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Abstract

We study the problem of top-k selection over a large domain universe subject to
user-level differential privacy. Typically, the exponential mechanism or report noisy
max are the algorithms used to solve this problem. However, these algorithms
require querying the database for the count of each domain element. We focus on
the setting where the data domain is unknown, which is different than the setting
of frequent itemsets where an apriori type algorithm can help prune the space
of domain elements to query. We design algorithms that ensures (approximate)
(ε, δ > 0)-differential privacy and only needs access to the true top-k̄ elements
from the data for any chosen k̄ ≥ k. We consider both the setting where a user’s
data can modify an arbitrary number of counts by at most 1, i.e. unrestricted
sensitivity, and the setting where a user’s data can modify at most some small,
fixed number of counts by at most 1, i.e. restricted sensitivity. Additionally, we
provide a pay-what-you-get privacy composition bound for our algorithms. That is,
our algorithms might return fewer than k elements when the top-k elements are
queried, but the overall privacy budget only decreases by the size of the outcome.

1 Introduction

Determining the top-k most frequent items from a massive dataset in an efficient way is one of the
most fundamental problems in data science, see Ilyas et al. [17] for a survey of top-k processing
techniques. However, it is important to consider users’ privacy in the dataset, since results from data
mining approaches can reveal sensitive information about a user’s data [20]. Simple thresholding
techniques, e.g. k-anonymity, do not provide formal privacy guarantees, since adversary background
knowledge or linking other datasets may cause someone’s data in a protected dataset to be revealed
[24]. Our aim is to provide rigorous privacy techniques for determining the top-k so that it can be
built on top of highly distributed, real-time systems that might already be in place.

Differential privacy has become the gold standard for rigorous privacy guarantees in data analytics.
One of the primary benefits of differential privacy is that the privacy loss of a computation on a
dataset can be quantified. Many companies have adopted differential privacy, including Google [15],
Apple [1], Uber [18], Microsoft [9], and LinkedIn [21], as well as government agencies, like the U.S.
Census Bureau [8]. In this work, we hope to extend the use of differential privacy in practical systems
to allow analysts to compute the k most frequent elements in a given dataset. We are certainly not
the first to explore this topic, yet the previous works require querying the count of every domain
element, e.g. report noisy max [10] and the exponential mechanism [25], or require some structure
on the large domain universe, e.g. frequent item sets (see Related Work). We aim to design practical,
(approximate) differentially private algorithms that do not require any structure on the data domain,
which is typically the case in exploratory data analysis. Our algorithms work in the setting where data
is preprocessed prior to running our algorithms, so that the differentially private computation only
accesses a subset of the data while still providing user level privacy in the full underlying dataset.
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We design (ε, δ > 0)-differentially private algorithms that can return the top-k results by querying
the counts of elements that only exist in the dataset. To ensure user level privacy, where we want
to protect the privacy of a user’s entire local dataset that might consist of many data records, we
consider two different settings. In the restricted sensitivity setting, we assume that a user can modify
the counts by at most 1 across at most a fixed number ∆ of elements in a data domain, which is
assumed to be known. An example of such a setting would be computing the top-k countries where
users have a certain skill set. Assuming a user can only be in one country, we have ∆ = 1. In the
more general setting, we consider unrestricted sensitivity, where a user can modify the counts by at
most 1 across an arbitrary number of elements. An example of the unrestricted setting would be if
we wanted to compute the top-k articles with distinct user engagement (liked, commented, shared,
etc.). We design different algorithms for either setting so that the privacy parameter ε needs to scale
with either ≈ ∆ in the restricted sensitivity setting or ≈

√
k in the unrestricted setting. Thus, our

differentially private algorithms will ensure user level privacy despite a user being able to modify the
counts of an arbitrary number of elements.

The reason that our algorithms are approximate differentially private is because we want to allow our
algorithms to not have to know the data domain, or any structure on it. For exploratory analyses, one
would like to not have to provide the algorithm the full data domain beforehand. The mere presence
of a domain element in the exploratory analysis might be the result of a single user’s data. Hence, if
we remove a user’s data in a neighboring dataset, there are some outcomes that cannot occur. We
design algorithms such that these events occur with very small δ probability. Simultaneously, we
ensure that the private algorithms do not compromise the efficiency of existing systems.

