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ABSTRACT

Inspired by the combination of feedforward and iterative computations in the vi-
sual cortex, and taking advantage of the ability of denoising autoencoders to es-
timate the score of a joint distribution, we propose a novel approach to iterative
inference for capturing and exploiting the complex joint distribution of output
variables conditioned on some input variables. This approach is applied to image
pixel-wise segmentation, with the estimated conditional score used to perform
gradient ascent towards a mode of the estimated conditional distribution. This ex-
tends previous work on score estimation by denoising autoencoders to the case of
a conditional distribution, with a novel use of a corrupted feedforward predictor
replacing Gaussian corruption. An advantage of this approach over more clas-
sical ways to perform iterative inference for structured outputs, like conditional
random fields (CRFs), is that it is not any more necessary to define an explicit en-
ergy function linking the output variables. To keep computations tractable, such
energy function parametrizations are typically fairly constrained, involving only
a few neighbors of each of the output variables in each clique. We experimen-
tally find that the proposed iterative inference from conditional score estimation
by conditional denoising autoencoders performs better than comparable models
based on CRFs or those not using any explicit modeling of the conditional joint
distribution of outputs.

1 INTRODUCTION

Based on response timing and propagation delays in the brain, a plausible hypothesis is that the vi-
sual cortex can perform fast feedforward (Thorpe et al., 1996) inference when an answer is needed
quickly and the image interpretation is easy enough (requiring as little as 200ms of cortical propaga-
tion for some object recognition tasks, i.e., just enough time for a single feedforward pass) but needs
more time and iterative inference in the case of more complex inputs (Vanmarcke et al., 2016). Re-
cent deep learning research and the success of residual networks (He et al., 2016; Greff et al., 2016)
point towards a similar scenario (Liao & Poggio, 2016): early computation which is feedforward,
a series of non-linear transformations which map low-level features to high-level ones, while later
computation is iterative (using lateral and feedback connections in the brain) in order to capture
complex dependencies between different elements of the interpretation. Indeed, whereas a purely
feedforward network could model a unimodal posterior distribution (e.g., the expected target with
some uncertainty around it), the joint conditional distribution of output variables given inputs could
be more complex and multimodal. Iterative inference could then be used to either sample from this
joint distribution or converge towards a dominant mode of that distribution, whereas a unimodal-
output feedfoward network would converge to some statistic like the conditional expectation, which
might not correspond to a coherent configuration of the output variables when the actual conditional
distribution is multimodal.

This paper proposes such an approach combining a first feedforward phase with a second iterative
phase corresponding to searching for a dominant mode of the conditional distribution while tackling
the problem of semantic image segmentation. We take advantage of theoretical results (Alain &
Bengio, 2013) on denoising autoencoder (DAE), which show that they can estimate the score or
negative gradient of the energy function of the joint distribution of observed variables: the difference
between the reconstruction and the input points in the direction of that estimated gradient. We
propose to condition the autoencoder with an additional input so as to obtain the conditional score,
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(a) Training scenario 1

(b) Training scenario 2

Figure 1: Training pipeline. Given an input image x, we extract a segmentation candidate y and
intermediate feature maps h by applying a pre-trained segmentation network. We add some noise
to y and train a DAE that takes as input both y and h by minimizing Eq. 3. Training scenario
1 (a) yields the best results and uses the corrupted prediction as input to the DAE during training.
Training scenario 2 (b) corresponds to the original DAE prescription in the conditional case, and
uses a corruption of the ground truth as input to the DAE during training.

i.e., the gradient of the energy of the conditional density of the output variables, given the input
variables. The autoencoder takes a candidate output y as well as an input x and outputs a value ŷ so
that ŷ − y estimates the direction ∂ log p(y|x)

