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ABSTRACT

Certain biological neurons demonstrate a remarkable capability to optimally com-
press the history of sensory inputs while being maximally informative about the
future. In this work, we investigate if the same can be said of artificial neurons
in recurrent neural networks (RNNs) trained with maximum likelihood. In ex-
periments on two datasets, restorative Brownian motion and a hand-drawn sketch
dataset, we find that RNNs are sub-optimal in the information plane. Instead of
optimally compressing past information, they extract additional information that
is not relevant for predicting the future. We show how constraining past informa-
tion by injecting noise into the hidden state can improve the ability of RNNs to
extract predictive information for both maximum likelihood and contrastive loss
training.

1 INTRODUCTION

Remembering past events is a critical component of predicting the future and acting in the world. An
information-theoretic quantification of how much observing the past can help in predicting the future
is given by the predictive information (Bialek et al., 2001). The predictive information is the mutual
information (MI) between a finite set of observations (the past of a sequence) and an infinite number
of additional draws from the same process (the future of a sequence). As a mutual information, the
predictive information gives us a reparameterization independent, symmetric, interpretable measure
of the co-dependence of two random variables. More colloquially, the mutual information tells us
how many bits we can predict of the future given our observations of the past.1 Asymptotically, a
vanishing fraction of the information in the past is relevant to the future (Bialek et al., 2001), thus
systems which excel at prediction need not memorize the entire past of a sequence.

Intriguingly, certain biological neurons extract representations that efficiently capture the predictive
information in sequential stimuli (Palmer et al., 2015; Tkačik & Bialek, 2016). In Palmer et al.
(2015), spiking responses of neurons in salamander retina had near optimal mutual information with
the future states of sequential stimuli they were exposed to, while compressing the past as much as
possible.

Do our artificial neural networks perform similarly? In this work, we aim to answer this question by
measuring artificial recurrent neural networks’ (RNNs) capacity to compress the past while retaining
relevant information about the future.

Our contributions are as follows:

• We demonstrate that RNNs are suboptimal at extracting predictive information on the
tractable sequential stimuli used in Palmer et al. (2015).

• We thoroughly validate the accuracy of our mutual information estimates on RNNs and
optimal models.

• We repeat our analysis on the real-world Aaron Koblin Sheep sketch dataset (Ha & Eck,
2017), demonstrating that deterministic RNNs continue to perform suboptimally.

• We demonstrate that on small datasets, models trained to compress the past have improved
sample quality over naively-trained RNNs.

1 Because of its symmetry, this is equivalent to the number of bits we can reconstruct of the past given
observations of the future.
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2 BACKGROUND AND METHODS

We begin by providing additional background on predictive information, mutual information es-
timators, stochastic RNNs, and Gaussian Information Bottleneck. These tools are neccessary for
accurately evaluating the question of whether RNNs are optimal in the information plane, as we re-
quire knowledge of the optimal frontier, and accurate estimates of mutual information for complex
RNN models.

2.1 PREDICTIVE INFORMATION

Imagine an infinite sequence of data: Xt. The predictive information (Bialek et al., 2001) in the
sequence is the mutual information between some finite number of observations of the past (T ) and
the infinite future of the sequence:

Ipred(T ) = I(Xpast;Xfuture) = I({Xt−T+1, . . . , Xt}; {Xt+1, . . . }). (1)

For a process for which the dynamics are not varying in time, this will be independent of the par-
ticular time t chosen to be the present. More specifically, the predictive information is an expected
log ratio between the likelihood of observing a future given the past, versus observing that future in
expectation over all possible pasts:

Ipred ≡ E
[
log

p(xfuture|xpast)

p(xfuture)

]
= E

[
log

p(xfuture|xpast)

Ex′
past

[
p(xfuture|x′past)

]] . (2)