As a byproduct of our analysis, we also include some results of independent interest. In particular,
we give a composition theorem that essentially allows for pay-what-you-get privacy loss. Since our
algorithms can potentially output fewer than k elements when asked for the top-k, we allow the
analyst to ask more queries if the algorithms return fewer than k outcomes, up to some fixed bound.
Further, we define a condition on differentially private algorithms that allows for better composition
bounds than the general optimal composition bounds [19, 26]. Lastly, we show how we can achieve a
one-shot differentially private algorithm that provides a ranked top-k result and has privacy parameter
that scales with

√
k, which uses a different noise distribution than work from Dwork et al. [14].

We see this work as bringing together multiple theoretical results in differential privacy to arrive at a
practical privacy system that can be used on top of existing, real-time data analytics platforms for
massive datasets distributed across multiple servers. Essentially, the algorithms allow for solving the
top-k̄ problem first with the existing infrastructure for any chosen k̄ ≥ k, and then incorporate noise
and a threshold to output the top-k, or fewer outcomes. In our approach, we can think of the existing
system, such as online analytical processing (OLAP) systems, as a blackbox top-k solver and without
adjusting the input dataset or opening up the blackbox, we can still implement private algorithms.

1.1 Related Work

There are several works in differential privacy for discovering the most frequent elements in a dataset,
e.g. top-k selection and heavy hitters. In the local privacy setting, there has been both academic work
[3, 4] as well as industry solutions [1, 16] to identifying the heavy hitters. Note that these algorithms
require some additional structure on the data domain, such as fixed length words, where the data can
be represented as a sequence of some known length and each element of the sequence belongs to
some known set. We will be working in the trusted curator model. There has been several works in
this model that estimate frequent itemsets subject to differential privacy, including [5, 23, 28, 22, 29].
Similar to our work, Bhaskar et al. [5] first solve the top-k̄ problem nonprivately (but k̄ ≥ k can be
the full domain for certain databases) and then use the exponential mechanism to return an estimate
for the top-k. The primary difference between these works and ours is that the domain universe in
our setting is unknown and not assumed to have any structure. For itemsets, one can iteratively build
up the domain from smaller itemsets, as in the locally private algorithms.

We assume no structure on the domain, as one would assume without considering privacy restrictions.
This is a highly desirable feature for making differential privacy practical, since the algorithms can
work over arbitrary domains. Chaudhuri et al. [7] considers the problem of returning the argmax
subject to differential privacy, where their algorithm works in the range independent setting. That is,
their algorithms can return domain elements that are unknown to the analyst querying the dataset.
However, their large margin mechanism can run over the entire domain universe in the worst case.
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The algorithms in [7] and [5] share a similar approach in that both use the exponential mechanism on
elements above a threshold. In order to obtain pure-differential privacy (δ = 0), Bhaskar et al. [5]
samples uniformly from elements below the threshold, whereas Chaudhuri et al. [7] never sample
anything from this remaining set and thus satisfy approximate-differential privacy (δ > 0). Our
approach will also follow this high-level idea, but we set the threshold based on an input parameter
to ensure computational efficiency. To our knowledge, there are no top-k differentially private
algorithms for the unknown domain setting that never require iterating over the entire domain.

There have been several works bounding the total privacy loss of an (adaptive) sequence of dif-
ferentially private mechanisms, including basic composition [12, 10], advanced composition (with
improvements) [13, 11, 6], and optimal composition [19, 26]. There has also been work in bounding
the privacy loss when the privacy parameters themselves can be chosen adaptively — where the
previous composition theorems cannot be applied — with pay-as-you-go composition [27]. In this
work, we provide a pay-what-you-get composition theorem for our algorithms which allows the
analyst to only pay for the number of elements that were returned by our algorithms in the overall
privacy budget. Because our algorithms can return fewer than k elements when asked for the top-k,
we want to ensure the analyst can ask many more queries if fewer than k elements have been given.