∂y . We can then take a gradient step in that direction and
update y towards a lower-energy value and iterate in order to approach a mode of the implicit p(y|x)
captured by the autoencoder. We find that instead of corrupting the segmentation target as input of
the DAE, we obtain better results by training the DAE with the corrupted feedforward prediction,
which is closer to what will be seen as the initial state of the iterative inference process. The use of
a denoising autoencoder framework to estimate the gradient of the energy is an alternative to more
traditional graphical modeling approaches, e.g., with conditional random fields (CRFs) (Lafferty
et al., 2001; He et al., 2004), which have been used to model the joint distribution of pixel labels
given an image (Krähenbühl & Koltun, 2011). The potential advantage of the DAE approach is that
it is not necessary to decide on an explicitly parametrized energy function: such energy functions
tend to only capture local interactions between neighboring pixels, whereas a convolutional DAE
can potentially capture dependencies of any order and across the whole image, taking advantage
of the state-of-the-art in deep convolutional architectures in order to model these dependencies via
the direct estimation of the energy function gradient. Note that this is different from the use of
convolutional networks for the feedforward part of the network, and regards the modeling of the
conditional joint distribution of output pixel labels, given image features.

The main contributions of this paper are the following:

1. A novel training framework for modeling structured output conditional distributions, which
is an alternative to CRFs, inspired by denoising autoencoder estimation of energy gradients.

2. Showing how this framework can be used in an architecture for image pixel-wise segmen-
tation, in which the above energy gradient estimator is used to propose a highly probable
segmentation through gradient descent in the output space.

3. Demonstrating that this approach to image segmentation outperforms or matches classical
alternatives such as combining convolutional nets with CRFs and more recent state-of-the-
art alternatives on the CamVid dataset.

2 METHOD

In this section, we describe the proposed iterative inference method to refine the segmentation of a
feedforward network.
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2.1 BACKGROUND

As pointed in section 1, DAE can estimate a density p(y) via an estimator of the score or negative
gradient −∂E

∂y of the energy function E (Vincent et al., 2010; Vincent, 2011; Alain & Bengio, 2013).
These theoretical analyses of DAE are presented for the particular case where the corruption noise
added to the input is Gaussian. Results show that DAE can estimate the gradient of the energy
function of a joint distribution of observed variables. The main result is the following:

∂ log p(y)

∂y
≈ 1

σ2
(r(y)− y) , (1)

where σ2 is the amount of Gaussian noise injected during training, y is the input of the autoencoder
and r(y) is its output (the reconstruction). The approximation becomes exact as σ → 0 and the
autoencoder is given enough capacity, training examples and training time. The direction of (r(y)−
y) points towards more likely configurations of y. Therefore, the DAE learns a vector field pointing
towards the manifold where the input data lies.

2.2 OUR FRAMEWORK

In our case, we seek to rapidly learn a vector field pointing towards more probable configurations of
y|x. We propose to extend the results summarized in subsection 2.1 and condition the autoencoder
with an additional input. If we condition the autoencoder with features h, which are a function of x,
the DAE framework with Gaussian corruption learns to estimate ∂ log p(y|x)

∂y = −∂E(y,h)
∂y , where y is

a segmentation candidate, x an input image and E is an energy function. Gradient descent in energy
can thus be performed in order to iteratively reach a mode of the estimated conditional distribution:

y← y − ε∂E(y,h)
∂y

(2)

with step size ε. In addition, whereas Gaussian noise around the target ytrue would be the DAE
prescription for the corrupted input to be mapped to ytrue, this may be inefficient at visiting the
configurations we really care about, i.e. those produced by our feedforward predictor, which we use
to obtain a first guess for y, as initialization of the iterative inference towards an energy minimum.
Therefore, we propose that during training, instead of using a corrupted ytrue as input, the DAE takes
as input a corrupted segmentation candidate y and either the input x or some features h extracted
from a feedforward segmentation network applied to x: y = fL(x), h = f l(x), where fk is
a non-linear function and l ∈ {1, ..., L} is the index of a layer in the feedforward segmentation
network. The output of the DAE is computed as ŷ = r(ỹ,h), where r is a non-linear function
which is trained to denoise conditionally and ỹ is a corrupted form of y. During training, ỹ is y plus
noise, while at test time (for inference) it is simply y itself.

In order to train the DAE, (1) we extract both y and h from a feedforward segmentation network;
(2) we corrupt y into ỹ; and (3) we train the DAE by minimizing the following loss

L = ||ŷ − ytrue||22 +H (ŷ,ytrue) , (3)

whereH is the categorical cross-entropy and ytrue is the segmentation ground truth.