A sequential model such as an RNN provides a stochastic representation of the entire past of the
sequence Z ∼ p(z|xpast). For any such representation, we can measure how much information it
retains about the past, a.k.a. the past information: Ipast = I(Z;Xpast), and how informative it is
about the future, a.k.a. the future information: Ifuture = I(Z;Xfuture). Because the representation
depends only on the past, our three random variables satisfy the Markov relations: Z ← Xpast ↔
Xfuture and the Data Processing Inequality (Cover & Thomas, 2012) ensures that the information
we have about the future is always less than or equal to both the true predictive information of the
sequence (Ifuture ≤ Ipred) as well as the information we retain about the past (Ifuture ≤ Ipast). For
any particular sequence, there will be a frontier of solutions that optimally tradeoff between Ipast and
Ifuture. A common method for tracing out this frontier is through the Information Bottleneck (Tishby
et al., 2000) Lagrangian:

min
p(z|xpast)

I(Z;Xpast)− βI(Z;Xfuture), (3)

where the parameter β controls the tradeoff. An efficient representation of the past is one that lies
on this optimal frontier, or equivalently is a solution to Eqn. 3 for a particular choice of β. For
simple problems, where the sequence is jointly Gaussian, we will see that the optimal frontier can
be identified analytically.

2.2 MUTUAL INFORMATION ESTIMATORS

In order to measure whether a representation is efficient, we need a way to measure its past and
future informations. While mutual information estimation is difficult in general (McAllester &
Stratos, 2019), recent progress has been made on a wide range of variational bounds on mutual
information (Poole et al., 2019). While these provide bounds and not exact estimates of mutual
information, they allow us to compare mutual information quantities in continuous spaces across
models. There are two broad families of estimators: variational lower bounds powered by a tractable
generative model, or contrastive lower bounds powered by an unnormalized critic.

The former class of lower bounds, first presented in Barber & Agakov (2003), are powered by a
variational generative model:

Ifuture = E
[
log

p(xfuture|z)
p(xfuture)

]
≥ H(xfuture) + E [log q(xfuture|z)] . (4)

A generative model provides a demonstration that there exists at least some information between
the representation z and the future of the sequence. For our purposes, H(xfuture), the entropy of the
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future of the sequence is a constant, determined by the dynamics of the sequence itself and outside
our control. For tractable problems, such as the toy problem we investigate below, this value is
known. For real datasets, this value is not known so that we cannot produce reliable estimates of the
mutual information. It does, however, still provide reliable gradients of a lower bound. One example
of such a generative model is the loss used to train the RNN to begin with.

Contrastive lower bounds can be used to estimate Ifuture for datasets where building a tractable gen-
erative model of the future is challenging. InfoNCE style lower bounds (van den Oord et al., 2018;
Poole et al., 2019) only require access to samples from both the joint distribution and the individual
marginals:

I(X;Z) ≥ INCE(X;Z) , EpK(x,z)

[
1

K

K∑
i=1

log
ef(xi,zi)

1
K

∑K
j=1 e

f(xj ,zi)

]
. (5)

Here f(xj , zi) is a trained critic that plays a role similar to a discriminator in a Generative Adver-
sarial Network (Goodfellow et al., 2014). It scores pairs, attempting to determine if an (x, z) pair
came from the joint (p(x, z)) or the factorized marginal distributions (p(x)p(z)).

When forming estimates of Ipast, we can leverage additional knowledge about the known encoding
distribution from the stochastic RNN p(z|xpast) to form tractable upper and lower bounds without
having to learn an additional critic (Poole et al., 2019):

E

[
1

K

K∑
i=1

log
p(zi|xipast)

1
K

∑
j p(z

i|xjpast)

]
≤ I(Z;Xpast) ≤ E

[
1

K

K∑
i=1

log
p(zi|xipast)

1
K−1

∑
j 6=i p(z

i|xjpast)

]
. (6)

We refer to these bounds as minibatch upper and lower bounds as they are computed using mini-
batches of size K from the dataset. As the minibatch size K increases, the upper and lower bounds
can become tight. When logK � I(Z;Xpast) the lower bound saturates at logK and the upper
bound can be loose, thus we require using large batch sizes to form accurate estimates of Ipast.