2 Preliminaries

We will represent the domain as [d] := {1, · · · , d} and a user i’s data as xi ∈ 2[d] =: X . We then
write a dataset of n users as x = {x1, · · · , xn}. We say that x,x′ are neighbors if they differ in the
addition or deletion of one user’s data, e.g. x = x′ ∪ {xi}. We now define differential privacy [12].
Definition 2.1 (Differential Privacy). An algorithmM that takes a collection of records in X to some
arbitrary outcome set Y is (ε, δ)-differentially private (DP), or ε-DP if δ = 0, if for all neighbors
x,x′ and for all outcome sets S ⊆ Y , we have

Pr[M(x) ∈ S] ≤ eε Pr[M(x′) ∈ S] + δ

In this work, we want to select the top-k most frequent elements in a dataset x. Let hj(x) ∈ N
denote the number of users that have element j ∈ [d], i.e. hj(x) =

∑n
i=1 1 {j ∈ xi}. We then

sort the counts and denote the ordering as hi(1)(x) ≥ · · · ≥ hi(d)(x) with corresponding elements
i(1), · · · , i(d) ∈ [d]. Hence, from dataset x, we seek to output i(1), · · · , i(k) where we break ties in
some arbitrary, data independent way.

Note that for neighboring datasets x and x′, the corresponding neighboring histograms h = h(x)
and h′ = h(x′) can differ in all d positions by at most 1, i.e. ||h − h′||∞ ≤ 1. In some instances,
one user can only impact the count on at most a fixed number of coordinates. We then say that h,h′
are ∆-restricted sensitivity neighbors if ||h− h′||∞ ≤ 1 and ||h− h′||0 ≤ ∆.

The algorithms we describe will only need access to a histogram h(x) = (h1(x), · · · , hd(x)) ∈ Nd,
where we drop x when it is clear from context. We will be analyzing the privacy loss of an individual
user over many different top-k1, top-k2, · · · queries on a larger, overall dataset. Consider the example
where we want to know the top-k1 articles that distinct users engaged with, then we want to know the
top-k2 articles that distinct users engaged with in Germany, and so on. A user’s data can be part of
each input histogram, so we want to compose the privacy loss across many different queries.

In our algorithms, we will add noise to the histogram counts. The noise distributions we consider are
from a Gumbel random variable or a Laplace random variable where Gumbel(b) has density function
pGumbel(z; b) and Lap(b) has density function pLap(z; b), with

pGumbel(z; b) =
1

b
· exp

(
−(z/b+ e−z/b)

)
and pLap(z; b) =

1

2b
· exp (−|z|/b) . (1)

3 Main Algorithm and Results

We now present our main algorithm for reporting the top-k domain elements. The limited domain
procedure LimitDomk,k̄ given in Algorithm 1 takes as input a histogram h ∈ Nd, parameter k, some
cutoff k̄ ≥ k for the number of elements to consider, and privacy parameters (ε, δ). It then returns at
most k indices in relative rank order. Our algorithm can be thought of as solving the top-k̄ problem
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with access to the true data, then from this set of histogram counts, adds noise to each count and sorts
them to return at most k indices with counts that are above some data dependent, noisy threshold.
The noise that we add will be from a Gumbel distribution, given in (1), which has a nice connection
with the exponential mechanism [25] (see Section 4). In later sections we will present a sketch of the
analysis with some extensions. We present the formal analysis in the supplementary file.

Algorithm 1 LimitDomk,k̄; Top-k from the k̄ ≥ k limited domain
Input: Histogram h; privacy parameters ε, δ.
Output: Ordered set of indices.
Sort h(1) ≥ h(2) ≥ · · · .
Set h⊥ = h(k̄+1) + 1 + ln(min{∆, k̄, d− k̄}/δ)/ε.
Set v⊥ = h⊥ + Gumbel(1/ε).
for j ≤ k̄ do

Set v(j) = h(j) + Gumbel(1/ε).
Sort {v(j)} ∪ v⊥ and let vi(1) , ...., vi(j) , v⊥ be the sorted list up until v⊥.
Return {i(1), ..., i(j),⊥} if j < k, otherwise return {i(1), ..., i(k)}.

We now state its privacy guarantee.
Theorem 1. Algorithm 1 is (ε′, δ + δ′)-DP for any δ′ ≥ 0 where

ε′ = min

{
kε, kε ·

(
eε − 1

eε + 1

)
+ ε
√

2k ln(1/δ′),
kε2

2
+ ε

√
1

2
k ln(1/δ′)

}
. (2)

Note that our algorithm is not guaranteed to output k indices, and this is key to obtaining our privacy
guarantees. The primary difficulty here is that the indices within the true top-k̄ can change by adding
or removing one person’s data. The purpose of the threshold, ⊥, is then to ensure that the probability
of outputting any index in the top-k̄ for histogram h but not in the top-k̄ for a neighboring histogram
h′ is bounded by δ

min{∆,k̄} . We give more high-level intuition in Section 3.2.

