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ABSTRACT

Neural network training relies on our ability to find “good” minimizers of highly
non-convex loss functions. It is well known that certain network architecture
designs (e.g., skip connections) produce loss functions that train easier, and well-
chosen training parameters (batch size, learning rate, optimizer) produce minimiz-
ers that generalize better. However, the reasons for these differences, and their
effect on the underlying loss landscape, is not well understood.
In this paper, we explore the structure of neural loss functions, and the effect of
loss landscapes on generalization, using a range of visualization methods. First,
we introduce a simple “filter normalization” method that helps us visualize loss
function curvature, and make meaningful side-by-side comparisons between loss
functions. Then, using a variety of visualizations, we explore how network archi-
tecture effects the loss landscape, and how training parameters affect the shape of
minimizers.

1 INTRODUCTION

Training neural networks requires minimizing a high-dimensional non-convex loss function – a
task that is hard in theory, but sometimes easy in practice. Despite the NP-hardness of training
general neural loss functions (Blum & Rivest, 1989), simple gradient methods often find global
minimizers (parameter configurations with zero or near-zero training loss), even when data and labels
are randomized before training (Zhang et al., 2017). However, this good behavior is not universal;
the trainability of neural nets is highly dependent on network architecture design choices, the choice
of optimizer, variable initialization, and a variety of other considerations. Unfortunately, the effect
of each of these choices on the structure of the underlying loss surface is unclear. Because of the

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The vertical axis is
logarithmic to show dynamic range. The proposed filter normalization scheme is used to enable
comparisons of sharpness/flatness between the two figures.
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prohibitive cost of loss function evaluations (which requires looping over all the data points in the
training set), studies in this field have remained predominantly theoretical.

Our goal is to use high-resolution visualizations to provide an empirical characterization of neural
loss functions, and to explore how different network architecture choices affect the loss landscape.
Furthermore, we explore how the non-convex structure of neural loss functions relates to their
trainability, and how the geometry of neural minimizers (i.e., their sharpness/flatness, and their
surrounding landscape), affects their generalization properties.

To do this in a meaningful way, we propose a simple “filter normalization” scheme that enables
us to do side-by-side comparisons of different minima found by different methods. We then use
visualizations to explore sharpness/flatness of minimizers found by different methods, as well as the
effect of network architecture choices (use of skip connections, number of filters, network depth) on
the loss landscape. Out goal is to understand how differences in loss function geometry effect the
generalization of neural nets.

1.1 CONTRIBUTIONS

In this article, we study methods for producing meaningful loss function visualizations. Then, using
these visualization methods, we explore how loss landscape geometry effects generalization error and
trainability. More specifically, we address the following issues:

• We reveal faults in a number of visualization methods for loss functions, and show that
simple visualization strategies fail to accurately capture the local geometry (sharpness or
flatness) of loss function minimizers.

• We present a simple visualization method based on “filter normalization” that enables
side-by-side comparisons of different minimizers. The sharpness of minimizers correlates
well with generalization error when this visualization is used, even when making sharpness
comparisons across disparate network architectures and training methods.

• We observe that, when networks become sufficiently deep, neural loss landscapes suddenly
transition from being nearly convex to being highly chaotic. This transition from convex to
chaotic behavior, which seem to have been previously unnoticed, coincides with a dramatic
drop in generalization error, and ultimately to a lack of trainability.

• We show that skip connections promote flat minimizers and prevent the transition to chaotic
behavior, which helps explain why skip connections are necessary for training extremely
deep networks.

• We study the visualization of SGD optimization trajectories. We explain the difficulties
that arise when visualizing these trajectories, and show that optimization trajectories lie
in an extremely low dimensional space. This low dimensionality can be explained by the
presence of large nearly convex regions in the loss landscape, such as those observed in our
2-dimensional visualizations.

2 THEORETICAL BACKGROUND & RELATED WORK

Visualizations have the potential to help us answer several important questions about why neural
networks work. In particular, why are we able to minimize highly non-convex neural loss functions?
And why do the resulting minima generalize?

