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Abstract

In this paper, a new deformable image registration method based on a fully con-
nected neural network is proposed. Even though a deformation field related to the
point correspondence between fixed and moving images are high-dimensional in
nature, we assume that these deformation fields form a low dimensional manifold
in many real world applications. Thus, in our method, a neural network generates
an embedding of the deformation field from a low dimensional vector. This low-
dimensional manifold formulation avoids the intractability associated with the high
dimensional search space that most other methods face during image registration.
As a result, while most methods rely on explicit and handcrafted regularization of
the deformation fields, our algorithm relies on implicitly regularizing the network
parameters. The proposed method generates deformation fields from latent low
dimensional space by minimizing a dissimilarity metric between a fixed image
and a warped moving image. Our method removes the need for a large dataset
to optimize the proposed network. The proposed method is quantitatively evalu-
ated using images from the MICCAI ACDC challenge. The results demonstrate
that the proposed method improves performance in comparison with a moving
mesh registration algorithm, and also it correlates well with independent manual
segmentations by an expert.

1 Introduction

Medical image registration is essential for many clinical image processing tasks Sotiras et al. [2013].
The aim of image registration is to compute a mapping between fixed and moving images by
minimizing an objective function that is based on a dissimilarity metric. Recently, promising methods
using deep learning have been proposed to improve medical image registration de Vos et al. [2017],
Krebs et al. [2017], Li and Fan [2017], Liao et al. [2017]. Deep learning methods such as convolutional
stacked auto-encoders have been used to extract features from a pair of images Wang et al. [2017].
Some techniques used supervised deep learning to build prediction model of transformation matrix
in order to obtain learning framework Krebs et al. [2017], Rohé et al. [2017], Sokooti et al. [2017],
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Yang et al. [2017]. These studies use a convolutional neural network regressor to predict the spatial
relation between fixed and moving images. Inspired by the recent works in reinforcement learning,
methods proposed in Krebs et al. [2017], Liao et al. [2017] applied an artificial agent which uses its
own experience to learn and does not require explicitly designed similarity measures. They suggested
a reformulation of image registration problem to optimize the deformation model parameters. The
agent is trained in a supervised way and explores the space of deformations by choosing an action
from a set of actions that update deformation model’s parameters.

de Vos et al. [2017] proposed a deformable image registration (DIRNet) using CNNs. This method
uses spatial transformer network (STN) Jaderberg et al. [2015] in order to generate a dense dis-
placement field by using local deformation parameters that are estimated by a convNet. DIRNet
estimates 2D control points and uses cubic B-splines to represent spatial transformations which
register 2D images. Yoo et al. [2017] used bilinear interpolation instead of B-splines to obtain dense
spatial transformations and estimated coarse-grained deformation fields at a low spatial resolution.
The method can register 2D images by optimizing an image similarity metric derived from an auto-
encoder between fixed and transformed moving images. However, predicted coarse-grained spatial
transformation which is obtained by these methods might fail to characterize small deformations Li
and Fan [2017].

Inspired by fully convolutional networks (FCNs) Long et al. [2015] that facilitate voxel-to-voxel
learning, Li and Fan [2017] has proposed a multi-resolution deformable image registration framework
based on a deep self-supervised fully convolutional network. This method trains FCNs to estimate
voxel-to-voxel spatial transformations to register images by maximizing image-wise similarity metric.

Training data is an important part of deep learning network-based image registration algorithms. There
are a variety of strategies that have been proposed to build training data which include simulating
synthetic deformation fields and applying them to a set of images to generate new images with
known spatial transformations Sokooti et al. [2017]. However, these synthetic deformation fields
may not be able to realistically capture the spatial correspondences between actual imagesLi and Fan
[2017]. Krebs et al. [2017] proposed a ground truth generator that produces millions of synthetically
deformed training samples based on a few real deformation estimations. However, the need for large
datasets in the medical field with manual segmentation labels or known spatial transformations is still
a major problem in deep learning based algorithms. Thus, we suggest a deep unsupervised network
which is able to generate deformation fields independent of training data.

