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ABSTRACT

Single-image super-resolution (SISR) is a canonical problem with diverse appli-
cations. Leading methods like SRGAN (Ledig et al., 2017) produce images that
contain various artifacts, such as high-frequency noise, hallucinated colours and
shape distortions, which adversely affect the realism of the result. In this paper, we
propose an alternative approach based on an extension of the method of Implicit
Maximum Likelihood Estimation (IMLE) (Li & Malik, 2018). We demonstrate
greater effectiveness at noise reduction and preservation of the original colours
and shapes, yielding more realistic super-resolved images.

1 INTRODUCTION

The problem of single-image super-resolution (SISR) aims to output a plausible high-resolution
image that is consistent with a given low-resolution image. The key challenge arises from the fact
that the problem is ill-posed – given the same low-resolution image, there are many different high-
resolution images that would be the same as the low-resolution image upon downsampling. This
problem becomes more severe as the upscaling factor increases, since there are more possible ways
to fill in missing pixels as the number of such pixels grows. Therefore, to solve this problem,
all methods impose a prior over images either explicitly or implicitly, so that among all possible
high-resolution images that are consistent with the low-resolution image, some are preferred over
others. The literature on SISR is vast; see Yang et al. (2014) and Nasrollahi & Moeslund (2014) for
comprehensive overviews.

Classical approaches, such as bilinear, bicubic or Lanczos filtering (Duchon, 1979), leverage the
insight that neighbouring pixels usually have similar colours and generate a high-resolution output
by interpolating between the colours of neighbouring pixels according to a predefined formula. The
drawback of these approaches is that they lead to an over-smoothed outputs without clear edges.
There are some edge-based methods that aim to address this issue e.g.: (Li & Orchard, 2001).

Data-driven approaches, on the other hand, make use of training data to assist with generating high-
resolution predictions. Exemplar-based approaches, e.g.: (Freeman et al., 2002; Freedman & Fattal,
2011; Glasner et al., 2009), directly copy pixels from the most similar patches in the training dataset.
In contrast, optimization-based approaches, e.g.: (Elad & Aharon, 2006; Huang et al., 2015; Gu
et al., 2015), formulate the problem as a sparse recovery problem, where the dictionary is learned
from data. Some methods, e.g.: (Yang et al., 2010), combine the two approaches and use a dictionary
of image patches. Some drawbacks are that the resulting images often have artifacts due to patches
not blending well together and that generating a prediction is quite computationally expensive.

One way around the latter problem is to treat the problem simply as a regression problem e.g.: (Dong
et al., 2016), where the input is the low-resolution image, and the target output is the high-resolution
image. A highly expressive regression model, like a deep neural net, is trained on the input and
target output pairs to minimize some distance metric between the prediction and the ground truth.
While this indeed makes prediction faster, it effectively assumes a single plausible output for each
input and ignores the multi-modality that is inherent in the problem. This comes at a cost: because
the model is only allowed to generate a single image even though multiple images are plausible, it
has to hedge its bets. If the loss is Euclidean, then the model would predict the mean of the plausible
images in order to minimize the loss.
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(a) SRGAN (Implementation 1)

(b) SRGAN (Implementation 2)

(c) SRIM

Figure 1: Results of top-ranked public implementations of SRGAN and the proposed method
(SRIM). Notice the artifacts in the results of SRGAN implementations in column (1) at the cen-
tre of the wing, which has high-frequency noise (spots) and distorted lines (2) on back of the bench,
which has high-frequency noise and hallucinated colours (3) on the gravel, which has noise that
results in a grainy appearance in the result of Implementation 1, and excess contrast in the result of
Implementation 2, and (4) along the edge of the pyramid, which has noise in the background in the
results of both implementations and hallucinated colours in the result of Implementation 2.