Because of the difficultly of visualizing loss functions, most studies of loss landscapes are largely
theoretical in nature. A number of authors have studied our ability to minimize neural loss functions.
Using random matrix theory and spin glass theory, several authors have shown that local minima are
of low objective value (Dauphin et al., 2014; Choromanska et al., 2015). It can also be shown that
local minima are global minima, provided one assumes linear neurons (Hardt & Ma, 2017), very wide
layers (Nguyen & Hein, 2017), or full rank weight matrices (Yun et al., 2017). These assumptions
have been relaxed by Kawaguchi (2016) and Lu & Kawaguchi (2017), although some assumptions
(e.g., of the loss functions) are still required. Soudry & Hoffer (2017); Freeman & Bruna (2017); Xie
et al. (2017) also analyzed shallow networks with one or two hidden layers under mild conditions.
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Another approach is to show that we can expect good minimizers, not simply because of the endoge-
nous properties of neural networks, but because of the optimizers. For restricted network classes such
as those with one hidden layer, with some extra assumptions on the sample distribution, globally
optimal or near-optimal solutions can be found by common optimization methods (Soltanolkotabi
et al., 2017; Li & Yuan, 2017; Tian, 2017). For networks with specific structures, Safran & Shamir
(2016) and Haeffele & Vidal (2017) show there likely exists a monotonically decreasing path from an
initialization to a global minimum. Swirszcz et al. (2017) show counterexamples that achieve “bad”
local minima for toy problems.

Also of interest is work on assessing the sharpness/flatness of local minima. Hochreiter & Schmid-
huber (1997) defined “flatness” as the size of the connected region around the minimum where the
training loss remains low. Keskar et al. (2017) propose ε-sharpness, which looks at the maximum
loss in a bounded neighborhood of a minimum. Flatness can also be defined using the local curvature
of the loss function at a critical point. Keskar et al. (2017) suggests that this information is encoded
in the eigenvalues of the Hessian. However, Dinh et al. (2017) show that these quantitative measure
of sharpness are problematic because they are not invariant to symmetries in the network, and are
thus not sufficient to determine its generalization ability. This issue was addressed in Chaudhari et al.
(2017), who used local entropy as a measure of sharpness. This measure is invariant to the simple
transformation used by Dinh et al. (2017), but difficult to quantify for large networks.

Theoretical results make some restrictive assumptions such as the independence of the input samples,
or restrictions on non-linearities and loss functions. For this reason, visualizations play a key role
in verifying the validity of theoretical assumptions, and understanding loss function behavior in
real-world systems. In the next section, we briefly review methods that have been used for this
purpose.

3 THE BASICS OF LOSS FUNCTION VISUALIZATION

Neural networks are trained on a corpus of feature vectors (e.g., images) {xi} and accompanying
labels {yi} by minimizing a loss of the form

L(θ) =
1

m

m∑
i=1

`(xi, yi; θ)

where θ denotes the parameters (weights) of the neural network, the function `(xi, yi; θ) measures
how well the neural network with parameters θ predicts the label of a data sample, and m is the
number of data samples.

Neural nets contain many parameters, and so their loss functions live in a very high-dimensional
space. Unfortunately, visualizations are only possible using low-dimensional 1D (line) or 2D (surface)
plots. Several methods exist for closing this dimensionality gap.

1-Dimensional Linear Interpolation One simple and lightweight way to plot loss functions is
to choose two sets of parameters θ1 and θ2, and plot the values of the loss function along the line
connecting these two points. We can parameterize this line by choosing a scalar parameter α, and
defining the weighted average

θα = (1− α)θ1 + αθ2.

Finally, we plot the function f(α) = L(θα). This strategy was taken by Goodfellow et al. (2015),
who studied the loss surface along the line between a (random) initial guess, and a nearby minimizer
obtained by stochastic gradient descent. This method has been widely used to study the “sharpness”
and “flatness” of different minima, and the dependence of sharpness on batch-size (Keskar et al.,
2017; Dinh et al., 2017). Smith & Topin (2017) use the same 1D interpolation technique to show
different minima and the “peaks” between them, while Im et al. (2016) plot the line between minima
obtained via different optimizers.

The 1D linear interpolation method suffers from several weaknesses. First, it is difficult to visualize
non-convexities using 1D plots. Indeed, the authors of (Goodfellow et al., 2015) found that loss
functions appear to lack local minima along the minimization trajectory. We will see later, using
2D methods, that some loss functions have extreme non-convexities, and that these non-convexities
correlate with the difference in generalization between different network architectures. Second, this
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method does not consider batch normalization or invariance symmetries in the network. For this
reason, the visual sharpness comparisons produced by 1D interpolation plots may be misleading; this
issue will be explored in depth in Section 5.

