Optimisation of a convolutional neural network to
segment the first trimester placenta from 3D
ultrasound scans.
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Abstract

Screening for increased risk of pregnancy complications could be possible with
fully automated placental segmentation in 3D ultrasound (3D-US). Fully convo-
lutional neural networks (fCNN) have previously obtained good segmentation
performance of the first trimester placenta and appears to predict fetal growth
restriction better than manual segmentation methods. The goal of this study is to
adjust fCNN architecture parameters to investigate their impact on performance
and ultimately to produce a more accurate segmentation. 2,393 first trimester 3D-
US volumes with ‘ground-truth’ segmentation obtained using a semi-automated
technique were used. An open source package (OxNNet) was used to train end-to-
end six fully convolutional neural networks with different loss functions, addition
of batch normalisation and with different numbers of features. A small increase
in performance of placental segmentation in terms of Dice similarity coefficient
(DSC) (0.835 vs 0.825) was observed. Doubling the feature map gave a minor
improvement in DSC (0.01). Use of batch normalisation increased the speed of
training as expected. The Dice-based loss gave poorer performance in general.
Convolution with no padding produced better segmentation than using padding.
The subjective case quality assessment score was shown to correlate with the DSC
(r=-0.28 (p < 0.05)). A faster, less-memory intensive f{CNN architecture can
provide a similar segmentation performance moving the use of this tool for clinical
screening a step closer.

1 Introduction

State of the art organ segmentation has been achieved using deep learning in a range of medical
imaging modalities [Litjens et al.l 2017]]. 3D ultrasound however, has not been heavily studied. The
first efforts to segment the placenta in early stage pregnancy were reported by Looney et al.| [2017]]
using Deepmedic [Kamnitsas et al.,|2017]] on 300 cases and obtained a Dice similarity coefficient
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(DSC) of 0.73. [Yang et al.|[2017]] used 104 cases and obtained a DSC of 0.64 for the placenta. A
recent study by |[Anonymous| [2018]] using 1197 cases and a modified U-Net [Ronneberger et al.,
2015] architecture has obtained a DSC of 0.84.

Several clinical studies have demonstrated that a low placental volume (PI1Vol) in the first trimester
can predict adverse outcomes later in the pregnancy including small for gestational age (SGA) babies
[Collins et al., |2013]] and pre-eclampsia[Hafner et al., 2006]]. Other studies have demonstrated PIVol
to be independent of other biomarkers for SGA such as pregnancy associated plasma protein A
(PAPP-A) [Law et al., 2009, [Collins et al., |2013]] and nuchal translucency [Collins et al., [2013]],
which led a recent systematic review to conclude that it could be successfully integrated into a future
multivariable screening method for SGA [Farina, 2016]. This would be similar to the ‘combined
test” currently used to screen for fetal aneuploidy. As P1Vol could be measured at the same gestation
as the routinely offered ‘combined test’, no extra ultrasound scans would be required making it
economically appealing to healthcare providers worldwide.

It was shown by |/ Anonymous| [2018] that the automatic placental volume measured using a trained
neural network is as effective as a semi-automated method of calculating placental volume in
detecting SGA. The automatic measurement of placental volume also outperforms the proprietary
manual VOCAL™ (Virtual Organ Computer-aided AnaLysis; GE Healthcare, Milwaukee, WI) system.
Improving the performance of the neural network will provide more accurate placental segmentations
and so should improve the predictive value of P1Vol.

There are many hyperparameters that can be modified to improve performance [Bengiol [2012] such
as the number of feature maps. The choice of loss function has been shown to affect the accuracy of
a CNN. Milletari et al.| [2016] used a Dice based loss function to segment the prostate and showed
that this loss function gave better performance than traditional cross-entropy loss (DSC of 0.869 and
0.739 for the Dice and cross-entropy loss respectively). Another possible source of improvement is
the addition of batch normalisation which has been found to speed up training and have a regularising
effectloffe and Szegedy|[2015]].

The output from a convolutional layer with no padding is reduced in size with respect to the input
depending on the kernel size and striding. Ronneberger et al.|[[2015]] used no padding in the 2D
U-Net while the work by Milletari et al.|[2016] in extending U-Net to 3D used padding. Padding
reduced the computation cost since less segments are needed to perform full inference. However, it
introduces issues with translation invariance since the confidence of voxel classification can depend
on the proximity of a voxel from the edge in a segment.