In order to maximize the probability of outputting k indices, we want to minimize our threshold
value. In the unrestricted sensitivity setting, it becomes natural to consider how to set k̄, as there
becomes a tradeoff where h(k̄+1) is decreasing in k̄ whereas ln(k̄/δ)/ε is increasing in k̄. Ideally, we
would set k̄ to be a point within the histogram in which we see a sudden drop, but setting it in such
a data dependent manner would violate privacy. Instead, we will simply consider the optimization
problem of finding index k̄ that minimizes h(k̄+1) + 1 + ln(k̄/δ)/ε (and is computationally feasible),
and we will solve this problem with standard DP techniques. We can then find a noisy estimate of the
optimal parameter k̄ for a given histogram h and the resulting procedure increases the privacy loss by
substituting k + 1 for k in the guarantees in Theorem 1. See the supplementary file for more details.

Pay-what-you-get Composition

Algorithm 2 multiLimitDomk
?,`? ; Multiple queries to limited domain

Input: Adaptive stream h1,h2, ...., integers k? and `?, and per iterate privacy parameters ε, δ.
Output: Sequence of outputs (o1, · · · , o`) for ` ≤ `?.
while k? > 0 and `? > 0 do

Based on previous outcomes, select adaptive histogram hi and parameters ki, k̄i
if ki ≤ k? then

Let oi = LimitDomki,k̄i(hi) with privacy parameters ε and δ
k? ← k? − |oi| and `? ← `? − 1

Return o = (o1, o2, · · · )

While the privacy loss for Algorithm 1 will be a function of k regardless of whether it outputs far
fewer than k indices, we can actually show that in making multiple calls to this algorithm, we can
instead bound the privacy loss in terms of the number of indices that are output. More specifically,
we will take the length of the output for each call to Algorithm 1, which is not deterministic, and
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ensure that the sum of these lengths does not exceed some k?. Additionally, we need to restrict how
many top-k queries can be asked of our system, which we denote as `?. Accordingly, the privacy loss
will then be in terms of k? and `?. We detail the procedure multiLimitDomk

?,`? in Algorithm 2.

From a practical perspective, this means that if we allowed a client to make multiple top-k queries
with a total budget of k?, whenever a top-k query was made their total budget would only decrease
with the size of the output, as opposed to k. We will further discuss in Section 3.1 how this property
in some ways can actually provide higher utility than standard approaches that have access to the full
histogram and must output k indices. We then have the following privacy statement.

Theorem 2. For any δ′ ≥ 0, multiLimitDomk
?,`? in Algorithm 2 is (ε?, 2`?δ + δ′)-DP where

ε? = min

{
k?ε, k?ε ·

(
eε − 1

eε + 1

)
+ ε
√

2k? ln(1/δ′),
k?ε2

2
+ ε

√
1

2
k? ln(1/δ′)

}
. (3)

In the supplementary file, we present other variants of our main algorithm that are better to use in
specific settings. In particular, we consider alternatively adding Laplace noise to Algorithm 1 which
allows our ε-privacy loss parameter to scale with ∆ (rather than

√
k) in the restricted sensitivity

setting, but unlike using Gumbel noise, it does not benefit from the pay-what-you-get composition.

Improved Advanced Composition

We also provide a result that may be of independent interest. In Section 4, we consider a slightly
tighter characterization of pure (δ = 0) differential privacy, which we refer to as range-bounded,
and show that it can improve the total privacy loss over a sequence of adaptively chosen private
algorithms. In particular, we consider the exponential mechanism, which is known to be ε-DP, and
show that it has even stronger properties that allow us to show it is ε-range-bounded under the
same parameters. Accordingly, we can then give improved advanced composition bounds for the
exponential mechanism compared to the optimal composition bounds for general ε-DP mechanisms
given in [19, 26] (we show a comparison of these bounds in Section 4.3).

3.1 Accuracy Comparisons

In contrast to previous work in top-k selection subject to DP, our algorithms can return fewer than
k indices. Typically, accuracy in this setting is to return a set of exactly k indices such that each
returned index has a count that is at least the k-th ranked value minus some small amount. We then
relax the utility statement to allow returning fewer than k indices
Definition 3.1. Given histogram h along with non-negative integers k and α, we say that a subset of
indices d ⊆ [d]∪{⊥} is an (α, k)-accurate if for any i ∈ d such that i 6= ⊥, we have hi ≥ h(k)−α.