2D Contour Plots To use this approach, one chooses a center point θ∗ in the graph, and chooses
two direction vectors, δ and η. One then plots a function of the form f(α) = L(θ∗ + αδ) in the 1D
(line) case, or

f(α, β) = L(θ∗ + αδ + βη) (1)

in the 2D (surface) case. This approach was used in (Goodfellow et al., 2015) to explore the
trajectories of different minimization methods. It was also used in (Im et al., 2016) to show that
different optimization algorithms find different local minima within the 2D projected space.

Because of the computational burden of 2D plotting, these methods generally result in low-resolution
plots of small regions that have not captured the complex non-convexity of loss surfaces. Below, we
use high-resolution visualizations over large slices of weight space to visualize how network design
affects non-convex structure.

4 PROPOSED VISUALIZATION: FILTER-WISE NORMALIZATION

This study relies heavily on plots of the form (1) produced using random direction vectors, δ and η,
each sampled from a random Gaussian distribution with appropriate scaling (described below).

While the “random directions” approach to plotting is simple, it cannot be used to compare the
geometry of two different minimizers or two different networks. This is because of the scale
invariance in network weights. When ReLU non-linearities are used, the network remains unchanged
if we (for example) multiply the weights in one layer of a network by 10, and divide the next layer
by 10. This invariance is even more prominent when batch normalization is used. In this case, the
size (i.e., norm) of a filter is irrelevant because the output of each layer is re-scaled during batch
normalization. For this reason, a network’s behavior remains unchanged if we re-scale the weights.

Scale invariance prevents us from making meaningful comparisons between plots, unless special
precautions are taken. A neural network with large weights may appear to have a smooth and slowly
varying loss function; perturbing the weights by one unit will have very little effect on network
performance if the weights live on a scale much larger than one. However, if the weights are much
smaller than one, then that same one unit perturbation may have a catastrophic effect, making the
loss function appear quite sensitive to weight perturbations. Keep in mind that neural nets are scale
invariant; if the small-parameter and large-parameter networks in this example are equivalent (because
one is simply a re-scaling of the other), then any apparent differences in the loss function are merely
an artifact of scale invariance. This scale invariance was exploited by Dinh et al. (2017) to build pairs
of equivalent networks that have different apparent sharpness.

To remove this scaling effect, we plot loss functions using filter-wise normalized directions. To obtain
such directions for a network with parameters θ, we begin by producing a random Gaussian direction
vector d with dimensions compatible with θ. Then we normalize each filter in d to have the same
norm of the corresponding filter in θ. In other words, we make the replacement

di ←
di
‖di‖
‖θi‖,

where di represents the ith filter of d (not the ith weight), and ‖θi‖ denotes the Frobenius norm of
the ith filter of θ. Note that the filter-wise normalization is different from that of (Im et al., 2016),
which normalize the direction without considering the norm of individual filters.

The proposed scaling is an important factor when making meaningful plots of loss function geometry.
We will explore the importance of proper scaling below as we explore the sharpness/flatness of
different minimizers. In this context, we show that the sharpness of filter-normalized plots correlates
with generalization error, while plots without filter normalization can be very misleading.
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5 THE SHARP VS FLAT DILEMMA

Section 4 introduces the concept of filter normalization, and provides an intuitive justification
for its use. In this section, we address the issue of whether sharp minimizers generalize better
than flat minimizers. In doing so, we will see that the sharpness of minimizers correlates well with
generalization error when filter normalization is used. This enables side-by-side comparisons between
plots. In contrast, the sharpness of non-filter normalized plots may appear distorted and unpredictable.

It is widely thought that small-batch SGD produces “flat” minimizers that generalize better, while
large batch sizes produce “sharp” minima with poor generalization (Chaudhari et al., 2017; Keskar
et al., 2017; Hochreiter & Schmidhuber, 1997). This claim is disputed though, with Dinh et al. (2017);
Kawaguchi et al. (2017) arguing that generalization is not directly related to the curvature of loss
surfaces, and some authors proposing specialized training methods that achieve good performance
with large batch sizes (Hoffer et al., 2017; Goyal et al., 2017; De et al., 2017).

Here, we explore the difference between sharp and flat minimizers. We begin by discussing difficulties
that arise when performing such a visualization, and how proper normalization can prevent such plots
from producing distorted results.