In this work, we investigate the role of loss function, batch normalisation, padding and the number of
feature maps on the performance of the neural network at segmenting the placenta in 3D ultrasound.
Clinical assessment of the image quality is also compared to the prediction of the best performing of
the models.

2 Methods

Plasencia et al.|[2011]] originially use the 3D-US data to assess the predictive value of P1Vol, measured
using the commercial VOCAL™ tool. All participants provided written consent and the study had
full local ethical approval (ID:02-03-033). At 11+ 0 to 13 + 6 weeks’ gestation when the women
presented for their combined screening for aneuploidies at the Fetal Medicine Centre, London, UK
[Kagan et al., 2008} |Snijders et al., |[1998]] a 3D-US volume containing the placenta was recorded
for 3,104 singleton pregnancies. The 3D-US volume was acquired by trans-abdominal sonography
using a GE Voluson 730 Expert system (GE Medical Systems, Milwaukee, Wisc., USA) with a 3D
RAB4/8L transducer [Wegrzyn et al.|[2005]]. 336 of the original 3,104 3D-US volumes were discarded
as they had been saved using wavelet-compression, which results in significant loss of the underlying
raw data thereby preventing further analysis. Another 375 cases had been collected with the B-Mode
gain set exceptionally high and were excluded. This gain setting is used in clinical practice as it makes
the nuchal translucency more obvious but is inappropriate for imaging the placenta as it removes the
subtle variation in the echogenicity of tissues resulting in a ‘stark’, black and white image appearance.

The Random Walker (RW) algorithm, which has been described previously [Stevenson et al.| 2015],
was used to annotate the remaining 2,393 3D-US volumes. 3D B-mode data was converted from the
toroidal geometry GE Voluson Kretzfile format into a 3D Cartesian volume with isotropic 0.6 mm



spacing as described by [Looney et al.,[2017]]. The segmentation was initialised or ‘seeded’ by an
operator (SN). These ‘seedings’ were then examined for accuracy by a second, independent, operator
(MM) and ‘re-seeded” where mistakes were evident. Cases where there was uncertainty regarding the
boundaries of the placenta were examined by a third operator (SC). The ‘seedings’ were then used to
calculate the placenta segmentation using the RW method. Finally the ‘ground-truth’ dataset was
quality controlled by visually inspecting the segmentation of all the cases seen to be outliers in the
distribution of PIVol values. This was performed by three operators (SC, PL and GS), if an error was
seen in the segmentation the seeding was checked and the image re-seeded and re-segmented where
appropriate. The resulting 2,393 quality controlled ‘ground-truth’ segmentations were then used to
train, validate and test the models.
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Figure 1: Architecture of model presented by Anonymous| [2018]]. This architecture was varied to
improve the automatic segmentation of the placenta in 3D ultrasound.

The architecture used is based on 3D extension of the U-net architecture Ronneberger et al.|[2015]].
Using the architecture shown in figure [I|a DSC of 0.84 was obtained by |Anonymous|[2018]. The
loss function used were the cross entropy loss and the modified Dice loss as described by [Milletari
et al.|[2016]]. The Dice loss used here was
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where € is 0.0001, P; is the softmax prediction for voxel ¢ and L; is the label for voxel i. For some
of the models batch normalisation was added to the architecture shown in Figure [I] at all of the
convolutional layers with stride one and kernel width of three. This was performed for both loss
functions. The number of features of each layer of the architecture shown in Figure[I] were doubled
and halved.

1,096, 100, and 1,197 cases were selected randomly from the 2,393 cases for training, validation and
testing. The neural networks were trained for ten epochs. The models were realized using TensorFlow
(version 1.5) |Abadi et al.|[2016] and OxNNet [Looney, 2013[]. Cubic patches of 863 voxels were
extracted from the full volumes and used as input to the CNN. The batch size was 20, 30 and 40 for
the CNN with 32, 16 and 8 features in the first convolutional layer respectively. The parameters of the
Adam optimizer learning rate, 31, 32 and € were set as 0.001, 0.9, 0.999 and 1 x 10~8 respectively.
To reduce overfitting, dropout with probability 0.5 was applied to the final layer. Validation of a
single batch of patches was performed every 50 steps and full validation on 100 cases was carried
out at the end of the each epoch. After training the model was tested on 1,197 cases. The predicted
segmentations were post-processed to remove disconnected parts of the segmentation less than 40%
of the volume of the largest region. The segmentation was binary dilated and eroded using a 3D
kernel of radius three voxels and a hole filling filter applied.
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Figure 2: Validation of the 100 cases for each epoch during training for the different architectures.

