
An Overview of High Order Reverse Mode

Mu Wang∗
wang970@purdue.edu

Alex Pothen
Department of Computer Science

Purdue University, West Lafayette, IN 47906
apothen@purdue.edu

Abstract

Automatic Differentiation (AD) is increasingly an important component of Machine
Learning (ML) packages. For evaluating the gradient, the first order reverse mode
also known as back-propagation, is optimal and is widely used. However, the
functionalities of current mainstream ML packages for evaluating second and
higher order derivatives are limited. One reason is that high order derivatives are
computed using an overlay of first order forward and reverse modes. Here we
describe an algorithm and code that directly implements the high order reverse
mode, called ReverseAD. It is more efficient than previous methods, especially
when evaluating sparse derivatives.

1 High Order Reverse Mode of Automatic Differentiation

1.1 Background

Solving machine learning (ML) problems often requires evaluating derivatives for finding the optimal
parameters of the model. Back-propagation, which is the Reverse Mode Automatic Differentiation
algorithm for computing first order derivatives, evaluates the gradient with theoretically optimal
cost, and it has been widely implemented [6]. However, although in many ML problems ([4, 5])
one would get faster convergence to a local optimum with second order methods, few ML codes
compute Hessians directly; and if Hessians are evaluated, they are computed indirectly as Hessian
vector products. Although Hessian vector evaluation suffices to solve linear systems w.r.t the Hessian
matrix, it would be more efficient to compute Hessian matrices directly if a large number of iterations
are required in the optimization. If the Hessian is sparse, then computing and storing the Hessian is
often feasible, even for large problems.

In this abstract, we describe a new reverse mode algorithm for computing second and higher order
derivatives, which is a generalization of the back-propagation algorithm. Restricting the algorithm
to second order gives an algorithm which evaluates the Hessian matrix directly. More intriguingly,
as we will show in the next section, the high order reverse mode can detect the sparsity structure
of the derivatives automatically, and use it to obtain efficient algorithms. We have developed a
prototype code ReverseAD in C++ that is efficient for computing gradients, sparse Hessians, sparse
Hessian vector products, and higher order derivative tensors as well as tensor vector products, and it
is available at https://github.com/wangmu0701/ReverseAD.

∗Graduated with Ph.D in August, 2017 under supervisor Alex Pothen.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

https://github.com/wangmu0701/ReverseAD

1.2 Notations

Let y = f(x), x ∈ Rn and y ∈ R denote a scalar objective function of real values. Following
standard notation in AD, let v1−n, · · · , v0 denote the independent variables (x); the execution of the
objective function can be decomposed as:

for k = 1, 2, · · · , l
vk = ϕk(vi){vi:vi≺vk},

where each vk = ϕk(vi){vi:vi≺vk} represents an elementary function, and vi ≺ vk denotes that
variable vk directly depends on variable vi 2. The evaluation of the objective function is equivalent to
evaluating the sequence of elementary functions ϕk, k = 1, · · · , l.
During the function evaluation, we call a variable as live if and only if it holds a value that will be
used in the future. The live variable set Sk before the evaluation of vk = ϕk(vi){vi:vi≺vk} is:

Sk = {vi : ∃vj , j ≥ k and vi ≺ vj}

= {v1−n, · · · , vk−1}
⋂(

∪j≥k {vi : vi ≺ vj}
)
.

Here Sk is the live variable set at the point that ϕk is about to be evaluated, i.e., when ϕk−1 is the
last evaluated elementary function. At the beginning of the function evaluation, the live variable set
S1 consists of all the independent variables. At the end of the evaluation, the live variable set Sl+1

consists only of the dependent variable.

The liveness analysis in AD is a simplified version of the “backward may” analysis in compilers. The
algorithm begins with Sl+1 = {vl}, and computes Sk in the order k = l, l − 1, · · · , 1 according to
the equation:

Sk = Sk+1 \ {vk} ∪ {vi : vi ≺ vk}. (1)

Based on the concept of live variables, the objective function f(x) can be written as a composite
function:

f = Φl ◦ Φl−1 ◦ · · · ◦ Φ1, where Φk : Sk → Sk+1. (2)
In the decomposition, each Φk is a mapping from Sk to Sk+1 in which the variable vk is replaced by
ϕk(vi){vi:vi≺vk}, and all other variables are unchanged.