We train a CIFAR-10 classifier using a 9-layer VGG network (Simonyan & Zisserman, 2015) with
Batch Normalization (Ioffe & Szegedy, 2015). We use two batch sizes: a large batch size of 8192
(16.4% of the training data of CIFAR-10), and a small batch size of 128. Let θs and θl indicate the
solutions obtained by running SGD using small and large batch sizes, respectively1. Using the linear
interpolation approach (Goodfellow et al., 2015), we plot the loss values on both training and testing
data sets of CIFAR-10, along a direction containing the two solutions, i.e., f(α) = L(θs+α(θl−θs)).

1In this section, we consider the “running mean” and “running variance” as trainable parameters and include
them in θ. Note that the original study by Goodfellow et al. (2015) does not consider batch normalization. These
parameters are not included in θ in future sections, as they are only needed when interpolating between two
minimizers.
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(d) Adam, WD=5e-4

Figure 2: 1D linear interpolation of solutions obtained by small-batch and large-batch methods for
VGG9. The blue lines are loss values and the red lines are accuracies. The solid lines are training
curves and the dashed lines are for testing. Small batch is at abscissa 0, and large batch is at abscissa 1.
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Table 1: Test errors of VGG-9 on CIFAR-10 with different optimization algorithms and hyper-
parameters.

SGD Adam
bs=128 bs=8192 bs=128 bs=8192

VGG-9 WD = 0 7.37 11.07 7.44 10.91
WD = 5e-4 6.00 10.19 7.80 9.52

Similar to Keskar et al. (2017), we also superimpose the classification accuracy in red. This plot is
shown in Figure 2.

Figures 2(a) and 2(b) show linear interpolation plots with θs at x-axis location 0, and θl at location
12. As observed by Keskar et al. (2017), we can clearly see that the small-batch solution is quite
wide, while the large-batch solution is sharp. However, this sharpness balance can be flipped simply
by turning on weight decay (Krogh & Hertz, 1992). Figures 2(c) and 2(d) show results of the same
experiment, except this time with a non-zero weight decay parameter. This time, the large batch
minimizer is considerably flatter than the sharp small batch minimizer. However, we see from
Table 1 that small batches generalize better in all 4 experiments; there is no apparent correlation
between sharpness and generalization. We will see that these side-by-side sharpness comparisons are
extremely misleading, and fail to capture the endogenous properties of the minima.

The apparent differences in sharpness in Figure 2 can be explained by examining the weights of each
minimizer. Histograms of the networks weights are shown for each experiment in Figure 3. We see
that, when a large batch is used with zero weight decay, the resulting weights tends to be smaller
than in the small batch case. We reverse this effect by adding weight decay; in this case the large
batch minimizer has much larger weights than the small batch minimizer. This difference in scale
occurs for a simple reason: A smaller batch size results in more weight updates per epoch than a
large batch size, and so the shrinking effect of weight decay (which imposes a penalty on the norm of
the weights) is more pronounced.

Figure 2 in not visualizing the endogenous sharpness of minimizers, but rather just the (irrelevant)
weight scaling. The scaling of weights in these networks is irrelevant because batch normalization
re-scales the outputs to have unit variance. However, small weights still appear more sensitive to
perturbations, and produce sharper looking minimizers.

Filter normalized plots We repeat the experiment in Figure 2, but this time we plot the loss
function near each minimizer separately using random filter-normalized directions. This removes the
apparent differences in geometry caused by the scaling depicted in Figure 3. The results, presented in
Figure 4, still show differences in sharpness between small batch and large batch minima, however
these differences are much more subtle than it would appear in the un-normalized plots.

We also visualize these results using two random directions and contour plots. As shown in Figure 5,
the weights obtained with small batch size and non-zero weight decay have wider contours than the
sharper large batch minimizers. Similar for Resnet-56 appear in Figure 12 of the Appendix.

2The 1D interpolation method for plotting is described in detail in Section 3
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Figure 3: Histogram of weights. With zero weight decay, small-batch methods produce large weights.
With non-zero weight decay, small-batch methods produce smaller weights.
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(a) SGD, 128, 7.37%
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(b) SGD, 8192, 11.07%
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(c) Adam, 128, 7.44%
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(d) Adam, 8192, 10.91%
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(e) SGD, 128, 6.00%
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(f) SGD, 8192, 10.19%
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(g) Adam, 128, 7.80%
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(h) Adam, 8192, 9.52%

Figure 4: The shape of minima obtained using different optimization algorithms, with varying batch
size and weight decay. The title of each subfigure contains the optimizer, batch size, and test error.
The first row has no weight decay and the second row uses weight decay 5e-4.
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(c) Adam, 128, 7.44%
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(h) Adam, 8192, 9.52%

Figure 5: 2D visualization of solutions obtained by SGD with small-batch and large-batch. Similar to
Figure 4, the first row uses zero weight decay and the second row sets weight decay to 5e-4.