Figure 1(a) depicts the pipeline during training. First, a fully convolutional feedforward network for
segmentation is trained. In practice, we use one of the state-of-the-art pre-trained networks. Second,
given an input image x, we extract a segmentation proposal y and intermediate features h from the
segmentation network. Both y and h are fed to a DAE network (adding Gaussian noise to y). The
DAE is trained to properly reconstruct the clean segmentation (ground truth ytrue). Figure 1(b)
presents the original DAE prescription , where the DAE is trained by taking as input ytrue and h.

Once trained, we can exploit the trained model to iteratively take gradient steps in the direction of the
segmentation manifold. To do so, we first obtain a segmentation proposal y from the feedforward
network and then we iteratively refine this proposal by applying the following rule

y← y + ε(r(y,h)− y). (4)

For practical reasons, we collapsed the corruption noise σ2 into the step size ε.
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Figure 2: Test pipeline. Given an input image x, we extract a segmentation candidate y and inter-
mediate feature maps h by applying a pre-trained segmentation network. We then feed x and h to
the trained DAE and iteratively refine y by applying Eq. 4. The final prediction is the last value of
y computed in this way.

Figure 2 depicts the test pipeline. We start with an input image x that we feed to a pre-trained
segmentation network. The segmentation networks outputs some intermediate feature maps h and
a segmentation proposal y. Then, both y and h are fed to the DAE to compute the output ŷ. The
DAE is used to take iterative gradient steps y = y− ε(y− ŷ) towards the manifold of segmentation
masks, with no noise added at inference time.

3 RELATED WORK

On one hand, recent advances in semantic segmentation mainly focus on improving the architec-
ture design (Ronneberger et al., 2015; Badrinarayanan et al., 2015; Drozdzal et al., 2016; Jégou
et al., 2017), increasing the context understanding capabilities (Gatta et al., 2014; Visin et al., 2016;
Chen et al., 2015; Yu & Koltun, 2016) and building processing modules to enforce structure consis-
tency to segmentation outputs (Krähenbühl & Koltun, 2011; Chen et al., 2015; Zheng et al., 2015).
Here, we are interested in this last research direction. CRFs are among the most popular choices
to impose structured information at the output of a segmentation network, being fully connected
CRFs (Krähenbühl & Koltun, 2011) and CRFs as RNNs (Zheng et al., 2015) among best perform-
ing variants. More recently, an alternative to promote structure consistency by decomposing the
prediction process into multiple steps and iteratively adding structure information, was introduced
by (Li et al., 2016). Another iterative approach was introduced by Gidaris & Komodakis (2016)
to tackle image semantic segmentation by repeatedly detecting, replacing and refining segmenta-
tion masks. Finally, the reinterpretation of residual networks (Liao & Poggio, 2016; Greff et al.,
2016) was exploited by Drozdzal et al. (2017), in the context of biomedical image segmentation, by
iteratively refining learned pre-normalized images to generate segmentation predictions.

On the other hand, there has recently been some research devoted to exploit results of DAE on
different tasks, such as image generation (Nguyen et al., 2016), high resolution image estima-
tion (Sønderby et al., 2017) and semantic segmentation (Xie et al., 2016). Nguyen et al. (2016)
propose plug & play generative networks, which, in the best reported results, train a fully-connected
DAE to reconstruct a denoised version of some feature maps extracted from an image classification
network. The iterative update rule at inference time is performed in the feature space. Sønderby
et al. (2017) use DAE in the context of image super-resolution to learn the gradient of the density
of high resolution images and apply it to refine the output of an upsampled low resolution image.
Xie et al. (2016) exploit convolutional pseudo-priors trained on the ground-truth labels in semantic
segmentation task. During the training phase, the pseudo-prior is combined with the segmentation
proposal from a segmentation model to produce joint distribution over data and labels. At test time,
the ground truth is not accessible, thus feedforward segmentation predictions are fed iteratively to
the convolutional pseudo-prior network. In this work, we exploit DAEs in the context of image seg-
mentation and extend them in two ways, first by using them to learn a conditional score, and second
by using a corrupted feedforward prediction as input during training to obtain better segmentations.