2.3 STOCHASTIC RNNS

Deterministic RNNs can theoretically encode infinite information about the past in their hidden
states (up to floating point precision). To limit past information, we devise a simple stochastic RNN.
Given the deterministic hidden state ht, we output a stochastic variable zt by adding i.i.d. Gaussian
noise to the hidden state before reading out the outputs: zt ∼ N (ht, σ

2). These stochastic outputs
are then used to predict the future state: x̂t+1 ∼ N (gdecoder(zt), σ

2
o), as illustrated in Figure 1. With

bounded activation functions on the hidden state ht, we can use σ2 to upper bound the information
stored about the past in the stochastic latent zt. This choice of stochastic recurrent model yields
a tractable conditional distribution p(zt|x≤t) ∼ N (ht, σ

2), which we can use in Eq. 6 to form
tractable upper and lower bounds on the past information. We will consider two different settings
for our stochastic RNNs: (1) where the RNNs are trained deterministically and the noise on the
hidden state is added only at evaluation time, and (2) where the RNNs are trained with noise, and
evaluated with noise.

Figure 1: Schematic of Gaussian-noise-augmented stochastic RNN.
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2.4 GAUSSIAN INFORMATION BOTTLENECK

To evaluate optimality of RNNs, we first focus on the tractable sequential stimuli of a simple Brow-
nian Harmonic Oscillator as used in (Palmer et al., 2015). A crucial property of this dataset is that
we can analytically calculate the optimal trade-off between past and future information as it is an
instance of the Gaussian Information Bottleneck (Chechik et al., 2005).

Consider jointly multivariate Gaussian random variables X ∈ RDX and Y ∈ RDY , with covariance
ΣX and ΣY and cross-covariance ΣXY . The solution to the Information Bottleneck objective:

min
T
I(X;T )− βI(Y ;T ), (7)

is given by a linear transformation T = AX + ε with ε ∼ N (0,Σε). The projection matrix A
projects along the lowest eigenvectors of ΣX|Y Σ−1

X , where the trade-off parameter β decides how
many of the eigenvectors participate. Further details can be found in Appendix A.1.

3 RESULTS

3.1 BROWNIAN HARMONIC OSCILLATOR

(a) Brownian Harmonic Oscillator
(b) SimpleRNN

(c) GRU (d) LSTM

Figure 2: (a) Example trajectories of Brownian harmonic oscillator over time, with each color rep-
resenting a different trajectory. (b, c, d) Estimates of the past information contained in the stochastic
variable (x-axis) vs. future information (y-axis). The feasible region is shaded. The models to the
upper-left perform better future prediction, while compressing the past more, therefore they are of
higher efficiency. Points correspond to estimates with a learned critic; bars represent the gap between
the lower and upper bounds using the known conditional distribution instead of a learned critic; col-
ors represent the noise level, log(noise), added to the hidden state. The stochastically trained RNN
is marked as ◦, and deterministically trained RNN with post-hoc noise injection is marked as O.

We begin by considering the Brownian harmonic oscillator (BHO) dataset, a form of restorative
Brownian motion, as in Palmer et al. (2015). This system has the benefit of having fully tractable
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predictive information. The dynamics are given by:

xt+∆t = xt + vt∆t,

vt+∆t = [1− Γ∆t]vt − ω2xt∆t+ ξt
√
D∆t.

(8)

where ξt is a standard Gaussian random variable. Additional details can be found in Appendix A.2.
Examples of the trajectories for this system can be seen in Figure 2a.

Given its analytical tractability we can explicitly compare the estimated RNN performance against
optimal performance. We compared three major variants of RNNs, including fully-connected RNNs,
gated recurrent units (GRU, Cho et al. (2014)), and LSTMs (Hochreiter & Schmidhuber, 1997).
Each network had 32 hidden units and tanh activations. Full training details are in Appendix A.2.

Figure 2 contains the results for both stochastic RNNs and deterministic RNNs with noise added
only at evaluation time. By varying the strength of the noise, networks trace out a trajectory on the
information plane. We find that networks trained with noise are close to the optimal frontier (black),
in terms of optimally extracting information about the past that is useful for predicting the future.
While injecting noise at evaluation time produces networks with compressed representations, these
deterministically trained networks perform worse than their stochastically trained counterparts.

