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Abstract
This paper introduces a general Bayesian non-
parametric latent feature model suitable to per-
form automatic exploratory analysis of hetero-
geneous datasets, where the attributes describing
each object can be either discrete, continuous or
mixed variables. The proposed model presents
several important properties. First, it accounts
for heterogeneous data while can be inferred in
linear time with respect to the number of ob-
jects and attributes. Second, its Bayesian non-
parametric nature allows us to automatically in-
fer the model complexity from the data, i.e., the
number of features necessary to capture the latent
structure in the data. Third, the latent features in
the model are binary-valued variables, easing the
interpretability of the obtained latent features in
data exploration tasks.

1. Introduction
Latent feature models allow us to compact in a few features
the immense redundant information present in the observed
data, by capturing the statistical dependencies among the
different objects and attributes. As a consequence, they ap-
pear as suitable tools to perform data exploratory analysis,
i.e, they may help us to better understand the data (Blanco
et al., 2013; Ruiz et al., 2013).

There is an extensive literature in latent feature modeling
of homogeneous data, where all the attributes describing
each object in the database present the same (continuous
or discrete) nature. In particular, these works assume that
databases contain only either continuous data, usually mod-
eled as Gaussian variables (Griffiths & Ghahramani, 2011;
Todeschini et al., 2013), or discrete, that can be either mod-
eled by discrete likelihoods (Li, 2009; Ruiz et al., 2013;
Gopalan et al., 2014) or simply treated as Gaussian vari-
ables (Blanco et al., 2013; Todeschini et al., 2013). How-
ever, there still exists a lack of works dealing with heteroge-
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neous databases, which in fact are common in real applica-
tions. As motivating examples, Electronic Health Records
from hospitals might contain lab measurements (often pos-
itive real-valued or real-valued data), diagnoses (categori-
cal data) and genomic information (ordinal, count data and
categorical data); also, a survey often contains diverse in-
formation about the participants such as age (count data),
gender (categorical data), salary (positive real data), etc.
Despite this diversity of data types, the standard approach
when dealing with heterogeneous datasets is to treat all the
attributes, either continuous or discrete, as Gaussian vari-
ables.

This paper presents a general latent feature model (GLFM)
suitable for heterogeneous datasets, where the attributes de-
scribing each object can be either discrete, continuous or
mixed variables. Specifically, we account for real-valued
and positive real-valued as examples of continuous vari-
ables, and categorical, ordinal and count data as exam-
ples of discrete variables. The proposed model extends the
essential building block of Bayesian nonparametric latent
feature models, the Indian Buffet Process (IBP) by (Grif-
fiths & Ghahramani, 2011), to account for heterogeneous
data while maintaining the model complexity of conjugate
models. Among all the available latent feature models in
the literature, we opt for the IBP due to two main rea-
sons. First, the nonparametric nature of the IBP allows
us to automatically infer the appropriate model complex-
ity, i.e., the number of necessary features, from the data.
Second, the IBP considers binary-valued latent features
which has been shown to provide more interpretable re-
sults in data exploration than standard real-valued latent
feature models (Ruiz et al., 2012; 2013). The standard
IBP assumes real-valued observations combined with con-
jugate likelihood models, allowing for fast inference algo-
rithms (Doshi-Velez & Ghahramani, 2009). However, we
here aim at dealing with heterogeneous databases, such that
conjugacy might not be straightforwardly available.

In order to propose a general observation model for the
IBP that accounts for heterogeneous data while keeping
the properties of conjugate models, we exploit two key
ideas. First, we introduce an auxiliary real-valued variable
(also called pseudo-observation), such that, conditioned on
it, the model behaves as the standard linear-Gaussian IBP
in (Griffiths & Ghahramani, 2011). Second, we assume
that there exists a function that transforms the pseudo-
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Figure 1. Illustration of the GLFM.

observation into the actual observation, mapping the real
line into the (discrete or continuous) observation space of
each attribute in the data. These two key ideas allow us to
derive an efficient inference algorithm based on collapsed
Gibbs sampling, which presents linear complexity with the
number of objects and attributes in the data.