1.3 Family of Basic AD Algorithms

By introducing live variables, we define a model that unifies both the forward mode and reverse mode
AD into a single framework. Figure 1 gives a high-level overview of the unified framework of the
basic forward and reverse AD algorithms.

The first series of functions is generated by gk(S1) = Φk ◦ gk−1(S1), k = 1, 2, · · · , l, and the initial
function g0 is defined as an identity function on all independent variables S1. In each step, a forward
mode algorithm evaluates the derivatives of gk(S1) based on the derivatives of gk−1(S1), which
is the result of the previous step, and the derivatives of ϕk(vi){vi:vi≺vk}. The loop invariant of
forward mode AD is that the intermediate results are the derivatives of Sk+1 w.r.t S1 for the function
gk : S1 → Sk+1, after step k = 1, 2, · · · , l. Since each mapping Φk is the identity except for the
variables in vk = ϕk(vi){vi:vi≺vk}, in each step only the derivatives of vk(S1) need to be computed.

The second series of functions is generated by fk(Sk) = fk+1 ◦ Φk(Sk), k = l, l − 1, · · · , 1, where
the initial function fl+1 is defined as the identity function on the dependent variable Sl+1 = {y}.
In each step, a reverse mode algorithm evaluates the derivatives of fk(Sk) based on the derivatives
of fk+1(Sk + 1), which is the result of the previous step, and the derivatives of ϕk(vi){vi:vi≺vk}.
The loop invariant of reverse mode is that the intermediate results are the derivatives of fk w.r.t the
live variables Sk, after each step k = l · · · , 1. The first order reverse mode evaluates and stores the
first order derivatives of fk(Sk) in each step according to the first order chain rule. As we will show,
the high order reverse mode evaluates and stores the high order derivatives of fk(Sk) in each step
according to the high order chain rule.

We call each fk an equivalent function, because the objective function can be considered as a
composite function of fk with the unprocessed Φk−1 ◦ · · ·Φ1. The relationship between two

2For simplicity, we focus on scalar objective functions here, the techniques also apply to vector functions.

2

Objective Function f = Φl ◦ Φl−1 ◦ · · · ◦ Φ1

First Order Forward First Order Reverse

High Order Forward High Order Reverse

First order chain rule
for : gk = Φk ◦ gk−1

First order chain rule
for : fk = fk+1 ◦ Φk

High order chain rule
for : gk = Φk ◦ gk−1

High order chain rule
for : fk = fk+1 ◦ Φk

Figure 1: Family of basic AD algorithms viewed as composite functions.

consecutive equivalent functions fk(Sk) and fk+1(Sk+1) is fk(Sk) = fk+1 ◦ Φk. Consider that
Φk maps Sk to Sk+1 with vk = ϕk(vi){vi:vi≺vk}, and all other are variables unchanged, so vk
is an independent variable in fk+1(Sk+1), but it is considered an inner function defined by vk =
ϕk(vi){vi:vi≺vk} in fk(Sk). So we can rewrite it as follows:

fk(Sk) = fk+1(Sk+1 \ {vk}, vk = ϕk(vi){vi:vi≺vk}). (3)
This matches the live variable Equation 1, as vk is a live variable in Sk+1 but not in Sk, and all
predecessors {vi, vi ≺ vk} are live variables in Sk. The initial state of the reverse mode is the
derivative of the trivial equivalent function fl+1(Sl+1) as fl+1(vl) = vl.

1.4 High Order Reverse Mode

The generalized high order reverse mode is the implementation of the high order chain rule for
fk(Sk) = fk+1(Sk+1 \ {vk}, vk = ϕk(vi){vi:vi≺vk}). Since we need to differentiate a function
multiple times with respect to a variable, we need concepts involving multisets for describing it.

A multiset D is a generalization of the notion of a set in which elements are allowed to appear more
than once. One way to represent a multiset is D = {vt11 , · · · , vtmm }, which signifies that D has
m distinct elements {v1, · · · , vm}, and the multiplicity of each member vi is ti. We call this the
canonical representation of a multiset. The order (cardinality) of a multiset |D| is the sum of all the
multiplicities of all its elements, i.e., |D| = t1 + · · ·+ tm.

A multiset D can also be written in a flat representation as D = {vi1 , vi2 , · · · , vi|D|}, where vij and
vik may represent an identical element even if j 6= k. With the flat representation, we define the
union (D1 ∪D2), subset (DI ⊂ DJ), power set (P(D)), and partition operations on a multiset as we
do for a set by treating the index I = {i1, · · · , i|D|} as a set.