Training with noise injection can make the networks more efficiently capture the predictive infor-
mation than post-hoc noise injection. At the same noise level (the color coding in Figure 2) stochas-
tically trained RNNs have both higher I(z;xpast) and higher I(z;xfuture). By limiting the capacity
of the models during training, they were able to extract more efficient representations. For this task,
we find that more complex RNN variants such as LSTMs are less efficient at encoding predictive
information.

Dropout (Srivastava et al., 2014) is a potential alternative way to eliminate information. In Ap-
pendix A.5, we demonstrate that RNNs trained with dropout extract less information than the ones
trained without dropout, and that our simple noise injection technique can find equivalent models.
To access whether the observed sub-optimality was a consequence of our choice of maximum likeli-
hood (MLE) as a training objective, in Appendix A.4 we demonstrate the effect of using contrastive
predictive coding (CPC) (Oord et al., 2018) as the training objective. We find that models trained
with CPC loss perform similarly to models trained with MLE, as measured on the information plane.
However, this may be due to the BHO dataset having Markovian dynamics, and optimizing for one-
step-ahead prediction with MLE is sufficient to maximize mutual information with the future of the
sequence.

3.2 ACCURACY OF MUTUAL INFORMATION ESTIMATES

Our claim that RNNs are suboptimal in capturing predictive information hinges on the quality of
our MI estimates. Are the RNNs truly suboptimal or is it just that our MI estimates are inaccurate?
Here we provide several experiments further validating the accuracy of our MI estimates.

Figure 3: (Left) Comparison among critic based estimators, InfoNCE, JS and NWJ. (Middle) Com-
parison between estimations from Barber-Agakov and InfoNCE lower bound on future information
I(Xfuture;Z). (Right) Illustration of the convergence for minibatch upper and lower bounds with
two noise levels, 0.02 (Blue) and 0.05 (Red). Dashed line is the ln(number of samples), which is
the limit for minibatch lower bounds.
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Comparison among estimators. There are many different mutual information estimators. In Fig-
ure 3, we compare various mutual information lower bounds with learned critics: InfoNCE, NWJ
and JS, as summarized in Poole et al. (2019). NWJ and JS show higher variance and worse bias
than InfoNCE. The second panel of Figure 3 demonstrates that InfoNCE outperforms a variational
Barber-Agakov style variational lower bound at measuring the future information. Therefore, we
adopted InfoNCE as the critic based estimator for the future information in the previous section.

For the past information, we could generate both tractable upper and lower bounds, given our
tractable likelihood, p(zt|x≤t ∼ N (ht, σ

2). In the third panel of Figure 3 we demonstrate that
these bounds become tight as the sample size increases. However they require a large number of
samples before they converge. Fundamentally, the lower bound itself is upper-bounded by the log
of the number of samples used.

Figure 4: (Left) Estimates of past and future information over training iterations on the training
and testing BHO data. We can see that our MI estimates quickly overfit, which we remedy here by
early stopping. (Right) Impact of training dataset sizes on InfoNCE estimator on more complicated
dataset, Aaron’s Sheep, as introduced in Section 3.3. The original dataset has size 7200 for training,
and 800 for evaluation. We augment the dataset by random scaling the input values per sequence.
The colors indicate the multiples of original dataset size after augmentation.

Estimator training with finite dataset. Training the learned critic on finite datasets for a large
number of iterations resulted in problematic memorization and overestimates of MI. To counteract
the overfitting, we performed early stopping using the MI estimate with the learned critic on a
validation set. Unlike the training MI, this is a valid lower bound on the true MI. We then report
estimates of mutual information using the learned critic on an independent test set, as Figure 4.

Figure 5: Evaluate mutual information estimators given optimal encoder. For past information
estimation, I(Hidden; Past), InfoNCE lower bound (colored points) and MB-Lower and MB-Upper
(colored bars) are used; for future information, I(Hidden; Future), only InfoNCE is applied, due
to lack of tractable conditional distribution p(Y |T ). Heat-color represents the level of trade-off
parameter β.

Analytical Agreement As a final and telling justification of the efficiency of our estimators, Figure 5
demonstrates that our estimators accurately estimate the mutual information in our region of interest,
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for analytically derived optimal projections. Background for the Gaussian Information Bottleneck
is in Section 2.4 and details of the calculation can be found in Appendix A.1.

