
tially, DRM gets quite a high execution time of 140 ms
while it produces a better policy of about 100 ms at the
end of training. Note that this chart corresponds to the task
dependency graph shown earlier, Figure 2, with the only
difference being that the tasks are 0-indexed.

Some interesting changes include the choice of processing
element 1 for Task 9 over processing element 0. It is cleat
that this task is faster on PE1 compared to PE0. On the other
hand, the choice of PE2 for task 2 vs PE1 is also interesting
as task 2 takes longer. However, this might be better due to
the task-dependency graph.

5. Related Work
Resource management has been actively researched in many
communities. Several works have been applying deep RL to
optimally allocate resources and distribute tasks. DeepRM
uses standard deep Q-learning algorithm to formalize re-
source management as a Tetris game, however, it only work
with homogeneous settings (Mao et al., 2016). A variant of
DeepRM leverages convolution neural networks as a back-
bone network to improve performance in scheduling (Chen
et al., 2017). Subsequent work in DeepRM, Pensieve ap-
plies a resource managing algorithm to video streaming to
optimally control the bitrate and successfully reduced buffer-
ing (Mao et al., 2017). Hopfield networks have been applied
to schedule heterogeneous SoC (Chillet et al., 2011). More
recent work combines heuristic and learning algorithms,
starting from an existing plan and iteratively improving it
and successfully applying it in heterogeneous job scheduling
task (Chen & Tian, 2018). However, their work follows the
general MDP setting where, again, the agent chooses action
at every timestep. From the perspective of hardware, recent
work has proposed new accelerator architectures which have
potential advances (Chen et al., 2018).

6. Conclusion
Neural schedulers using deep reinforcement learning have
been researched in many areas and greatly improved the
performance compared to heuristic algorithms. In this paper,
we propose the promising approach of resource allocation
applied in heterogeneous SoC chips. We use ‘no-operation’
action and refer to all task lists, regardless of task status, to
address partially-observability and the SMDP problem. To
the best of our knowledge, this paper has been the first to
deal with scheduling different tasks on different hardware
chips to discover the optimal combination of functionalities.
Furthermore, we expect the general value functions and
predictive knowledge approach and the option framework
to improve performance and leave them as future work.
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