For this definition, we can give asymptotically better accuracy guarantees than the exponential
mechanism achieves, which are known to be tight [2], but it is important to mention that our definition
does not require k indices to be output. Accordingly, we add a sufficient condition under which our
algorithm will return k indices with a given probability. We defer the proof to the supplementary file.
Lemma 3.1. For any histogram h, with probability at least 1 − β the output from Algorithm 1
with parameters k, k̄, ε, δ is (α, k)-accurate where α = ln(kk̄/β)/ε. Additionally, we have that
Algorithm 1 will return k indices with probability at least 1− β if

h(k) ≥ h(k̄+1) + 1 + ln(min{∆, k̄}/δ)/ε+ ln(k/β)/ε

The first statement is essentially equivalent to Theorem 6 in [2] which would have α = ln(kd/β)/ε in
this setting because we incorporate advanced composition at the end of the analysis and we consider
the absolute counts (not normalized by the total number of users). Accordingly, our α parameter
swaps d with k̄ as expected, and will improve the accuracy statement for the output indices.

Even for histograms in which we are unlikely to return k indices, we see this as the primary advantage
of our pay-what-you-get composition. The indices that are returned are normally the clear winners,
i.e. indices with counts substantially above the (k̄ + 1)th value, and then the ⊥ value is informative
that the remaining values are approximately equal where the analyst only has to pay for this single
output as opposed to paying for the remaining outputs that are close to a random permutation.
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3.2 Our Techniques

The main challenge with ensuring differential privacy in our setting is that preprocessing the data to
the true top-k̄ indices will lead to different domains for neighboring histograms. More explicitly, the
indices within the top-k̄ can change by adding or removing one user’s data, and this makes ensuring
pure differential privacy without knowing the domain impossible. However, the key insight will be
that only indices whose value is within 1 of h(k̄+1), i.e. the count of the (k̄ + 1)th ranked index, can
go in or out of the top-k̄ by adding or removing one user’s data. Accordingly, the noisy threshold that
we add will be explicitly set such that for indices with value within 1 of h(k̄+1), the noisy estimate
exceeding the noisy threshold will be a low probability event. By restricting our output indices to
those whose noisy estimate are in the top-k and exceed a noisy threshold, we ensure that indices
in the top-k̄ for one histogram but not in a neighboring histogram will output with probability at
most δ

min{∆,k̄} . A union bound over the possible indices that can change will then give our desired
bound on these bad events. We now present the high level reasoning behind the proof of privacy in
Theorem 1 and defer the formal analysis to the supplementary material.

1. Adding Gumbel noise and taking the top-k at once is equivalent to selecting the argmax
using the exponential mechanism then removing that index and iterating, see Lemma 4.2.1

2. To get around the fact that the domains can change in neighboring datasets, we define a
variant of Algorithm 1 that takes a histogram and a domain as input. We then prove that this
variant is DP for any input domain, and for a choice of domain that depends on the input
histogram, it is the same as Algorithm 1

3. Due to the choice of the count for element ⊥, we show that for any given neighboring
datasets h,h′, the probability that Algorithm 1 evaluated on h can return any element that is
not part of the domain with h′ occurs with probability δ.

We now provide a sketch of the analysis for proving the pay-what-you-get composition bound in
Theorem 2 and defer the formal proof to the supplementary material.

1. Because Algorithm 1 can be expressed as multiple iterations of the exponential mechanism,
we can string together many calls to Algorithm 1 as an adaptive sequence of DP mechanisms.

2. With multiple calls to Algorithm 1, if we ever get a ⊥ outcome, we can simply start a new
top-k query and hence a new sequence of exponential mechanism calls. Hence, we do not
need to get k outcomes before we switch to a new query.

3. To get the improved constants in (3), compared to advanced composition given in Theo-
rem 3 [13], we introduce a tigher range-bounded characterization, which the exponential
mechanism satisfies, that enjoys better composition, see Lemma 4.4.

4 Existing DP Algorithms and Extensions

We now cover some existing differentially private algorithms and extensions to them. We start with
the exponential mechanism [25], and show how it is equivalent to adding noise from a particular
distribution and taking the argmax outcome. Next, we will present a stronger privacy condition
than differential privacy which will in fact lead to an improved composition bound than the optimal
composition bounds [19, 26] for general DP mechanisms. Throughout, we will make use of the
following composition theorem in differential privacy.