Instead of forcing the model to produce a point estimate, a better alternative would be to model
the full conditional distribution, i.e.: the distribution of high-resolution images given low-resolution
images. This calls for the use of a probabilistic model to estimate it. One option is to use a prescribed
probabilistic model, which constrains the distribution to lie in the exponential family, and learn the
sufficient statistics (Bruna et al., 2015). Another option is to use an implicit probabilistic model,
which models the output as a parameterized deterministic transformation of a standard Gaussian
random variable and the variable the distribution is conditioned on, which in this case is the low-
resolution input image. More concretely, given an input x, the following procedure can be used to
sample the output ỹ from the model:

1. Sample z ∼ N (0, I)

2. Return ỹ := Tθ(x, z)

Implicit models offer more flexibility than prescribed models, since Tθ can be any arbitrary function,
including a neural net. Training such a model, however, is non-trivial, because computing the gradi-
ent of the log-likelihood of implicit models is in general difficult, and so it not clear how to maximize
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likelihood. A popular alternative introduced by generative adversarial nets (GANs) (Goodfellow
et al., 2014; Gutmann et al., 2014) is to minimize the distinguishability between generated samples
and real data. Unfortunately, GANs are not able to maximize likelihood (Goodfellow, 2014) and
suffers from a number of issues, the most notable being mode collapse/dropping (Goodfellow et al.,
2014; Arora & Zhang, 2017) and training instability (Goodfellow et al., 2014; Arora et al., 2017).

The leading approach for super-resolution is based on GANs, known as SRGAN (Ledig et al., 2017).
There are several public implementations available; we took the two highest ranked implementations
on Github 1 and generated results using the provided pre-trained models, which are shown in Fig-
ure 1. (Later in the experiments section, we perform a comparison to a SRGAN model trained on
the same data that we used to train our method.) Upon closer examination, the results contain some
unrealistic artifacts, including instances of high-frequency noise, hallucinated colours and shape dis-
tortions. This may be a result of the discriminator having finite capacity and so may not be able to tell
apart a real image and a synthetic image with artifacts like high frequency noise. This is consistent
with empirical findings in the adversarial example literature (Szegedy et al., 2013), which observed
that deep neural nets can be easily fooled by examples with adversarially chosen high-frequency
noise.

In this paper, we explore an alternative approach, which extends the recently proposed method of
Implicit Maximum Likelihood Estimation (IMLE) (Li & Malik, 2018) for the problem of super-
resolution. Like GANs, IMLE is a likelihood-free method for training implicit models; unlike
GANs, it is equivalent to maximum likelihood (under some conditions). It has a number of ad-
vantages: it can preserve all modes, make use of all available training data and train reliably. In this
paper, we develop a number of improvements to IMLE motivated by the requirements of the super-
resolution problem. These include (1) a new formulation for modelling conditional distributions,
(2) a new loss that captures perceptual similarity, (3) a two-stage architecture that super-resolves to
higher resolutions incrementally and (4) a new hierarchical sampling procedure that improves the
sample efficiency. We will refer to the proposed method as Super-Resolution Implicit Model, or
SRIM for short.

We demonstrate that SRIM is able to produce super-resolved images that are less noisy and more
faithfully preserve the original colours and shapes in the input image compared to SRGAN. Also,
SRIM demonstrated the capability of learning different modes of the conditional distribution and
is able to generate multiple plausible hypotheses in regions where the input image is ambiguous.
Moreover, we show that our method outperforms SRGAN in terms of realism, as perceived by
human evaluators, as well as on two standard quantitative metrics for this task, PSNR and SSIM.
The results of the proposed method are shown in Figure 1 in the bottom row.

2 METHOD

2.1 BACKGROUND

Given a low-resolution image, the problem of super-resolution problem requires the prediction of a
plausible version of the image at a higher resolution. More formally, given a low-resolution image
x ∈ [0, 255]h×w×3, the goal is to predict a plausible high-resolution image ỹ ∈ [0, 255]H×W×3 that
when downsampled, is consistent with x, where M > m and N > n.