4 EXPERIMENTS

The main objective of these experiments is to answer the following questions: Can a conditional
DAE be used successfully as the building block of iterative inference for image segmentation? Does
our proposed corruption model (based on the feedforward prediction) work better than the prescribed
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target output corruption? Does the resulting segmentation system outperform more classical iterative
approaches to segmentation such as CRFs?

4.1 CAMVID DATASET

CamVid1 (Brostow et al., 2008) is a fully annotated urban scene understanding dataset. It contains
videos that are fully segmented. We used the same split and image resolution as (Badrinarayanan
et al., 2015). The split contains 367 images (video frames) for training, 101 for validation and 233
for test. Each frame has a resolution of 360x480 and pixels are labeled with 11 different classes.

4.2 FEEDFORWARD SEGMENTATION ARCHITECTURE

We experimented with two feedforward architectures for segmentation: the classical fully convolu-
tional network FCN-8 of Long et al. (2015) and the more recent state-of-the-art fully convolutional
densenet (FC-DenseNet103) of Jégou et al. (2017), which do not make use of any additional syn-
thetic data to boost their performances.

FCN-8 (Long et al., 2015): FCN-8 is a feedforward segmentation network, which consists of a con-
volutional downsampling path followed by a convolutional upsampling path. The downsampling
path successively applies convolutional and pooling layers, and the upsampling path successively
applies transposed convolutional layers. The upsampling path recovers spatial information by merg-
ing features skipped from the various resolution levels on the downsampling path.

FC-DenseNet103 (Jégou et al., 2017): FC-DenseNet is a feedforward segmentation network, that
exploits the feature reuse idea of Huang et al. (2016) and extends it to perform semantic segmenta-
tion. FC-DenseNet103 consists of a convolutional downsampling path, followed by a convolutional
upsampling path. The downsampling path iteratively concatenates all feature outputs in a feed-
forward fashion. The upsampling path applies a transposed convolution to feature maps from the
previous stage and recovers information from higher resolution features from the downsampling
path of the network by using skip connections.

4.3 DAE ARCHITECTURE

Our DAE is composed of a downsampling path and an upsampling path. The downsampling path
contains convolutions and pooling operations, while the upsampling path is built from unpooling
with switches (also known as unpooling with index tracking) (Zhao et al., 2015; Zhang et al., 2016;
Badrinarayanan et al., 2015) and convolution operations. As discussed in (Zhang et al., 2016),
reverting the max pooling operations more faithfully, significantly improves the quality of the re-
constructed images. Moreover, while exploring potential network architectures, we found out that
using fully convolutional-like architectures with upsampling and skip connections (between down-
sampling and upsampling paths) decreases segmentation results when compared to unpooling with
switches. This is not surprising, since we inject noise to the model’s input when training the DAE.
Skip connections directly propagate this added noise to the end layers; making them responsible for
the data denoising process. Note that the last layers of the model might not have enough capacity to
accomplish the denoising task.

In our experiments, we use DAE built from 6 interleaved pooling and convolution operations, fol-
lowed by 6 interleaved unpooling and convolution operations. We start with 64 feature maps in the
first convolution and duplicate the number of feature maps in consecutive convolutions in the down-
sampling path. Thus, the number of feature maps in the networks downsampling path is: 64, 128,
256, 512, 1024 and 2048. In the upsampling path, we progressively reduce the number of feature
maps up to the number of classes. Thus, the number of feature maps in consecutive layers of the up-
sampling path is the following: 1024, 512, 256, 128, 64 and 11 (number of classes). We concatenate
the output of 4th pooling operation in downsampling path of DAE together with the feature maps h
corresponding to 4th pooling operation in downsampling path of the segmentation network.