Generalization and Flatness Using the filter-normalized plots in Figures 4 and 5, we can make
side-by-side comparisons between minimizers, and we see that now sharpness correlates well with
generalization error. Large batches produced visually sharper minima (although not dramatically so)
with higher test error. Interestingly, the Adam optimizer attained larger test error than SGD, and,
as predicted, the corresponding minima are visually sharper. Results of a similar experiment using
ResNet-56 are presented in the Appendix (Figure 12).

6 WHAT MAKES NEURAL NETWORKS TRAINABLE? INSIGHTS ON THE (NON)
CONVEXITY STRUCTURE OF LOSS SURFACES

Our ability to find global minimizers to neural loss functions is not universal; it seems that some
neural architectures are easier to minimize than others. For example, using skip connections, He et al.
(2016) were able to train extremely deep architectures, while comparable architectures without skip
connections are not trainable. Furthermore, our ability to train seems to depend strongly on the initial
parameters from which training starts.
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Using visualization methods, we do an empirical study of neural architectures to explore why the
non-convexity of loss functions seems to be problematic in some situations, but not in others. We
aim to provide insight into the following questions: Do loss functions have significant non-convexity
at all? If prominent non-convexities exist, why are they not problematic in all situations? Why are
some architectures easy to train, and why are results so sensitive to the initialization? We will see
that different architectures have extreme differences in non-convexity structure that answer these
questions, and that these differences correlate with generalization error.

6.1 EXPERIMENTAL SETUP

To understand the effects of network architecture on non-convexity, we trained a number of networks,
and plotted the landscape around the obtained minimizers using the filter-normalized random direction
method described in Section 4.

We consider three classes of neural networks:

• Residual networks that are optimized for performance on CIFAR (He et al., 2016). We
consider ResNet-20, ResNet-56, and ResNet-110, where each name is labeled with the
number of convolutional layers it has.

• “VGG-like” networks that do not contain shortcut/skip connections. We produced these
networks simply by removing the skip connections from the CIFAR-optimized ResNets. We
call these networks ResNet-20-noshort, ResNet-56-noshort, and ResNet-110-noshort. Note
that these networks do not all perform well on the CIFAR-10 task. We use them purely for
experimental purposes to explore the effect of shortcut connections.

• “Wide” ResNets that have been optimized for ImageNet rather than CIFAR. These networks
have more filters per layer than the CIFAR optimized networks, and also have different
numbers of layers. These models include ResNet-18, ResNet-34, and ResNet-50.

All models are trained on the CIFAR-10 dataset using SGD with Nesterov momentum, batch-size
128, and 0.0005 weight decay for 300 epochs. The learning rate was initialized at 0.1, and decreased
by a factor of 10 at epochs 150, 225 and 275. Deeper experimental VGG-like networks (e.g.,
ResNet-56-noshort, as described below) required a smaller initial learning rate of 0.01.

High resolution 2D plots of the minimizers for different neural networks are shown in Figure 6.
Results are shown as contour plots rather than surface plots because this makes it extremely easy to
see non-convex structures and evaluate sharpness. For surface plots of ResNet-56, see Figure 1. Note
that the center of each plot corresponds to the minimizer, and the two axes parameterize two random
directions with filter-wise normalization as in (1). We make several observations below about how
architecture effects the loss landscape. We also provide loss and error values for these networks in
Table 2, and convergence curves in Figure 14 of the Appendix.

6.2 THE EFFECT OF NETWORK DEPTH

From Figure 6, we see that network depth has a dramatic effect on the loss surfaces of neural networks
when skip connections are not used. The network ResNet-20-noshort has a fairly benign landscape
dominated by a region with convex contours in the center, and no dramatic non-convexity. This
isn’t too surprising: the original VGG networks for ImageNet had 19 layers and could be trained
effectively (Simonyan & Zisserman, 2015).