This problem is ill-posed, and there could be many different plausible high-resolution images that
are all consistent with the original low-resolution image. In other words, the conditional distribution
p(ỹ|x) is typically multimodal. Therefore, it is important to model the full distribution p(ỹ|x),
rather than just a point estimate.

We model p(ỹ|x) using a probabilistic model parameterized by parameters θ, hereafter denoted as
p(ỹ|x; θ). To learn θ, we would like to maximize the log-likelihood of the ground truth outputs
(high-resolution images) given the corresponding inputs (low-resolution images). That is, given a
training dataset D = {(x1,y1), . . . , (xn,yn)}, we would like to solve the following optimization
problem:

1https://github.com/tensorlayer/srgan (Implementation 1) and https://github.com/brade31919/SRGAN-
tensorflow (Implementation 2)
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θ̂MLE := argmax
θ

n∑
i=1

log p(yi|xi; θ)

We choose p(ỹ|x; θ) to be an implicit probabilistic model, that is, a probabilistic model whose
density cannot necessarily be expressed explicitly, but can be represented more easily in terms of a
sampling procedure. The model we use is defined by the following sampling procedure:

1. Sample z ∼ N (0, I)

2. Return ỹ := Tθ(x, z)

Here, Tθ is a deep convolutional neural net that takes in two inputs, the input x and the latent noise
vector z. Such a model has the advantage of being high expressive, but introduces difficulties for
training, because its density and therefore the log-likelihood cannot in general be computed tractably.
This necessitates the use of a likelihood-free parameter estimation method.

In this paper, we leverage a recently introduced method of Implicit Maximum Likelihood Estima-
tion (Li & Malik, 2018), which is able to maximize likelihood (under appropriate conditions) with-
out needing to compute it, in the unconditional setting. More concretely, given a set of examples
y1, . . . ,yn, and an implicit probabilistic model p(ỹ; θ), IMLE generates i.i.d. samples ỹθ1, . . . , ỹ

θ
m

from p(ỹ; θ) and tries to find a parameter setting that where each data example is close to its nearest
sample in expectation. More precisely, IMLE solves the following optimization problem:

θ̂IMLE := argmin
θ

Eỹθ1 ,...,ỹ
θ
m

[
n∑
i=1

min
j∈{1,...,m}

∥∥ỹθj − yi
∥∥2
2

]

Note that computing the minimum inside the expectation is a nearest neighbour search problem.
While this is commonly believed to be computationally expensive in high dimensions, thanks to
recent advances in fast nearest neighbour search algorithms (Li & Malik, 2016; 2017), this is no
longer an issue. In fact, backpropagation dominates the execution time, and so nearest neighbour
search takes less than 1% of the execution time of the entire algorithm.

2.2 CONDITIONAL IMLE FOR SUPER-RESOLUTION

To adapt IMLE for the super-resolution setting, we extend IMLE in the following ways:

• Since the original IMLE is designed to model the marginal distribution p(ỹ),
we modify the objective to model a family of conditional distributions, i.e.:{
p(ỹ|x)|x ∈ [0, 255]h×w×3

}
.

• Instead of defining a loss directly on the output, we use a loss on features of the output to
capture perceptual similarity.

• We propose a two-stage architecture, where each stage upscales the input image by a factor
of two (the width and height are each doubled, resulting in a quadrupling in the number of
pixels).

• We propose a hierarchical sampling scheme, where only parts of the random noise vectors
are sampled at a time, which then influence the pool of samples that are generated later on.

The modified algorithm is presented in Algorithm 1.