Batch normalisation (BN) was added to the model previously reported by |Anonymous|[2018]] (X-Ent)
to produce the model X-Ent BN. The number of features of X-Ent BN was doubled (X-Ent BN 32)
and halved (X-Ent BN 8). X-Ent was retrained using the modified Dice loss (DL) to give a different
model MDL. This model was also trained using batch normalisation to produce the model MDL BN.
In these models no padding was used in the convolutional layers, the cubic input was 863 voxels in
size which gave a cubic output of 423 voxels in size. Finally two models identical to X-Ent BN but
with padding in the convolutional layers were trained and tested using input and output of 483 voxels
in size (Patch 48 X-Ent BN) and 723 voxels in size (Patch 72 X-Ent BN).

The images were assessed by an experienced operator (SN) and a scoring system was used to assess
quality. Cases where over 20% of the placenta volume was missing were scored two and cases where
less than 20% of the placenta volume was missing were scored one. The shape of the placenta can
effect the difficulty of segmentation. Easy shaped placentas (e.g. isolated, globular shape and pancake
shape placentas) were scored one while difficult shape placentas (e.g. c-shaped, unclear shape and
placenta over fibroid) were scored two. Placentas whose appearance or composition was considered
homogenous scored one, placentas whose composition was heterogeneous were scored two and



placentas with cystic areas or placenta lakes were scored three. The quality of the image was rated
from one (contrast excellent, no pixelation, sharp image) to five (blurred image, very pixelated and
difficult to assess boundaries). Images were scored two if the placenta was obscured or one otherwise.
Segmentation of a placenta without any fetal parts touching or close to the placenta were much easier
to segment. Those with no fetal parts adjacent or touching the placenta scored one point, placentas
with a fetus body close to the placenta scored two points and with placentas where the whole of the
fetus was close to the placenta were scored three points. The overall image quality score was then
calculated by adding these six scores together.
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Figure 3: Distributions of the metrics measured for the different architectures on 1197 test cases.

Box plots of the DSC of the predicted segmentations for the 100 validation cases are shown in
Figure [2| for each model and epoch. The best performing model for each of the architectures in
Figure [2| was evaluated on the test cases.

Table 1: Model Metrics

Model DSC  Hausdorff (mm) Target Overlap FP Error
X-ent 0.825 15.6 0.88 0.19
X-ent BN 0.835 159 0.84 0.14
X-entBN32 0.836 155 0.83 0.12
X-entBN8  0.829 16.0 0.85 0.15
MDL 0.830 164 0.81 0.12
MDL BN 0.808 16.9 0.90 0.25

Table |I| shows the median of the metrics measured on the 1,197 test cases. The distributions of these
metrics are shown in Figure[3] In terms of the median DSC the best performing model was X-Ent BN
32. However, X-Ent BN produced very similar performance and required half of the GPU memory.
As aresult, X-Ent BN was chosen for further analysis.



1.00

0.75 -
O
) 0.50
a

0.25 =

0.00 =

X-Ent P48 X-Ent P72 X-Ent
BN BN

BN
Model

Figure 4: Distributions of the DSC for no padding (X-Ent BN) padding with segment size 48> voxels
(Patch 48 X-Ent BN) and padding with segment size 723 voxels (Patch 72 X-Ent BN).

The variation of performance depending on the use of padding is shown in Figure @ The median
value of DSC for X-Ent BN, Patch 48 X-Ent BN and Patch 72 X-Ent BN was 0.835, 0.795 and 0.78
respectively.

S O T

Figure 5: Sample segmentation of the placenta with a slice through the ultrasound volume shown.
The red volume is the ground truth and the blue is the prediction of X-Net BN. The DSC was 0.836.

A sample segmentation is shown in Figure[5] The variation of the DSC with the overall quality score
is shown for X-Ent BN in Figure[6] Pearson’s correlation coefficient (r) of the DSC against the overall
quality score is -0.28 (p < 0.05).

4 Conclusion

Six variations of a previously reported CNN were trained end to end. The best model with the highest
median DSC during the training was chosen for each architecture and the performance on 1,197 cases
was compared. There are many possible variations in hyper-parameters and doing an exhaustive
search is not possible due to the prohibitive time training all potential options.