3.3 VECTOR DRAWING DATASET

In order to assess whether the sub-optimality of RNNs was an artifact of the BHO dataset, we
performed additional experimentson a real world sequential dataset. We used the Aaron Koblin
Sheep Sketch Dataset2. Full experimental details are in Appendix A.3. We adopted the SketchRNN
architecture and online data augmentation procedure used in Ha & Eck (2017).

Figure 6 (Left) shows the estimates on the information plane for the trained networks. Again, the
networks that were trained explicitly with noise dominate on the information plane. For this real
world task we no longer know the optimal information tradeoff, but still see that the deterministi-
cally trained networks evaluated with noise are demonstrably suboptimal compared to some simple
stochastic networks trained with noise injection.

Figure 6: (Left) Evaluation on Aaron Sheep dataset by comparing training explicitly with noise (◦)
and post-hoc noise injection after training (O). The color bar shows the noise level in log10 scale.
(Right) Comparing the training and evaluation loss for noise-trained RNNs.

Besides demonstrating sub-optimality in capturing predictive information on the information plane,
in Figure 6 (Right), we demonstrate that the deterministic RNNs are wasteful. Networks with higher
levels of compression (marked by higher noise levels) were able to obtain similar average test set
performance with noticeably lower variance than the deterministic networks. They also show a
smaller generalization gap. By explicitly training the networks to operate within some constrained
information budget reduced variance between runs without substantially reducing test set perfor-
mance.

In Figure 7 we show some generated completions from the models trained on the full dataset with
varying degrees of noise. The models trained with the highest noise levels show a noticeable degre-
dation in sample quality.

3.4 SMALL DATASETS

We expect the benefits of training compressed representations to be most marked on limited datasets
where the compression can prevent the network from memorizing too many spurious correlations.

To investigate, we repeated the experiments of the previous section with limited dataset with only
100 examples. Figure 8 (Upper Left) shows the corresponding information plane points for stochas-
tically trained RNNs with various noise levels. Notice that at about 4 nats of past information,
the networks future information essentially saturates. While it seems as though the networks don’t
suffer even when asked to learn richer representations, this is largely an artifact of our training pro-
cedure which included early stopping. As can be seen in Figure 8 (Lower Left), all of our networks
overfit in terms of evaluation loss, but the onset of overfitting was strongly controlled by the degree
of compression.

2Available from https://github.com/hardmaru/sketch-rnn-datasets/tree/master/
aaron_sheep
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Figure 7: Conditional generation of QuickDraw sketches by SketchRNN models trained with dif-
ferent noise levels.

Figure 8: Left Column. Top: Estimation of past and future information for RNN trained with 100
samples, with color indicating the noise levels in log10 scale. Bottom: Validation loss for different
noise levels. Right Column. Conditional generated samples from models with different levels of
past information. The generation is conditioned on a 25-step stroke, which is taken from a held-out
sample. The samples from the model with 4.0 nats past information is of better sample quality than
models with higher past informations. For more samples, see Figure 12.

Most noticeably, in the limited data regime, compressed representations lead to improved sample
quality, as seen in Figure 8 (Right). Models with intermediately-sized compressed representations
show the best generated samples while retaining a good amount of diversity. Models with either too
little or too much past information tend to produce nonsensical generations.

4 CONCLUSION AND DISCUSSION

In this work, we have demonstrated how analyzing recurrent neural networks in terms of predictive
information can be a useful tool in probing and understanding behavior. We find that RNNs trained
with maximum likelihood are sub-optimal on the information plane, extracting more information
about the past than is required to predict the future. By analyzing different training objectives and
noise injection approaches in the information plane, we can better understood the tradeoffs made by
different models, and identify models that are closer to the optimality demonstrated by biological
neurons (Palmer et al., 2015).
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While the simple strategy of adding noise to a bounded hidden state can be used to constrain infor-
mation, setting the amount of noise and identifying where one should be on the information plane
remains an open problem. Additionally, studying the impact of other architecture choices, such as
stochastic latent variables in variational RNNs (Chung et al., 2015), or attention-based Transformers
(Vaswani et al., 2017) in the information plane could yield insights into their better performance on
several tasks.
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A APPENDIX