Theorem 3 (Composition [10, 13] with improvements by [19, 26]). LetM1,M2, · · · ,Mt be each
(εi, δi)-DP, whereMi may depend on the previous outcomes ofM1, · · · ,Mi−1, then the composed
algorithmM(x) = (M1(x),M2(x), · · · ,Mt(x)) is (ε′,

∑t
i=1 δi + δ′)-DP for any δ′ ≥ 0 where

ε′ = min


t∑
i=1

εi,

t∑
i=1

εi · (
eεi − 1

eεi + 1
) +

√√√√2

t∑
i=1

ε2
i ln(1/δ′)

 .

1Note that we could have alternatively written our algorithm in terms of iteratively applying exponential
mechanism for easier analysis, but instead adding Gumbel noise once is computationally more efficient.
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4.1 Exponential Mechanism and Gumbel Noise

The exponential mechanism takes a quality score q that maps a dataset in D and outcome to R and
can be thought of as evaluating how good q(x, y) is for an outcome y ∈ Y on dataset x ∈ D. For our
setting, we will be using the following quality score q(h, i) = hi in the exponential mechanism.
Definition 4.1 (Exponential Mechanism). Let EMq : D → Y be a randomized mapping where for all
outputs y ∈ Y we have

Pr[EMq(x) = y] ∝ exp (εq(x, y)/∆(q)) where ∆(q) := sup
y∈Y
|q(x, y)− q(x′, y)|.

We say that a quality score q(·, ·) is monotonic in the dataset if the addition of a data record can either
increase (decrease) or remain the same with any outcome, e.g. q(x, y) ≤ q(x∪{xi}, y) for any input
and outcome y. Note that q(h, i) = hi is monotonic. We then have the following privacy guarantee.
Lemma 4.1. The exponential mechanism EMq is 2ε-DP. Further, if q is monotonic, then EMq is ε-DP.

We point out that the exponential mechanism can be simulated by adding noise from Gumbel(∆(q)/ε)
to each quality score value and then reporting the outcome with the largest noisy count. This is similar
to the report noisy max mechanism [10] except Gumbel noise is added rather than Laplace. We define
pEMkq to be the iterative peeling algorithm that first samples the outcome with the largest quality score
then repeats on the remaining outcomes and continues k times. We further defineMk

Gumbel(q(x)) to
be the algorithm that adds Gumbel(∆(q)/ε) to each q(x, y) for y ∈ Y and takes the k indices with
the largest noisy counts. We then make the following connection between pEMk andMk

Gumbel, so that
we can compute the top-k outcomes in one-shot. We defer the proof to the supplementary file.
Lemma 4.2. For any input x ∈ X the peeling exponential mechanism pEMkq (x) is equal in distribu-
tion toMk

Gumbel(q(x)). That is for any outcome vector (o1, · · · , ok) ∈ [d]k we have

Pr[pEMkq (x) = (o1, · · · , ok)] = Pr[Mk
Gumbel(q(x)) = (o1, · · · , ok)]

We next show that the one-shot noise addition is (≈
√
kε, δ)-DP using Theorem 3. Dwork et al. [14]

also considered a one-shot approach with Laplace noise addition and in order to get the
√
kε factor

on the privacy loss, their algorithm could not return the ranked list of indices. Using Gumbel noise
allows us to return the ranked list of indices in one-shot with the same privacy loss.
Corollary 4.1. For any δ ≥ 0, the one-shotMk

Gumbel(q(·)) is (ε′, δ)-DP and if q is monotonic in the
dataset thenMk

Gumbel(q(·)) is (ε′′, δ)-DP where

ε′ = 2 ·min

{
kε, kε(

e2ε − 1

e2ε + 1
) + ε

√
2k ln(

1

δ
)

}
, ε′′ = min

{
kε, kε(

eε − 1

eε + 1
) + ε

√
2k ln(

1

δ
)

}
.