After the first epoch the lowest median DSS value obtained was for X-Ent. This is expected since
batch normalisation is known to speed up training and was used in all models except for MDL. The
DSC values of MDL BN were more volatile than the other models. MDL BN had a drop in median
DSC from 0.75 to 0.52 between epochs three and four and another drop in median DSC between
epochs six and seven.

The worst performing model was MDL BN with a DSC of 0.808 and the highest median Haudorff
distance. The rest of the models had similar DSC values (0.825 to 0.836). Of these models there
was some trade off in the target overlap and FP error where the MDL had the lowest of the target
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Figure 6: Box plot of the DSC for each overall image quality score. The number of cases in each box
plot is shown as a column chart in the background.

overlap but also the lowest false positive error. The modified Dice loss layer was previously shown to
give improved model performance [Milletari et al.,|2016|. This observation was not corroborated
by the results of this work. One possible explanation for this is that other hyper-parameters kept
constant throughout are more suitable for cross-entropy loss than for modified Dice loss. The choice
of learning rate and optimiser are two such possible hyper-parameters. Work by Sudre et al.| [2017]]
suggested that the effect of the loss function was most important in cases where there is significant
class imbalance. The class imbalance in segmenting the placenta in 3D ultrasound depends on the
windowing by the operator when acquiring the image. The average foreground background ratio
in this study was 17% which is much higher than those considered by Sudre et al. [2017] where
background foreground ratios as low as 0.02% were considered.

Padding reduces the computational cost at the expense of homogenous confidence in voxel classifica-
tion. In the two models where padded was used DSC was reduced. It is surprising that of the two
models with padding the model with larger segment size and hence increased confidence of voxel
classification, P72 X-Ent BN, had a reduced DSC when compared to P48 X-Ent BN. We believe
this is due to the volatility of the training process. For comparison the best performing models from
10 epochs were chosen. This could possibly be criticised as an unfair comparison since the padded
models will have much less input during an epoch because there is no overlap in the segments. The
performance of the padded models could be improved by using reduced strides over the volume
increasing the confidence of classification of voxels near the edge of a segment used. However, this
would increase the computational cost which is the main benefit in using padding.

The variation of DSC values for X-Ent BN showed a correlation with the overall image quality score.
Low quality images (ie with a high numerical score) tended to have a lower DSC and visa versa.
Low quality ultrasound images make segmentation of the placenta difficult. Hence, the ground-truth
segmentations on these images are less reliable than those on better quality cases. The decrease in
DSC value on the lower quality cases will be due in some cases to errors in the ground-truth rather
than a failure of the CNN. Obtaining accurate ground-truth particularly at this gestational age relies
upon the clinical expertise of the operator and the quality of images that can be obtained. The images
used in this study were collected several years ago using a machine that has since been superseded by
two generations of ultrasound systems.

The goal of this work was to improve upon previously published methods for automatic segmentation
of the placenta. A small increase in the quality of the segmentation was found. The results obtained
using the modified Dice loss are not in agreement with those previously published. However, there are
many confounding variables that could explain this apparent discrepancy. The variation of the DSC



with image quality suggests that improvements in image acquisition will allow for more accurate
segmentation of the placenta. The tuning of the feature maps will enable faster analysis of 3D
ultrasound volumes. This will allow for fast real-time analysis of placental volume that could enable
screening of at risk pregnancies at an early gestational age.

Acknowledgments

The authors thank Prof. J. Alison Noble for her valuable input into the original placental imaging
analysis that lead to the development of this work. We gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Tesla GTX Titan X GPU used for this research. PL, SC and
research reported in this publication was supported by the Eunice Kennedy Shriver National Institute
of Child Health and Human Development (NICHD) Human Placenta Project of the National Institutes
of Health under award number UO1-HDO087209. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the National Institutes of Health. GS
is supported by a philanthropic grant from the Leslie Stevens’ Fund, Sydney.

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

A Anonymous. Using automated placental volume to detect at risk pregnancies. In Submitted to the
Medical Imaging with Deep Learning conference, 2018.

Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. In
Neural networks: Tricks of the trade, pages 437—478. Springer, 2012.

Sally L Collins, Gordon N Stevenson, J Alison Noble, and Lawrence Impey. Rapid calculation of
standardized placental volume at 11 to 13 weeks and the prediction of small for gestational age
babies. Ultrasound in Medicine and Biology, 39(2):253-260, 2013.