2.2.1 CONDITIONAL IMLE

The probabilistic model p(ỹ|x; θ) now models a different distribution for every value of x, which
requires two changes to be made to the IMLE algorithm. First, the value of x must be provided to the
transformation function Tθ in order to sample from the correct distribution. Second, the samples for
different values of x must be kept separate since they are from different distributions. Consequently,
for each input data example xi, we must look for the nearest sample in among the samples generated
from p(ỹ|xi).
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2.2.2 FEATURE SPACE

Instead of defining the loss on the outputs directly, we map both the samples and the ground truth
images to a feature space and apply the loss on the features. More precisely, the objective function
becomes the following, where φ is a fixed predefined function:

θ̂IMLE := argmin
θ

E{ỹθi,j}i∈[n],j∈[m]

[
n∑
i=1

min
j∈{1,...,m}

∥∥φ(ỹθi,j)− φ(yi)∥∥22
]

In our context, φ maps a high-resolution image to the concatenation of the original pixels and the
appropriately scaled activations of some layers in the VGG-19 convolutional neural net when eval-
uated on the image. More formally, φ(y) := ( α1φ1(y) · · · αcφc(y) )

>. We chose c = 3,
φ1(y) to be the identity function (so it outputs the raw pixel values), φ2(y) to be the pre-activations
of the conv2 2 layer and φ3(y) to be the pre-activations of the conv4 4 layer. We choose the weights
αk’s so that the means of the different feature components are of the same order of magnitude.

Algorithm 1 Conditional Implicit Maximum Likelihood Estimation (IMLE) Procedure

Require: The set of low-resolution images X = {xi}ni=1, the set of corresponding high-resolution
images Y = {yi}ni=1 and a feature extraction function φ
Initialize the parameters θ of the model/transformation function Tθ
for p = 1 to N do

Pick a random batch S ⊆ {1, . . . , n}
for i ∈ S do

Randomly generate i.i.d. m noise vectors z1, . . . , zm
ỹi,j ← Tθ(xi, zj) ∀j ∈ [m]

σ(i)← argminj ‖φ(yi)− φ(ỹi,j)‖22 ∀j ∈ [m]
end for
for q = 1 to M do

Pick a random mini-batch S̃ ⊆ S
θ ← θ − η∇θ

(
n
|S̃|

∑
i∈S̃
∥∥φ(ỹi,σ(i))− φ(yi)∥∥22)

end for
end for
return θ

2.3 TWO-STAGE ARCHITECTURE

We observe that the super-resolution problems can be decomposed into a sequence of easier super-
resolution problems, each of which upscales by a smaller factor. To super-resolve images by a large
factor, we can therefore have multiple sub-networks, each of which super-resolves by a small factor.
We note that the idea of a multi-stage architecture is not new; it has also been used in other methods
that adopt coarse-to-fine approaches (Denton et al., 2015; Lai et al., 2017; Wang et al., 2018b; Karras
et al., 2017). In our setting, we have two sub-networks, each of which upscales by a factor of 2, and
stack them on top of one another, thereby allowing the overall network to upscale by a factor of 4.
The lower sub-network takes the original low-resolution image and a random noise vector as input,
whereas the upper sub-network takes the output of the lower sub-network and a different random
noise vector as input. This can be viewed as a decomposition of the source of randomness into two
parts, one that is only used to model the uncertainty at a coarse level, and one that can be used to
model the uncertainty at a fine level.

2.4 HIERARCHICAL SAMPLING

We observe that in the conditional IMLE algorithm, only the sample that is nearest to each data
example is used in the loss; all other samples are discarded. We could therefore improve sample
efficiency by only sampling the regions of the latent noise space that are most likely to result in a
sample that is close to the data example. To this end, we sequentially generate the noise vectors
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Figure 2: Architecture of one sub-network.

for the lower and upper sub-network, which we will refer to as the lower and upper noise vectors.
More specifically, we first generate lower noise vectors and then compute the outputs of the lower
sub-network. Then, we compare them to the ground truth downsampled to the same resolution and
choose the noise vector that corresponds to the nearest sample to the downsampled ground truth.
Conditioned on this lower noise vector, we then generate upper noise vectors and select the noise
vector that results in a sample that is closest to the ground truth.