Our experiments provide examples of how to use
the proposed model for data exploration in real-world
datasets. Additionally, a software library implement-
ing the GLFM, as well as the necessary scripts to per-
form automatic data exploration, is publicly available at
https://github.com/ivaleraM/GLFM.

2. General Latent Feature Model
We introduce the GLFM, which is a general Bayesian non-
parametric latent feature model suitable for data explo-
ration of heterogeneous datasets, where the attributes de-
scribing each object can be either discrete, continuous or
mixed variables. Specifically, the GLFM accounts for the
following data types:
• Continuous variables:

1. Real-valued, i.e., xdn ∈ <
2. Positive real-valued, i.e., xdn ∈ <+.

• Discrete variables:
1. Categorical data, i.e., xdn takes a value in a finite

unordered set, e.g., xdn ∈ {‘blue’, ‘red’, ‘black’}.
2. Ordinal data, i.e., xdn takes values in a finite or-

dered set, e.g., xdn ∈ {‘never’, ‘sometimes’, ‘of-
ten’, ‘usually’, ‘always’}.

3. Count data, i.e., xdn ∈ {0, . . . ,∞}.
The GLFM builds on the IBP (Griffiths & Ghahramani,
2011), and therefore, it assumes that each observation xdn
can be explained by a potentially infinite-length binary vec-
tor zn whose elements indicate whether a latent feature
is active or not for the n-th object; and a (real-valued)
weighting vector Bd, whose elements weight the influ-
ence of each latent feature in the d-th attribute1. Since
the product of the latent feature vector and the weight-
ing vector leads to a real-valued variable, it is necessary
to map this variable to the desirable output (continuous or
discrete) space, for example, the positive real line or the

1For convenience, we here capitalize the vector Bd.

finite ordered set {low, medium, high}. Thus, the GLFM
assumes the existence of intermediate real-valued auxiliary
variables ydn ∼ N (znBd, σ2

d), called pseudo-observation,
and a transformation function fd(·) that maps this variable
into the actual observation xdn, i.e., xdn = fd(y

d
n+u) where

u ∼ N (0, σ2
u) is an auxiliary noise with zero mean and

small variance σ2
u. Additionally, the GLFM accounts for

a bias term similar to the one in (Ruiz et al., 2012; 2013),
which corresponds to an extra latent feature that is active
for every object in the data and eases the interpretability of
the latent features, as shown in next section.

Figure 1 illustrates the GLFM by showing the correspond-
ing graphical model together with an example of the gen-
erative model for an ordinal attribute taking values in
the ordered set {low, medium, high}. The inference of
the GLFM is performed using collapsed Gibbs sampling,
which presents linear complexity with respect to the num-
ber of objects N and the number of attributes D. Addi-
tional details on the model, as well as on the inference al-
gorithm can be found in (Valera et al., 2017).

3. Data Exploration
The main goal of this section is to provide showcase ex-
amples about how to include the specific domain knowl-
edge into the proposed GLFM to find and analyze the latent
structure underlying data in different application domains,
i.e., to perform data exploratory analysis. In particular, we
here show examples of how to select the input data for the
GLFM, as well as how to enter these data into the model,
in order to obtain interpretable results that can be used to
get a better understanding of the data.

3.1. Drug effect in a clinical trial for prostate cancer
Clinical trials are conducted to collect data regarding the
safety and efficacy of a new drug before it can be sold in
the consumer market, if ever. Concretely, the main goal of
clinical trials is to prove the efficacy of a new treatment for
a disease while ensuring its safety, i.e., check whether its
adverse effects remain low enough for any dosage level of
the drug. As an example, the publicly available Prostate
Cancer dataset2 collects data of a clinical trial that aimed
at analyzing the effects of the drug diethylstilbestrol (DES)

2http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets
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Attribute description Type of variable
Stage of the cancer Categorical with 2 categories
DES treatment level Ordinal with 3 categories
Tumor size in cm2 Count data
Serum Prostatic Acid Phosphatase (PAP) Positive real-valued
Prognosis Status (outcome of the disease) Categorical with 4 categories