Antonio Farina. Systematic review on first trimester three-dimensional placental volumetry predicting
small for gestational age infants. Prenatal diagnosis, 36(2):135-141, 2016.

E Hafner, M Metzenbauer, D Hofinger, F Stonek, K Schuchter, T Waldhor, and K Philipp. Comparison
between three-dimensional placental volume at 12 weeks and uterine artery impedance/notching
at 22 weeks in screening for pregnancy-induced hypertension, pre-eclampsia and fetal growth
restriction in a low-risk population. Ultrasound in obstetrics & gynecology, 27(6):652—-657, 2006.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pages 448—456,
2015.

KO Kagan, D Wright, A Baker, D Sahota, and KH Nicolaides. Screening for trisomy 21 by maternal
age, fetal nuchal translucency thickness, free beta-human chorionic gonadotropin and pregnancy-
associated plasma protein-a. Ultrasound in Obstetrics & Gynecology, 31(6):618-624, 2008.

Konstantinos Kamnitsas, Christian Ledig, Virginia FJ Newcombe, Joanna P Simpson, Andrew D
Kane, David K Menon, Daniel Rueckert, and Ben Glocker. Efficient multi-scale 3d cnn with fully
connected crf for accurate brain lesion segmentation. Medical image analysis, 36:61-78, 2017.

LW Law, TY Leung, DS Sahota, LW Chan, TY Fung, and TK Lau. Which ultrasound or biochemical
markers are independent predictors of small-for-gestational age? Ultrasound in Obstetrics &
Gynecology, 34(3):283-287, 2009.

Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco
Ciompi, Mohsen Ghafoorian, Jeroen AWM van der Laak, Bram van Ginneken, and Clara I Sanchez.
A survey on deep learning in medical image analysis. Medical image analysis, 42:60-88, 2017.

Padraig Looney. Oxnnet. https://github.com/plooney/oxnnet) 2013.


https://github.com/plooney/oxnnet

Péadraig Looney, Gordon N Stevenson, Kypros H Nicolaides, Walter Plasencia, Malid Molloholli,
Stavros Natsis, and Sally L Collins. Automatic 3d ultrasound segmentation of the first trimester
placenta using deep learning. In Biomedical Imaging (ISBI 2017), 2017 IEEE 14th International
Symposium on, pages 279-282. IEEE, 2017.

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural net-
works for volumetric medical image segmentation. In 3D Vision (3DV), 2016 Fourth International
Conference on, pages 565-571. IEEE, 2016.

Walter Plasencia, Ranjit Akolekar, Themistoklis Dagklis, Alina Veduta, and Kypros H Nicolaides.
Placental volume at 11-13 weeks’ gestation in the prediction of birth weight percentile. Fetal
Diagnosis and Therapy, 30(1):23-28, 2011.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pages 234-241. Springer, 2015.

RJM Snijders, P Noble, N Sebire, A Souka, KH Nicolaides, et al. Uk multicentre project on
assessment of risk of trisomy 21 by maternal age and fetal nuchal-translucency thickness at 10-14
weeks of gestation. The Lancet, 352(9125):343-346, 1998.

Gordon N Stevenson, Sally L Collins, Jane Ding, Lawrence Impey, and J Alison Noble. 3D
ultrasound segmentation of the placenta using the random walker algorithm: reliability and
agreement. Ultrasound in Medicine & Biology, 41(12):3182-3193, 2015.

Carole H Sudre, Wengqi Li, Tom Vercauteren, Sebastien Ourselin, and M Jorge Cardoso. Generalised
dice overlap as a deep learning loss function for highly unbalanced segmentations. In Deep
Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support,
pages 240-248. Springer, 2017.

P Wegrzyn, C Faro, O Falcon, CFA Peralta, and KH Nicolaides. Placental volume measured by
three-dimensional ultrasound at 11 to 13+ 6 weeks of gestation: relation to chromosomal defects.
Ultrasound in obstetrics & gynecology, 26(1):28-32, 2005.

Xin Yang, Lequan Yu, Shengli Li, Xu Wang, Na Wang, Jing Qin, Dong Ni, and Pheng-Ann Heng.
Towards automatic semantic segmentation in volumetric ultrasound. In International Conference
on Medical Image Computing and Computer-Assisted Intervention, pages 711-719. Springer,
2017.



	Introduction
	Methods
	Results
	Conclusion