2.5 ARCHITECTURAL AND IMPLEMENTATION DETAILS

The model Tθ is a feedforward convolutional neural net with skip connections. Each sub-network
consists of one bilinear upsampling layer, which upsamples the input image by a factor of 2 (doubles
the width and height), followed by 9 convolution layers. Every convolution layer has a kernel
size of 5 × 5 with 64 output channels, except for the last one, which has 3 output channels, each
corresponding to a different colour channel. Between each pair of adjacent convolution layers, there
is one batch normalization layer, followed ReLU activations. The last convolution layer has sigmoid
activations to ensure the output is bounded between 0 and 1. The net also features skip connections
from the bilinearly upsampled input image to each of the convolution layers in the sub-network
except for the first one, since it is directly connected to the bilinearly upsampled input already. For
the skip connections to layers in the lower sub-network, the input image is upsampled by a factor of
2, whereas for the skip connections to layers in the upper sub-network, the input image is upsampled
by a factor of 4.

When computing VGG-19 activations of samples and ground truth images, we first scale up range
of pixel values from [0, 1] to [0, 255] and then subtract then mean pixel value computed over the
ImageNet dataset. Because the activations are very high-dimensional, we randomly project them to
a lower dimensional space using a random Gaussian matrix on the GPU before transferring them to
the CPU to keep latency and memory usage low.

3 EXPERIMENTS

3.1 DATA

For the problem of super-resolution, we can generate the training data by taking high-resolution
images and downsampling them. The downsampled images will serve as input, and the original
images will serve as the ground truth. The data for all experiments are from the ImageNet ILSVRC-
2012 dataset, which contains one thousand categories, each with around a thousand images. We
used a subset of the data to train all models, which consists of 20 categories with 150 images each,
which forms a total of 3000 images. The ground truth images have a resolution of 256× 256, which
are obtained by anisotropic scaling of the original images. The input images have a resolution of
64× 64, which are obtained by downsampling the 256× 256 images. The images used for training
and testing are disjoint.
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(a) bicubic (b) SRGAN (c) SRIM (d) Ground Truth

Figure 3: Representative random samples from (a) bicubic interpolation, (b) SRGAN, (c) SRIM and
(d) the ground truth.

Bicubic SRGAN SRIM Truth

PSNR 23.38 24.06 25.36 ∞
SSIM 0.6832 0.6694 0.7153 1

Table 1: Comparison of mean PSNR and SSIM values achieved by bicubic interpolation, SRGAN,
SRIM and the ground truth, where the mean is taken over different images in the test set.

3.2 EVALUATION

3.2.1 BASELINES

We compare our results to the leading method, super-resolution generative adversarial network (SR-
GAN), and the de-facto standard used most often in practice, bicubic interpolation. Both SRGAN
and our method are trained on the same training data. We used the top-ranked public implementation
of SRGAN on Github2 for all experiments.

3.2.2 QUANTITATIVE METRICS

Two standard automated quantitative metrics used in image compression are PSNR and SSIM (Wang
et al., 2004). We compute these metrics on the luminance channel for all methods using the daala
package3. We compare our result to those of bicubic interpolation and SRGAN. All methods super-
resolved inputs by a factor of 4 to generate outputs that match the ground truth resolution.

As shown in Table 1, our model (SRIM) outperforms bicubic interpolation and SRGAN in terms of
both PSNR and SSIM.

3.2.3 QUALITATIVE ASSESSMENT

For the task of super-resolution, it is critical to preserve the fidelity to the original image, which
means that the original colours, contours and shapes should be preserved and no implausible patterns
should be hallucinated. On the other hand, unlike other image generation tasks, sharpness should
not come at the expense of unrealistic artifacts and spurious hallucinations.