A.1 GAUSSIAN INFORMATION BOTTLENECKS

Consider jointly multivariate Gaussian random variables X ∈ RDX and Y ∈ RDY , with covariance
ΣX and ΣY and cross-covariance ΣXY . The solution to the Information Bottleneck objective:

min
T
I(X;T )− βI(Y ;T ), (9)

is given by a linear transformation T = AX + ε with ε ∼ N (0,Σε). The projection matrix A
projects along the lowest eigenvectors λi(i ∈ [1, DX ]) of ΣX|Y Σ−1

X , where the trade-off parameter
β decides how many of the eigenvectors participate, vTi (i ∈ [1, DX ]). The projection matrix A
could be analytically derived as

A = [α1vT
1 , α2vT

2 , . . . , αDX
vT
DX

], Σε = I (10)

where the projection coefficients α2
i = max(β(1−λi)−1

λiri
, 0), ri = vT

i ΣXvi, with proof in Ap-
pendix A.1.1.

Given the optimally projected states T , the optimal frontier (black curve in Figure 5) is:

I(T ;Y ) = I(T ;X)− nI
2

log(

nI∏
i=1

(1− λi)
1

nI + e
2I(T ;X)

nI

nI∏
i=1

λ
1

nI
i ), cnI

≤ I(T ;X) ≤ cnI+1 (11)

where nI is the cutoff number indicating the number of smallest eigenvalues being used. The critical
points cnI

, changing from using nI = N eigenvalues to N + 1 eigenvalues, can be derived given
the concave and C1 smoothness property for the optimal frontier, with proof in Appendix A.1.2:

cnI
=

1

2

N∑
i=1

log
λN+1

λi

1− λi
1− λN+1

(12)

10

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
http://arxiv.org/abs/physics/0004057


Under review as a conference paper at ICLR 2020

A.1.1 PROOF OF OPTIMAL PROJECTION

By Theorem 3.1 of Chechik et al. (2005), the projection matrix for optimal projection is given by

A =


[
α1vT

1 ,0,0, . . . ,0
]
, 0 ≤ β ≤ β1[

α1vT
1 , α2vT

2 ,0, . . . ,0
]
, β1 ≤ β ≤ β2[

α1vT
1 , α2vT

2 , α2vT
2 , . . . ,0

]
, β2 ≤ β ≤ β3

...

 (13)

where vTi (i ∈ [1, DX ]) are left eigenvectors of ΣX|Y Σ−1
X sorted in ascending order by the eigenval-

ues λi(i ∈ [1, DX ]); βi = 1
1−λi

are critical values for trade-off parameter β; and the projection coef-

ficients are α2
i = β(1−λi)−1

λiri
, ri = vT

i ΣXvi. In practice, noticing that β∗(1−λi)−1 < 0 when β <

βi, we simplify Equation (13) as A = [α1vT
1 , α2vT

2 , . . . , αDX
vT
DX

] with α2
i = max(β(1−λi)−1

λiri
, 0).

A.1.2 PROOF OF CRITICAL POINTS ON OPTIMAL FRONTIER

By Eq.15 of Chechik et al. (2005)

I(T ;Y ) = I(T ;X)− nI
2

log(

nI∏
i=1

(1− λi)
1

nI + e
2I(T ;X)

nI

nI∏
i=1

λ
1

nI
i ) (14)

where nI is the cutoff on the number of eigenvalues used to compute the bound segment, with
eigenvalues sorted in ascending order.

In order to calculate the changing point, where one switching from choosing nI = N to N + 1, by
C1 smoothness conditions:

dInI=N (T ;Y )

dI(T ;X)
=

dInI=N+1(T ;Y )

dI(T ;X)
(15)

LHS is

1− dInI=N (T ;Y )

dI(T ;X)
=

N∏
i=1

(λi)
1
N e

2I(T ;X)
N

N∏
i=1

(1− λi)
1
N + e

2I(T ;X)
nI

N∏
i=1

λ
1
N
i

(16)

=
e

2I(T ;X)
N

e
2I(T ;X)

N +
N∏
i=1

( 1−λi

λi
)