Table 1. List of considered attributes for the Prostate Cancer dataset.

as a treatment against prostate cancer. More in detail,
the dataset contains information about 502 patients with
prostate cancer in stages3 3 and 4, who entered a clinical
trial during 1967-1969 and were randomly allocated to dif-
ferent levels of treatment with DES. The prostate cancer
dataset has been used by several studies (Byar & Green,
1980; Lunn & McNeil, 1995) to analyze the survival times
of the patients in the clinical trial and the causes behind
their death. These studies have pointed out that a large dose
of the treatment tends to reduce the risk of a cancer death
at any time, but also might result in an increased risk of
cardiovascular death.

In this section, we apply the proposed GLFM to the
Prostate Cancer dataset to show that the proposed model
can be efficiently used to discover the statistical dependen-
cies in the data, which in this example corresponds to the
effect of the different levels of treatment with DES in the
suffering of prostate cancer and cardiovascular diseases.
The prostate cancer dataset consists of 502 patients and 16
attributes, from which we make use of the five attributes
listed in Table 1. The selection of these five attributes al-
lows us not only to reduce the number of local minima in
the posterior distribution of the proposed model due to the
small sample size of the dataset, but also to focus on cap-
turing the statistical dependencies between the target at-
tributes, i.e, the relationship between the different levels
of treatment with DES and the suffering of prostate cancer
and cardiovascular diseases.

Results. After running our model, we obtain four latent
features. Figure 2 shows the effect of the inferred latent fea-
tures, as well as the bias term, on each dimension/attribute
of the data, where we can distinguish two groups of fea-
tures. The first group accounts for patients in stage 3 and
includes the bias term and the 2 first latent features. Within
this group, the bias term – or equivalently pattern (0000)
– and the first feature – or equivalently pattern (1000) –
account for patients in stage 3 with a low average level of
treatment with DES (refer to Figure 2b). However, while
the bias term models patients with low probability (∼ 15%)

3The stage of a cancer describes the size of a cancer and how
far it has grown. Stage 3 means that the cancer is already quite
large and may have started to spread into surrounding tissues
or local lymph nodes. Stage 4 is more severe, and refers to a
cancer that has already spread from where it started to another
body organ. This is also called secondary or metastatic cancer.
Find more details in http://www.cancerresearchuk.org/about-
cancer/what-is-cancer/stages-of-cancer

of prostate cancer death, the first feature accounts for pa-
tients with higher probability (∼ 40%) of prostate cancer
death, which can be explained by a larger tumor size (refer
to Figure 2c). The second feature – or equivalently pattern
(0100) –captures patients who exclusively received a high
dosage (5 mg) of the drug (refer to Figure 2b). These pa-
tients present a small tumor size and the lowest probability
of prostatic cancer death, suggesting a positive effect of the
drug as treatment for the cancer. However, they also present
a significant increase in the probability of dying from a vas-
cular disease (∼ 50%), indicating a potential adverse-effect
of the drug that increases the risk of suffering from cardio-
vascular diseases. Such observation is in agreement with
previous studies (Byar & Green, 1980; Lunn & McNeil,
1995).

The second group of features corresponds to the activa-
tion patterns (0010) and (0001), and accounts for patients
in stage 4 with, respectively, mild and severe conditions.
In particular, the third feature corresponds to patients with
small tumor size, but intermediate values for the PAP
biomarker, suggesting a certain spread degree of the tumor
compared to the features in the first group, but not as severe
as for patients with pattern (0001). Indeed, pattern (0001)
models those patients in stage 4 with relatively high tumor
size and the highest PAP values–it is thus not surprising that
those patients present in turn the highest probability (above
50%) of prostatic death.