However, as network depth increases, the loss surface of the VGG-like nets spontaneously transitions
from (nearly) convex to chaotic. ResNet-56-noshort has dramatic non-convexities and large regions
where the gradient directions (which are normal to the contours depicted in the plots) do not point
towards the minimizer at the center. Also, the loss function becomes extremely large as we move in
some directions. ResNet-110-noshort displays even more dramatic non-convexities, and becomes
extremely steep as we move in all directions shown in the plot. Furthermore, note that the minimizers
at the center of the deep VGG-like nets seem to be fairly sharp. In the case of ResNet-56-noshort,
the minimizer is also fairly ill-conditioned, as the contours near the minimizer have significant
eccentricity.
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(b) ResNet-56
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(c) ResNet-110
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(d) ResNet-20-noshort
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(e) ResNet-56-noshort
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(f) ResNet-110-noshort
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(g) ResNet-18
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(i) ResNet-50

Figure 6: 2D visualization of the solutions of different networks.

Table 2: Loss values and errors for different architectures.
Filters Training Loss Training Error Test Error

ResNet-20 16 0.017 0.286 7.37
ResNet-20-noshort 0.025 0.560 8.18
ResNet-56 16 0.004 0.052 5.89
ResNet-56-noshort 0.024 0.704 10.83
ResNet-110 16 0.002 0.042 5.79
ResNet-110-noshort 0.258 8.732 16.44
ResNet-18 64 0.002 0.026 5.42
ResNet-34 64 0.001 0.014 4.73
ResNet-50 64 0.001 0.006 4.55

6.3 SHORTCUT CONNECTIONS TO THE RESCUE

Shortcut connections have a dramatic effect of the geometry of the loss functions. In Figure 6, we see
that residual connections prevent the transition to chaotic behavior as depth increases. In fact, the
width and shape of the 0.1-level contour is almost identical for the 20- and 110-layer networks.

Interestingly, the effect of skip connections seems to be most important for deep networks. For the
more shallow networks (ResNet-20 and ResNet-20-noshort), the effect of skip connections is fairly
unnoticeable. However residual connections prevent the explosion of non-convexity that occurs when
networks get deep. This effect seems to apply to other kinds of skip connections as well; Figure 13 of
the Appendix shows the loss landscape of DenseNet (Huang et al., 2017), which shows no noticeable
non-convexity.
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6.4 WIDE MODELS VS THIN MODELS

To see the effect of the number of convolutional filters per layer, we compare the narrow CIFAR-
optimized ResNets (ResNet-20/56/110) with wider ResNets (ResNet-18/34/50) that have more filters
and were optimized for ImageNet. From Figure 6, we see that the wider models have loss landscapes
with no noticeable chaotic behavior. Increased network width resulted in flat minima and wide regions
of apparent convexity.

This effect is also validated by Figure 7, in which we plot the landscape of ResNet-56, but we multiple
the number of filter per layer by k = 2, 4, and 8. We see that increased width prevents chaotic
behavior, and skip connections dramatically widen minimizers. Finally, note that sharpness correlates
extremely well with test error.
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(c) k = 4, 4.34%
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(d) k = 8, 3.93%
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(g) k = 4, 9.69%
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Figure 7: Wide-ResNet-56 (WRN-56) on CIFAR-10 both with shortcut connections (top) and without
(bottom). The label k = 2 means twice as many filters per layer, k = 4 means 4 times, etc. Test error
is reported below each figure.

6.5 IMPLICATIONS FOR NETWORK INITIALIZATION

One of the most interesting observations seen in Figure 6 is that loss landscapes for all the networks
considered seem to be partitioned into a well-defined region of low loss value and convex contours,
surrounded by a well-defined region of high loss value and non-convex contours.

This partitioning of chaotic and convex regions may explain the importance of good initialization
strategies, and also the easy training behavior of “good” architectures. When using normalized
random initialization strategies such as those proposed by Glorot & Bengio (2010), typical neural
networks attain an initial loss value less than 2.5. The well behaved loss landscapes in Figure 6
(ResNets, and shallow VGG-like nets) are dominated by large, flat, nearly convex attractors that
rise to a loss value of 4 or greater. For such landscapes, a random initialization will likely lie in
the “well- behaved” loss region, and the optimization algorithm might never “see” the pathological
non-convexities that occur on the high loss chaotic plateaus.