4.2 Bounded Range Composition

It turns out that we can actually improve on the total privacy loss for this algorithm and for a wider
class of algorithms in general. We first define a slightly stronger condition than (pure) differential
privacy that can give a tighter characterization of the privacy loss for certain DP mechanisms.
Definition 4.2 (Range-Bounded). Given a mechanismM that takes a collection of records in X to
outcome set Y , we say thatM is ε-range-bounded if for any neighboring databases x,x′ we have

sup
y∈Y

ln

(
Pr[M(x) = y]

Pr[M(x′) = y]

)
− inf
y′∈Y

ln

(
Pr[M(x) = y′]

Pr[M(x′) = y′]

)
≤ ε

In the supplementary file, we show that exponential mechanism achieves the same privacy parameters
as in Lemma 4.1 for our stronger charaterization.
Lemma 4.3. The exponential mechanism EMq is 2ε-range-bounded. Further if q is monotonic then
EMq is ε-range bounded.

We now show that we can achieve a better composition bound when we compose ε-range-bounded
algorithms as opposed to using Theorem 3, which applies to the composition of general DP algorithms.
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In fact, our composition bound for range-bounded algorithms improves on the optimal composition
theorem for general DP algorithms [19, 26]. See the supplementary file for a comparison of the
different bounds. We defer the proof, which largely follows a similar argument to [13].
Lemma 4.4. LetM1,M2, · · · ,Mt each be εi-bounded range where the choice ofMi may depend
on the previous outcomes ofM1, · · · ,Mi−1, then the composed algorithmM(x) of each of the
algorithmsM1(x),M2(x), · · · ,Mt(x) is (ε′, δ)-DP for any δ ≥ 0 where

ε′ = min


t∑
i=1

εi,

t∑
i=1

εi ·
(
eεi − 1

eεi + 1

)
+

√√√√2

t∑
i=1

ε2
i ln(

1

δ
),

t∑
i=1

ε2
i

2
+

√√√√1

2

t∑
i=1

ε2
i ln(

1

δ
)

 . (4)

Note that in order to see an improvement in the advanced composition bound, we do not necessarily
require that an ε-DP mechanism is also ε-range-bounded, but could be relaxed. More specifically,
the significant term that is normally considered in advanced composition is

√
2k ln(1/δ′)ε, which

can be replaced with
√

α2

2 k ln(1/δ′)ε for composing αε-range-bounded mechanisms with α ≤ 2.
Consequently, we believe that this could be useful for mechanisms beyond the exponential mechanism.

4.3 Comparison between Bounded Range DP Composition and Optimal DP Composition
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Figure 1: Plotting the ratio of the optimal DP composition bound from [19] given in Lemma 4.5 to
the bounded range DP composition bound from Lemma 4.4 for various ε values and δ < 10−6.

Here we compare the composition bound given in Lemma 4.4 and show that it can actually improve
on the optimal bound for generally DP, which we state here for the homogeneous case.
Lemma 4.5 (Optimal DP Composition [19]). For any ε ≥ 0 and δ ∈ [0, 1], the composed mech-
anism of k adaptively chosen ε-DP is ((k − 2i)ε, δi)-DP for all i ∈ {0, 1, · · · , bk/2c}where
δi =

∑i−1
`=0

(
k
`

) (
e(k−`)ε − e(k−2i+`)ε

)
/(1 + eε)k.

In Figure 1, we plot, for various k and ε, the ratio between the composition bound for range bounded
DP algorithms and the general DP optimal composition bound, where a ratio larger than 1 means that
our bound is smaller. Due to the discrete formula for δi in the optimal composition formula, we select
the index i that produces the smallest (k − 2i)ε while δi ≤ 10−6. Frequently, this δi that is selected
is much smaller than the threshold 10−6, so we use this same δi when we compare our bounds to the
optimal composition bound. Note that the jaggedness in the plot is because the optimal composition
bound might be ((k − 2i)ε, δ � 10−6)-DP at round k but ((k + 1− 2(i+ 1))ε, δ ≈ 10−6)-DP at
round k + 1. Hence, plotting only the first privacy parameter might be non-monotonic.

5 Conclusion

We have presented a way to efficiently report the top-k elements in a dataset subject to differential
privacy. Our approach does not require adjusting the input data to an existing system, nor does it
require altering the non-private data analytics. Our algorithms can be seen as being an additional layer
on top of existing systems so that we can leverage highly efficient, scalable data analytics platforms
in our private systems. Our algorithms can balance utility in terms of both privacy with ε as well
as efficiency with k̄. Further, we have improved on the general composition bounds in differential
privacy that can be applied in our setting to extract more utility under the same privacy budget and
have provided a pay-what-you-get composition bound.
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