3.2. Impact of Social Background on Mental Disorders
Several studies have analyzed the impact of social back-
ground in the development of mental disorders (Weissman
et al., 1993; Weich & Lewis, 1998). Other studies have
focused on finding and analyzing the co-occurring (comor-
bidity) pattern among the 20 most common psychiatric dis-
orders (Blanco et al., 2013; Ruiz et al., 2013). These stud-
ies found that the 20 most common disorders can be divided
into three groups: i) externalizing disorders, which include
substance use disorders (alcohol abuse and dependence,
drug abuse and dependence and nicotine dependence); ii)
internalizing disorders, which include mood and anxiety
disorders (major depressive disorder (MDD), bipolar disor-
der and dysthymia, panic disorder, social anxiety disorder
(SAD), specific phobia and generalized anxiety disorder
(GAD), and pathological gambling (PG)); and iii) person-
ality disorders (avoidant, dependent, obsessive-compulsive
(OC), paranoid, schizoid, histrionic and antisocial person-
ality disorders (PDs)). However, up to our knowledge,
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there is a lack of work on the impact of social background
in the suffering of comorbid disorders.

In this section, we aim at extending the analysis in (Ruiz
et al., 2013) to account for the influence of the social back-
ground of subjects (such as age, gender, etc.) in the prob-
ability of a subject suffering from comorbid disorders. To
this end, in addition to the diagnoses of the above 20 psy-
chiatric disorders, we also make use of the information
provided by the NESARC, which includes a set of ques-
tions on the social background of participants. Specifi-
cally, in addition to the diagnoses of the most common 20
psychiatric disorders described above, we include the sex
of the participants as input data to the proposed model.
We model the gender information of the participants in
the NESARC as a categorical variable with two categories:
{‘male’, ‘female’}. The percentage of males in the NE-
SARC is approximately 43%. Note also that the diagnoses
of the 20 psychiatric disorders correspond to categorical
variables with two possible categories, e.g., a patient suf-
fering or not from a disorder.

Results. After running our inference algorithm with the
diagnoses of the 20 disorders and the gender of subjects
as input data, we obtain three latent features. Figure 3a
shows the probability of meeting each diagnostic criteria
for the latent feature vectors zn listed in the legend and in
the database (baseline). Note that the obtained latent fea-
tures are similar to the ones in (Ruiz et al., 2013), i.e., fea-
ture 1 (pattern (100)) mainly models the seven personality
disorders (PDs), feature 2 (pattern (010)) models alcohol
and drug abuse disorders and the antisocial PD, while fea-
ture 3 (pattern (001)) models anxiety and mood disorders.
Additionally, Figure 3b shows the probability of being male
and female for the latent feature vectors zn despicted in the
legend and the empirical probability of being male and fe-
male in the database (baseline).

In Figure 3b, we observe that having no active features (pat-
tern (000)), which captures people that do not suffer from
any disorder, increases the probability of being male with
respect to the baseline probability, and therefore, it indi-
cates that females tend to suffer in a higher extent from
psychiatric disorders. Additionally, we observe that feature
1 (pattern (100)) increases the probability of being male,
while feature 3 (pattern (001)) increases the probability
of being female. Hence, from the analysis of Figure 3b,
we can conclude that, while women suffer more frequently
from mood and anxiety disorders than men, PDs are more
common in men.

4. Conclusions
In this paper, we have introduced the first available general
latent feature model and its code implementation, which
will ease researchers from diverse fields to analyze a wide
range of heterogeneous, incomplete and noisy datasets in

an automatic manner. We have showed the flexibility and
applicability of the proposed GLFM by performing data ex-
ploratory analysis of diverse real-world datasets.
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Figure 2. Data exploration of a prostate cancer clinical trial. We depict the effect of each latent feature on each attribute. Panels
(a)-(d) shows different indicators of the prostate cancer, as well as the dose level of DES. Panel (d) corresponds to Prognosis Status,
which indicates whether the patient either is alive or dies from one of the following three causes: vascular disease, prostatic cancer, or
other reason. The baseline refers to the empirical distribution of each attribute in the whole dataset.
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Figure 3. Feature effects including gender in the analysis. (a) Probabilities of suffering from the 20 considered disorders and (b)
probability of being male and female for the latent feature vectors zn shown in the legend and for the baseline.