Chaotic loss landscapes (ResNet-56-noshort and ResNet-110-noshort) have shallower regions of
convexity that rise to lower loss values. For sufficiently deep networks with shallow enough attractors,
the initial iterate will likely lie in the chaotic region where the gradients are uninformative. In our
experiments, SGD was unable to train a 156 layer network without skip connections (even with very
low learning rates), which adds weight to this hypothesis.

6.6 LANDSCAPE GEOMETRY AFFECTS GENERALIZATION

Table 2 displays the training and test error for the networks depicted in Figure 6. Both Figures 6
and 7 show that landscape geometry has a dramatic effect on generalization. First, note that visually
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flatter minimizers consistently correspond to lower test error, which further strengthens our assertion
that filter normalization is a natural way to visualize loss function geometry.

Second, we notice that chaotic landscapes (deep networks without skip connections) result in worse
training and test error, while more convex landscapes have lower error values. In fact, the most
convex landscapes (the wide ResNets in the bottom row of Figure 6) generalize the best of all the
networks. This latter class of networks show no noticeable chaotic behavior at all.

7 VISUALIZING OPTIMIZATION PATHS

Finally, we explore methods for visualizing the trajectories of different optimizers. For this application,
random directions are ineffective. We will provide a theoretical explanation for why random directions
fail, and explore methods for effectively plotting trajectories on top of loss function contours.

Several authors have observed that random direction fail to capture the variation in optimization
trajectories, including Gallagher & Downs (2003); Lorch (2016); Lipton (2016); Liao & Poggio
(2017). Several failed visualizations are depicted in Figure 8. In Figure 8(a), we see the iterates
of SGD projected onto the plane defined by two random directions. Almost none of the motion
is captured (notice the super-zoomed-in axes and the seemingly random walk). This problem was
noticed by Goodfellow et al. (2015), who then visualized trajectories using one direction that points
from initialization to solution, and one random direction. This approach is shown in Figure 8(b).
As seen in Figure 8(c), the random axis captures almost no variation, leading to the (misleading)
appearance of a straight line path.
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(c) Enlarged version (a)

Figure 8: Ineffective visualizations of optimizer trajectories. These visualizations suffer from the
orthogonality of random directions in high dimensions.

7.1 WHY RANDOM DIRECTIONS FAIL: LOW DIMENSIONAL OPTIMIZATION TRAJECTORIES

It is well known that two random vectors in a high dimensional space will be nearly orthogonal
with high probability. In fact, the expected cosine similarity between Gaussian random vectors in n
dimensions is roughly

√
2/(πn) (Goldstein & Studer (2016), Lemma 5).

This is problematic when optimization trajectories lie in extremely low dimensional spaces. In this
case, a randomly chosen vector will lie orthogonal to the low-rank space containing the optimization
path, and a projection onto a random direction will capture almost no variation. Figure 8(b) suggests
that optimization trajectories are low dimensional because the random direction captures orders of
magnitude less variation than the vector that points along the optimization path. Below, we use PCA
directions to directly validate this low dimensionality, and also to produce effective visualizations.

7.2 EFFECTIVE TRAJECTORY PLOTTING USING PCA DIRECTIONS

To capture variation in trajectories, we need to use non-random (and carefully chosen) directions.
Here, we suggest an approach based on PCA that allows us to measure how much variation we’ve
captured; we also provide plots of these trajectories along the contours of the loss surface.

Let θi denote model parameters at epoch i and the final solution as θn. Given m training epochs,
we can apply PCA to the matrix M = [θ0 − θn; · · · ; θn−1 − θn], and then select the two most

11
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explanatory directions. Optimizer trajectories (blue dots) and loss surfaces along PCA directions are
shown in Figure 9. Epochs where the learning rate was decreased are shown as red dots. On each
axis, we measure the amount of variation in the descent path captured by that PCA direction.

We see some interesting behavior in these plots. At early stages of training, the paths tend to move
perpendicular to the contours of the loss surface, i.e., along the gradient directions as one would
expect from non-stochastic gradient descent. The stochasticity becomes fairly pronounced in several
plots during the later stages of training. This is particularly true of the plots that use weight decay and
small batches (which leads to more gradient noise, and a more radical departure from deterministic
gradient directions). When weight decay and small batches are used, we see the path turn nearly
parallel to the contours and “orbit” the solution when the stepsize is large. When the stepsize is
dropped (at the red dot), the effective noise in the system decreases, and we see a kink in the path as
the trajectory falls into the nearest local minimizer.