As shown in Figures 4, 5, 6, in general, our method produces fewer artifacts, maintains the real
colour tone and preserves the original shapes in the input image. On the other hand, for the SRGAN
results, high-frequency noise can be clearly seen on the table surface in Figure 6 and on the cloth
in Figure 6, whereas our results do not contain such artifacts. Colour hallucinations are observed
on the fence in Figure 5 and on Figure 6 in the SRGAN results, which are absent in SRIM result.
In addition, SRGAN produces obvious distortions to the shapes of objects highlighted in yellow in
Figures 5 and 6: we can see that the brow is extended and the eye has lost its original shape. On the
other hand, our method was able to avoid this issue.

2https://github.com/tensorlayer/srgan
3https://github.com/xiph/daala
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(a) SRGAN (b) SRIM (c) Ground Truth

Figure 4: Qualitative comparison of the results of (a) SRGAN, (b) SRIM and (c) the ground truth.
Hallucinated colours and shape distortions are visible on the edge of the fence picket and near the
overhead cables respectively in the output of SRGAN, whereas they are not present in the output of
SRIM.

(a) SRGAN (b) SRIM (c) Ground Truth

Figure 5: Qualitative comparison of the results of (a) SRGAN, (b) SRIM and (c) the ground truth.
High-frequency noise and spurious colours are visible on the table surface and near the chair leg
respectively in the output of SRGAN, whereas they are not present in the output of SRIM.

8



Under review as a conference paper at ICLR 2019

(a) SRGAN (b) SRIM (c) Ground Truth

Figure 6: Qualitative comparison of the results of (a) SRGAN, (b) SRIM and (c) the ground truth.
High-frequency noise is visible on the shirt and the shapes of the eye and the eye brow are distorted
in the output of SRGAN, whereas these issues are not present in the output of SRIM.

Data Source Test 1 Test 2 Test 3

SRIM SRGAN SRGAN Bicubic SRIM Bicubic

Seen Classes 0.63± 0.34 0.37± 0.34 0.53± 0.36 0.47± 0.36 0.70± 0.35 0.30± 0.35
Unseen Classes 0.66± 0.32 0.34± 0.32 0.53± 0.37 0.47± 0.37 0.65± 0.34 0.35± 0.34
All 0.65± 0.33 0.35± 0.33 0.53± 0.36 0.47± 0.36 0.67± 0.34 0.33± 0.34

Table 2: Results of human evaluation. Three pairwise tests were performed; for each test, super-
resolved images using two different methods were presented side-by-side and participants were
asked to select the image that seemed more realistic. The mean and the standard deviation of the
proportion of images generated by each particular method that participants found to be more realistic
is shown, where the mean and the standard deviation were computed over the different participants.

We also run an experiment where we generate multiple samples for the same input image. We can
see in Figure 7 that our model (SRIM) produces a greater variety of results compared to SRGAN. In
the results produced by SRIM, for regions that are blurrier/less informative in the input image, like
the area near the edge of the butterfly wing, the pattern of the white dots is changing across different
samples. On the other hand, for regions that are less ambiguous, like the central area of the wing
containing thick black lines, the details do not change across different samples. This suggests that
the SRIM model is able to learn the different modes of the conditional distribution, while avoiding
modelling spurious modes.

3.2.4 HUMAN EVALUATION

We conducted a study on 31 human subjects to gauge their opinions on the realism of the outputs of
each method. The test consists of three pairwise comparisons: the first test is between our method
and SRGAN, the second test is between SRGAN and bicubic interpolation, and the last test is
between our method and bicubic interpolation. For each test, we presented participants with 20
pairs of images, with one image in the pair generated by one method, and the other generated by the
other method. For each pair, we asked them to choose the image that looks more realistic. Each pair
of images is from a different class; 10 are from classes that are present in the training data, and the
other 10 are from classes that are unseen. The images in each pair are presented in a random order
and the images from the classes in the training set are mixed with those from unseen classes. In
Table 2, we show the proportion of outputs of each particular method that are chosen, averaged over
different participants. We also break down the results for images that are in/not in the classes seen
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(a) SRIM

(b) SRGAN

Figure 7: Different samples for the same input image for (a) SRIM and (b) SRGAN. The pattern of
white dots at the edge of the wing is different for different samples of SRIM, whereas it is identical in
different samples of SRGAN. At the same time, the the different samples of SRIM are all plausible
and are consistent with the input image.

during training. Because of the limited number of participants and the subjectivity of the criterion
of realism, the standard deviation across all tests is relatively high.