4.4 TRAINING AND INFERENCE DETAILS

We train our DAE by means of stochastic gradient descent with RMSprop (Tieleman & Hinton,
2012), initializing the learning rate to 10−3 and applying an exponential decay of 0.99 after each

1http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
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Table 1: Results on CamVid dataset test set, using different segmentation networks. DAE(ytrue)
corresponds to training scenario 2 and DAE(y) corresponds to training scenario 1 from Figure 1.
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FCN-8 88.7 77.8 19.9 91.2 72.7 71.0 32.7 24.4 76.1 41.7 31.0 57.0 88.1
FCN-8 + CRF 90.1 79.2 17.1 91.7 74.5 72.2 36.1 25.1 77.6 44.3 32.3 58.2 89.0

FCN-8 + con. mod. 90.1 78.7 21.1 91.5 73.3 72.2 34.5 25.7 77.3 43.1 33.5 58.3 88.7
FCN-8 + CRF-RNN 88.1 79.4 22.3 92.0 75.2 71.8 31.6 30.1 76.4 44.7 34.3 58.7 88.9

FCN-8 + DAE(ytrue) 89.0 78.4 18.5 91.3 73.3 71.5 33.3 24.8 76.7 43.3 31.6 57.4 88.4
FCN8 + DAE(y) 89.1 80.0 22.0 92.1 75.3 72.6 32.7 27.1 80.3 46.2 42.5 60.0 89.3

FC-DenseNet 93.1 83.1 37.8 94.4 82.3 77.5 43.9 37.8 77.2 59.1 49.5 66.9 91.5
FC-DenseNet + CRF 93.2 83.8 35.4 94.3 81.9 77.9 46.3 38.3 77.4 59.5 51.7 67.2 91.7

FC-DenseNet + con. mod. 92.6 83.7 37.9 94.4 82.2 77.3 45.0 37.7 77.4 60.2 51.0 67.2 91.6
FC-DenseNet + DAE(ytrue) 92.7 83.4 38.0 94.4 82.2 77.3 44.6 37.8 77.3 59.6 50.5 67.1 91.5

FC-DenseNet + DAE(y) 93.0 83.6 38.8 94.4 82.5 77.7 44.9 37.8 77.3 60.3 50.8 67.4 91.7

epoch. All models are trained with data augmentation, randomly applying crops of size 224 × 224
and horizontal flips. We regularize our model with a weight decay of 10−4. We use a minibatch size
of 10. While training, we add zero-mean Gaussian noise (σ = 0.1 or σ = 0.5) to the DAE input.
We train the models for a maximum of 500 epochs and monitor the validation reconstruction error
to early stop the training using a patience of 100 epochs.

At test time, we need to determine the step size ε and the number of iterations to get the final
segmentation output. We select ε and the number of iterations by evaluating the pipeline on the
validation set. Therefore, we try ε ∈ {0.01, 0.02, 0.05, 0.08, 0.1, 0.5, 1} for up to 50 iterations
(iteration ∈ {1, 2, ..., 50}). For each iteration, we compute the mean intersection over union (mean
IoU) on the validation set and keep the combination (ε, number of iterations) that maximizes this
metric to evaluate the test set.2

4.5 RESULTS

Table 1 reports our results for FCN-8 and FC-DenseNet103 without any post-processing step, ap-
plying fully connected CRF (Krähenbühl & Koltun, 2011), context network (Yu & Koltun, 2016) as
trained post-processing step, CRF-RNN (Zheng et al., 2015) trained end-to-end with the segmenta-
tion network and DAE’s iterative inference. For CRF, we use publicly available implementation of
Krähenbühl & Koltun (2011).

As shown in the table, using DAE’s iterative inference on the segmentation candidates of a feed-
forward segmentation network (DAE(y)) outperforms state-of-the-art post-processing variants; im-
proving upon FCN-8 by a margin of 3.0% IoU. When applying CRF as a post-processor, the FCN-8
segmentation results improve 1.2%. Note that similar improvements for CRF were reported on other
architectures for the same dataset (e.g. Badrinarayanan et al. (2015)). Comparable improvements
are achieved when using the context module (Yu & Koltun, 2016) as post-processor (1.3%) and when
applying CRF-RNN (1.7%). It is worth noting that our method does not decrease the performance
of any class with respect to FCN-8. However, CRF loses 2.8% when segmenting column poles,
whereas CRF-RNN loses 1.1% when segmenting signs. When it comes to more recent state-of-
the-art architectures such as FC-DenseNet103, the post-processing increment on the segmentation
metrics is lower, as expected. Nevertheless, the improvement is still perceivable (+ 0.5% in IoU).
When comparing our method to other state-of-the-art post-processors, we observe a slight improve-
ment. End-to-end training of CRF-RNN with FC-DenseNet103 did not yield any improvement over
FC-DenseNet103.