We use the symbol DS to represent all multisets over a given set S:

DS =
{
{vi1 , vi2 , · · · , vid} : vik ∈ S, 1 ≤ k ≤ d, d ≥ 1

}
. (4)

Further, for a multiset D, we define the operator ∂
∂D as: ∂

∂D = ∂|D|

∂vi1
∂vi2 ···∂vi|D|

.

Lemma 1 For a composite function defined as fk(Sk) = fk+1(Sk+1\{vk}, vk = ϕk(vi){vi:vi≺vk}),
the derivative ∂fk(Sk)

∂D , D ∈ DSk
is given by:

∂fk
∂D

=
∂fk+1

∂D
+

∑
Z∈P(D)
Z 6=D
z=|Z|

[|D|−z∑
r=1

(∑
D1,D2,··· ,Dr is

an r-partition
of D \ Z

∂ϕk

∂D1
· · · ∂ϕk

∂Dr

) ∂fk+1

∂Z∂vrk

]
. (5)

3

The high order reverse mode is the implementation of the high order chain rule Eq 5. An efficient
implementation should fully take advantage of the combinatorial properties of this equation. The
details can be found in [1, 2, 3].

2 Complexity Analysis

An intriguing feature of the high order reverse mode is illustrated by the following lemma.

Lemma 2 In step k of the high order reverse mode, let

n(k)
z =

∣∣∣{Z : Z ∈ DSk+1\{vk},∃r ∈ N+, s.t.
∂fk+1

∂Z∂vrk
6= 0}

∣∣∣, (6)

which is the number of choices of a set Z such that there exists an r ∈ N+ and ∂fk+1

∂Z∂vr
k
6= 0. Then the

complexity in this step is bounded by O
((

3d∗

d∗

)
· n(k)

z

)
, where d∗ is the highest order of derivative

that the reverse mode evaluates.

Then by summing over the steps k, we obtain the complexity of the high order reverse mode. Notice
that when d∗ = 1, n(k)

z is a constant, and the lemma reduces to the Baur-Strassen theorem, i.e., the
complexity of first order reverse mode is linearly proportional to the complexity of the objective
function. The complexity of the high order reverse mode can be precisely expressed using the set

Lk =
{

(Z, r) :
∂fk+1

∂Z∂vrk
6= 0
}
.

This set Lk corresponds to all the nonzero entries in the slice of the derivative tensor that corresponds
to vk. The number of operations in step k is bounded by O(qd∗ · |Lk|), where qd∗ is a constant that
depends only on d∗. This number is bounded by the size of live variables (|Lk| ≤ d∗ · n(k)

z); but it
depends only on the sparsity of the derivative tensor.

From the complexity analysis, we can conclude that the high order reverse mode can detect and
exploit sparsity in the derivative tensor on-the-fly. This is an especially attractive feature of the
reverse mode, since in many applications the derivative tensor is sparse but the sparsity patterns are
not provided as inputs.

Table 1: The constant factor qd∗ in the complexity of the high order reverse mode.

Max Order d∗ = 1 2 3 4 5 6 7 8 9
Constant Factor qd∗= 2 5 9 23 45 86 178 335 591

References

[1] Wang, M. & Gebremedhin, A. & Pothen, A. (2016) Capitalizing on live variables: New algorithms for
efficient Hessian computation via Automatic Differentiation. Mathematical Programming Computation 8, pp.
393–433.

[2] Wang, M. (2017) High Order Reverse Mode in Automatic Differentiation, PhD thesis, Purdue University.

[3]. Wang, M. & Pothen, A. (2016) Evaluating high order derivative tensors with reverse mode Automatic
Differentiation, 41 pp., Submitted for publication.

[4] Martens, J. & Sutskever, I. & Swersky, K. (2012) Estimating the Hessian by back-propagating curvature.
arXiv preprint arXiv:1206.6464.

[5] Byrd, R.H. & Chin, G.M. & Neveitt, W. & Nocedal, J. (2011) On the use of stochastic Hessian information
in optimization methods for machine learning. SIAM Journal on Optimization, 21(3), pp.977-995.

[6] Goodfellow, I. & Bengio, Y. & Courville, A. (2016) Deep Learning. MIT Press.

4

	High Order Reverse Mode of Automatic Differentiation
	Background
	Notations
	Family of Basic AD Algorithms
	High Order Reverse Mode

	Complexity Analysis