1
N

(17)

Thus, Equation (15) could be rewritten as

e
2I(T ;X)

N

e
2I(T ;X)

N +
N∏
i=1

( 1−λi

λi
)

1
N

=
e

2I(T ;X)
N+1

e
2I(T ;X)

N+1 +
N+1∏
i=1

( 1−λi

λi
)

1
N+1

(18)

Rewrite RHS of above equation, and noticing 1
n(n+1) = 1

n −
1

n+1

e
2I(T ;X)

N+1

e
2I(T ;X)

N+1 +
N+1∏
i=1

( 1−λi

λi
)

1
N+1

=
e

2I(T ;X)
N

e
2I(T ;X)

N + e
2I(T ;X)
N(N+1)

N+1∏
i=1

( 1−λi

λi
)

1
N+1

(19)

11
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The term in lower right corner could be written as

N+1∏
i=1

(
1− λi
λi

)
1

N+1 =

N∏
i=1

(
1− λi
λi

)
1

N+1 (
1− λN+1

λN+1
)

1
N+1 (20)

=

(
N∏
i=1

(
1− λi
λi

)
1
N

N∏
i=1

(
λi

1− λi
)

1
N(N+1)

)
(
1− λN+1

λN+1
)

N
(N+1)N (21)

=

(
N∏
i=1

(
1− λi
λi

)
1
N

)(
N∏
i=1

(
λi(1− λN+1)

(1− λi)λN+1

) 1
N(N+1)

)
(22)

Putting RHS together

e
2I(T ;X)

N

e
2I(T ;X)

N +
N∏
i=1

( 1−λi

λi
)

1
N

=
e

2I(T ;X)
N

e
2I(T ;X)

N + e
2I(T ;X)
N(N+1)

(
N∏
i=1

( 1−λi

λi
)

1
N

)(
N∏
i=1

(
λi(1−λN+1)
(1−λi)λN+1

) 1
N(N+1)

)
(23)

To let LHS = RHS, one trivial solution is

1 = e
2I(T ;X)
N(N+1)

(
N∏
i=1

(
λi(1− λN+1)

(1− λi)λN+1

) 1
N(N+1)

)
(24)

Taking log and cancelling out multiplicative factors, one get the critic point to change from ni = N
to ni = N + 1 happens at

I(T ;X) =
1

2

N∑
i=1

log
λN+1

λi

1− λi
1− λN+1

(25)

The original result written in Chechik et al. (2005) missing a factor of 1
2 .

A.1.3 OPTIMAL PROJECTION

The optimal frontier is generated by joining segments described by Equation (11), as illustrated in
Figure 9.

Figure 9: Conditionally generated samples from models with different levels of past information.
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A.2 DETAILS FOR BROWNIAN HARMONIC OSCILLATOR

To generate the sample trajectories, we set the undamped angular velocity ω = 1.5 × 2π(rad),
damping coefficient Γ = 20.0, and the dynamical range of external forces D = 1000.0, with
integration time step-size ∆t = 0.01667. The stationary distribution of Equation (8) is analytically
derived in Nørrelykke & Flyvbjerg (2011).

We train RNNs with infinite number of training samples, which are generated online and divided
into batches of 32 sequences. RNNs, including fully connected RNN, GRU and LSTM, are all with
32 hidden units and tanh activation. They are trained with momentum optimizer (Qian, 1999)
for 20000 steps, with momentum = 0.9 and gradient norm being clipped at 5.0. Learning rate for
training is exponentially decayed in a stair-case fashion, with initial learning rate 10−4, decay rate
0.9 and decay steps 2000.

The mutual information estimators, with learned critics, are trained for 200000 steps with Adam
optimizer (Kingma & Ba, 2015) at a flat learning rate of 10−3. The training batch size is 256, and the
validation and evaluation batch sizes are 2048. We use early stopping to deal with overfitting. The
training is stopped when the estimation on validation set does not improve for 10000 steps, or when
it drops by 3.0 from its highest level, whichever comes first. We use separable critics (Poole et al.,
2019) for training the estimators. Each of the critics is a three-layer MLP, with [256, 256, 32] hidden
units and [ReLU, ReLU, None] activations. The weights for each layer are initialized with Glorot
uniform initializer (Glorot & Bengio, 2010), and the biases are with He normal initializer (He et al.,
2015). For the minibatch upper and lower bounds, they are estimated on batches of 4096 sequences.