Finally, we can directly observe that the descent path is very low dimensional: between 40% and
90% of the variation in the descent paths lies in a space of only 2 dimensions. The optimization
trajectories in Figure 9 appear to be dominated by movement in the direction of a nearby attractor.
This low dimensionality is compatible with the observations in Section 6.5, where we observed that
non-chaotic landscapes are dominated by wide, flat minimizers.
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Figure 9: Projected learning trajectories use normalized PCA directions for VGG-9. The left plot in
each subfigure uses batch size 128, and the right one uses batch size 8192.

8 CONCLUSION

In this paper, we presented a new, more accurate visualization technique that provided insights into
the consequences of a variety of choices facing the neural network practitioner, including network
architecture, optimizer selection, and batch size.

Neural networks have advanced dramatically in recent years, largely on the back of anecdotal
knowledge and theoretical results with complex assumptions. For progress to continue to be made, a
more general understanding of the structure of neural networks is needed. Our hope is that effective
visualization, when coupled with continued advances in theory, can result in faster training, simpler
models, and better generalization.

12



Under review as a conference paper at ICLR 2018

REFERENCES

Avrim Blum and Ronald L Rivest. Training a 3-node neural network is np-complete. In Advances in
neural information processing systems, pp. 494–501, 1989.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, and Yann LeCun. Entropy-sgd: Biasing
gradient descent into wide valleys. ICLR, 2017.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The
loss surfaces of multilayer networks. In AISTATS, 2015.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. In Advances in neural information processing systems, pp. 2933–2941, 2014.

Soham De, Abhay Yadav, David Jacobs, and Tom Goldstein. Automated inference with adaptive
batches. In Artificial Intelligence and Statistics, pp. 1504–1513, 2017.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. ICLR, 2017.

C Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified network optimization.
ICLR, 2017.

Marcus Gallagher and Tom Downs. Visualization of learning in multilayer perceptron networks
using principal component analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 33(1):28–34, 2003.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, pp. 249–256, 2010.

Tom Goldstein and Christoph Studer. Phasemax: Convex phase retrieval via basis pursuit. arXiv
preprint arXiv:1610.07531, 2016.

Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural network
optimization problems. ICLR, 2015.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.
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9 APPENDIX

9.1 LARGE-BATCH AND SMALL-BATCH RESULTS FOR RESNET-56
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(d) Adam, WD=5e-4

Figure 10: 1D linear interpolation of solutions obtained by small-batch and large-batch methods for
ResNet56. The blue lines are loss values and the red lines are error. The solid lines are training curves
and the dashed lines are for testing.
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(c) Adam, 128, 9.55%
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(g) Adam, 128, 7.67%
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(h) Adam, 4096, 12.36%

Figure 11: The shape of minima obtained via different optimization algorithms for ResNet-56, with
varying batch size and weight decay. Similar to Figure 4, the first row uses zero weight decay and the
second row uses 5e-4 weight decay.

Generalization error for each plot is shown in Table 3.

10 TEST AND TRAINING DATA FOR VARIOUS NETWORKS
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Figure 12: 2D visualization of solutions of ResNet-56 obtained by SGD/Adam with small-batch and
large-batch. Similar to Figure 11, the first row uses zero weight decay and the second row sets weight
decay to 5e-4.

Table 3: Test error for ResNet-56 with different optimization algorithms and batch-size/weight-decay
parameters.

SGD Adam
bs=128 bs=4096 bs=128 bs=4096

WD = 0 8.26 13.93 9.55 14.30
WD = 5e-4 5.89 10.59 7.67 12.36
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Figure 13: The loss landscape for DenseNet-121 trained on CIFAR-10. The final training error is
0.002 and the testing error is 4.37
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(a) ResNet-CIFAR
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(b) ResNet-CIFAR-noshort
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(c) ResNet-ImageNet
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(d) ResNet-CIFAR
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(e) ResNet-CIFAR-noshort
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(f) ResNet-ImageNet

Figure 14: Convergence curves for different architectures. The first row is for training loss and the
second row are training and testing error curves.
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(a) SGD Loss values

0 50 100 150 200 250 300
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

CIFAR10, VGG-9, Adam

bs=128, WD=0.0005
bs=128, WD=0
bs=8192, WD=0.0005
bs=8192, WD=0

(b) Adam Loss values

Figure 15: Training and testing loss curves for VGG-9. Dashed lines are for testing, solid for training.
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