It is worth comparing the performance of the proposed approach DAE(y) with DAE(ytrue) trained
from the ground truth. As shown in the table, DAE(y) consistently outperforms DAE(ytrue). For
FCN-8, the proposed method outperforms DAE(ytrue) by a margin of 2.2%. For FC-DenseNet103,
differences are smaller but still noticeable. In both cases, DAE(y) not only outperforms DAE(ytrue)

2The code to reproduce all experiments can be found here: XXXXXXXXXXXXX
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(a) Legend

(b) Image (c) Ground Truth

(d) FCN-8 (e) FCN-8 + CRF (f) FCN-8 + DAE

(g) Image (h) Ground Truth

(i) FC-DenseNet (j) FC-DenseNet + CRF (k) FC-DenseNet + DAE

Figure 3: Qualitative results. Main differences are marked with white boxes.
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(a) FCN-8 (b) FC-DenseNet103

Figure 4: Results at inference time. X-axis denotes number of iteration and Y-axis is the Intersection
over Union (IoU). The plots were obtained on Camvid’s validation set.

globally, but also in the vast majority of classes that exhibit an improvement. Note that the model
trained on the ground truth requires a bigger Gaussian noise σ in order to slightly increase the
performance of the pre-trained feedforward segmentation networks. It is worth mentioning that
training our model end-to-end with the segmentation network didn’t improve the results, while being
more memory demanding.

Figure 3 shows some qualitative segmentation results that compare the output of the feedforward
network to both the CRF and iterative inference outputs. Figures 3(b)-3(f) show an example from
the FCN-8 case, where as Figures 3(g)-3(k) show an example from FC-DenseNet103. As shown in
Figure 3(d), the FCN-8 segmentation network fails to properly find the fence in the image, mistak-
enly classifying it as part of a building (highlighted with a white box on the image). CRF is able to
clean the segmentation candidate, for example, by filling in missing parts of the sidewalk but is not
able to add non-existing structure (see Figure 3(e)). Our method not only improves the segmenta-
tion candidate by smoothing large regions such as the sidewalk, but also corrects the prediction by
incorporating missing objects such as the fence on Figure 3(f). As depicted in Figures 3(g)-3(k),
in case of FC-DenseNet the improvement in segmentation quality is minor and difficult to perceive
by visual inspection. The qualitative results follow the findings from quantitative analysis, CRF
decreases slightly the quality of column pole segmentations (e. g. see area inside white boxes when
comparing Figures 3(j) and 3(k)).

4.6 ANALYSIS OF ITERATIVE INFERENCE STEPS

In this subsection, we analyze the influence of the two inference parameters of our method, namely
the step size ε and the number of iterations. This analysis is performed on the validation set of
CamVid dataset, for the above-mentioned feedforward segmentation networks. For the sake of com-
parison, we perform a similar analysis on densely connected CRF; by fixing the best configuration
and only changing the number of CRF iterations.

Figure 4 shows how the performance varies with number of iterations. Figure 4(a) and Figure 4(b)
plot the results in the case of FCN-8 and FC-DenseNet103, respectively. As expected, there is a
trade-off between the selected step size ε and the number of iterations. The smaller the ε, the more
iterations are required to achieve the best performance. Interestingly, all ε within a reasonable range
lead to similar maximum performances.

5 CONCLUSIONS

We have proposed to use a novel form of denoising autoencoders for iterative inference in structured
output tasks such as image segmentation. The autoencoder is trained to map corrupted predictions
to target outputs and iterative inference interprets the difference between the output and the input as
a direction of improved output configuration, given the input image.

Experiments provide positive evidence for the three questions raised at the beginning of Sec. 4: (1)
a conditional DAE can be used successfully as the building block of iterative inference for image
segmentation, (2) the proposed corruption model (based on the feedforward prediction) works better
than the prescribed target output corruption, and (3) the resulting segmentation system outperforms
state-of-the-art methods for obtaining coherent outputs.
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