To train the critics, we feed 100-step BHO sequences into trained RNN to get RNN hidden states and
conditional distribution parameters. From each sequence, we use last 36 steps for the inputs to the
estimators, where first 18 steps as xpast[t], t = [1, 2, . . . 18], and the other 18 steps as xfuture[t], t =
[19, 20, . . . 36]. The hidde state z18 is extracted at the last time step of xpast.

A.3 TRAINING DETAILS FOR VECTOR DRAWING DATASET

We train decoder-only SketchRNN (Ha & Eck, 2017) on Aaron Koblin Sheep Dataset, as pro-
vided in https://github.com/hardmaru/sketch-rnn-datasets/tree/master/
aaron_sheep. The SketchRNN uses LSTM as its RNN cell, with 512 hidden units.

For RNN training, We adopt the identical hyper-parameters as in https://github.com/
tensorflow/magenta/blob/master/magenta/models/sketch_rnn/model.py,
except that we turn off the recurrent drop-out, since drop-out masks out informations and will
interfere with noise injection.

For mutual information estimations, we use the identical hyper-parameters as descibed in Ap-
pendix A.2, except that: the evaluation batch size for critic based estimator, InfoNCE, is set to
be 4096, and 16384 for minibatch bounds; early stopping criteria are changed to that either the esti-
mation does not improve for 20000 steps or drops by 10.0 from its highest level, whichever comes
first.

Due to the limitation of the sequence length of Aaron’s Sheep, we use the samples with at least 36
steps long. The xpast and xfuture are split at the middle of the sequences, and each with 18 steps.

Due to the limitation of the dataset size of Aaron’s Sheep, we augment the dataset with randomly
scale the stroke by a factor sampled from N (0, 0.15) for each sequence to generate a large dataset.
Figure 4 (Right) shows that the augmentation helps in training the estimator.

A.4 EFFECT OF CHANGING TRAINING OBJECTIVES: MAXIMUM LIKELIHOOD AND
CONTRASTIVE LOSS TRAINING

To access whether the observed suboptimality in the information plane was due to the maximum
likelihood (MLE) objective itself, we additionally trained constrastive predictive coding (CPC) mod-
els (Oord et al., 2018). We used the identical model architecture as described in the Section 2.3. The
CPC loss lower bounds the mutual information between the current time step and K steps into the
future. For our experiments on the Brownian harmonic oscillator (BHO), we look into K = 30
steps future, and use a linear readout from the hidden states to a time-independent embedding of the
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inputs. As shown in Figure 10, we found that models trained with CPC loss had similar frontiers as
those trained with MLE. The loss function does not appear to have a substantive effect.

(a) SimpleRNN (b) LSTM

Figure 10: The impact of training objectives on BHO dataset for SimpleRNN (Left) and LSTM
(Right). Models trained with maximum likelihood estimations are marked with ◦, and models
trained with contrastive loss are marked with O. The color bar shows the noise level in log10 scale.

A.5 EFFECT OF DROPOUT

Dropout (Srivastava et al., 2014) is a common method applied on neural network training to prevent
overfitting. We trained fully connected RNNs and LSTMs with different levels of dropout probabil-
ity. As shown in Figure 11, we find that RNNs trained with dropout extract less information than the
ones without it, but the information frontier of the models does not change, when we sweep dropout
rate and additive noise. In other words, we can find models that are equivalent to dropout models by
simply adding Gaussian noise to the output at training time.

Figure 11: The impact of dropout on predictive information capacity for SimpleRNN (Left) and
LSTM (Right). Grey ◦ marks the result of stochastically trained RNN as described in Figure 2.
Colored marks the result for stochastically trained RNN with gaussian noise and different keep rate
on RNN outputs, with the keep rate colored in heat. O ones are with noise level 0.1, and ?s are with
0.5.
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Figure 12: Conditionally generated samples from models with different levels of past information.
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