We can see from the results of Test 1 that the mean proportion of SRIM outputs being chosen over
SRGAN outputs is noticeably higher, which suggests that SRIM is able to produce more realistic
results. In addition, on both the classes seen during training and those that are new, SRIM performs
similarly, which suggests that SRIM did not overfit to the classes seen during training. As shown
by Test 2, only about half of the SRGAN outputs are perceived to be more realistic. This indicates
that even though the SRGAN outputs contain sharper edges than bicubic interpolation outputs, the
various artifacts lead to a diminished perception of realism. Test 3 results show that SRIM results
are perceived to be more realistic than bicubic interpolation results, which demonstrates that our
model (SRIM) is able to improve the perceptual quality of the image without introducing artifacts
that would cause a degradation in the perception of realism.

4 CONCLUSION

In this paper, we proposed a new method for super-resolution, known as Super-Resolution Implicit
Model (SRIM), based on the recent proposed method of Implicit Maximum Likelihood Estimation
(IMLE). We showed that our method is able to avoid common artifacts produced by existing meth-
ods, such as high-frequency noise, colour hallucination and shape distortion. We demonstrated that
SRIM is able to outperform SRGAN in terms of standard metrics, PSNR and SSIM (Wang et al.,
2004), and human evaluation of realism on the ImageNet dataset. Moreover, we found that SRIM is
able to generate multiple plausible hypotheses on the ambiguous regions of the input, while being
able to avoid modelling spurious modes.
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(a) SRIM (b) SRGAN

Figure 8: Comparison of SRIM and SRGAN under the high-resolution setting of Set14. The input
resolution is 120×125, which is almost 4× the number of pixels in the original setting considered in
the main paper, which used input images of size 64× 64. Because this setting is easier, all methods
perform better under this setting than under the original setting and so it is more difficult to discern
the relative advantages of different methods. As shown, the proposed method and SRGAN perform
comparably under this setting.

APPENDIX A HIGHER-RESOLUTION INPUTS

In our paper, we focused on the setting that takes a relatively low-resolution (64 × 64) image as
input, because it is a more challenging setting that makes the advantages and shortcomings of var-
ious methods more apparent. In response to the reviews, we also evaluate our method on Set14,
which uses higher-resolution images as input. This is an easier setting because a lot more pixels
are provided as input. Under this setting, all methods perform better than under the original setting
considered in the main paper and so artifacts are less perceptible, which makes relative performance
comparisons more difficult. In Figure 8, we show the results of the proposed method and SRGAN
on Set14 and find that they perform comparably.

APPENDIX B COMPARISON TO OTHER BASELINES

In response to the reviews, we also compare SRIM and to several other recent methods, including
EnhanceNet (Sajjadi et al., 2017), SFT network (Wang et al., 2018a), EDSR network (Lim et al.,
2017) and RDN (Zhang et al., 2018). Results are shown in Figure 9.
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(a) EnhanceNet (b) SFT Network (c) EDSR Network (d) RDN

(e) SRIM

Figure 9: Comparison of SRIM to EnhanceNet, SFT network, EDSR network and RDN. There
is shape distortion in the results of EnhanceNet and RDN, high-frequency noise in the results of
EnhanceNet and SFT network and blurred details in the result of EDSR network. Note that RDN
super-resolves by a factor of 3 rather than 4, and so a higher-resolution input is provided to RDN
that results in the same output resolution.
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