Unlike previous methods that take pairs of fixed and moving images as an input, in our network, inputs
are latent, low dimensional vectors. In addition, our method is not trained with known registration
transformations, but generates deformation fields and register images by direct optimization of
image similarity metric between the fixed and deformed moving image. Furthermore, instead of
representing spatial transformations by using B-splines, our method uses bilinear interpolation to
capture dense spatial transformations. To the best of the authors’ knowledge, this is the first deep
learning-based manifold embedding method for unsupervised deformable image registration. Thus,
the main contributions of this work are: (1) proposing an unsupervised network and using low
dimensional vectors as input (2) generating spatial transformation fields by embedding.

In our formulation, explicit regularization of the deformation field is not used. In our case, the
network architecture, the dimension of the latent vector and the L2 norm of the network parameters
implicitly regularize the image registration problem. Furthermore, our method can be applied to a
sequence of images.

2 Method

The objective of the image registration task is to find a spatial transformation that aligns an image
pair: a fixed image I and a moving image J . It can be formulated as an optimization problem to
maximize a similarity metric (or minimize a dissimilarity metric) between the fixed image and the
transformed moving image. In a deformable image registration task, the spatial transformation is
characterized by a dense deformation field f (or, {dx, dy} in 2D) that encodes the displacement
vector.
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Figure 1: Schematic of the proposed image registration approach based on a fully connected network.
The network uses one or more learnable vector which is initialized by a random vector as an input. The
fully connected part generates 2-dimensional displacement vector field to warp a moving image to a
fixed image. The network is unsupervised and optimizes the similarity metric using backpropagation.

2.1 Using fully connected network for optimizing an image dissimilarity metric

We propose a deep network model using FCNet (fully connected network) to solve the optimization
problem for image registration. As we use FCNet as a generator, we can directly obtain deformation
fields at the same resolution of the images to be registered. In this method, in order to register each
image in a sequence, a low dimensional vector (also known as latent vector) is defined as a input
vector. One technique to find the latent vectors is using Auto-encoder (AE). The auto-encoder is
made of two parts, encoder and decoder. The encoder brings the data from a high dimensional input
to low dimensional output. Since using an auto-encoder network to find latent vector add time and
computational cost to our framework, we initialized input vectors by random vectors. Then the
FCNet applies 8 fully connected layers to generate a two dimensional deformation field {dx, dy}.
The number of kernels (i.e., coefficient matrices) per layer can have an arbitrary size but the number
of kernels of the output layer is determined by the dimensionality of the images (e.g. 2 kernels for
2D images that require 2D displacements). FCNet generates a displacement field by minimizing a
dissimilarity metric between fixed and warping images using stochastic gradient descent method
Adam Kingma and Ba [2014]. The Relu function is used as activation functions throughout. The
metric employed here is mean squared intensity difference between a fixed image and a deformed
moving image for mono modality image registration. During the optimization, not only the network’s
parameters, but also input latent vectors are updated. The dense displacement vector fields generated
by FCNet are employed to deform a moving image toward the fixed image. We applied bilinear
interpolation which has local supports instead of cubic B-spline de Vos et al. [2017] or a thin-plate
spline which has a global support. The framework of our method is illustrated in Figure 1.

Suppose {Ii}ni=1 is a sequence of images that we would like to register. We have a neural network
with parameters θ that computes a deformation field fθ(ti) : Rd → RN×N , whereN is the number of
pixels and d is a number much smaller than N (in our work d is 25). We can call fθ as an embedding
function. Thus, for the ith image in the sequence, the neural network takes in a d-dimensional vector
ti and outputs a deformation field fθ(ti). We can warp a moving image Ii by this deformation field
to get the warped image I(fθ(ti)). Therefore, we can minimize the following cost function for
registering image sequence {Ii}ni=1:

Edata(θ, {ti}ni=1) =
∑
i

|Ii − Imov(i)(fθ(ti))| (1)

The minimization is performed jointly over the parameters θ of the neural network and latent vectors
{ti}ni=1, where Ii is a fixed image and corresponding moving image is Imov(i).
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Figure 2: Selection of fixed and moving images in one sequence of the medical image. DFi(i =
0, 1, 2, ...,K) are deformation fields generated by the network for each pair of fixed and moving
images.

2.2 Regularization

Image registration is inherently ill-posed so that the existence and the uniqueness of the solution is not
guaranteed Myronenko [2010]. Thus, regularization is essential to avoid both physically implausible
displacement fields and local minimum during optimization Vishnevskiy et al. [2017]. As the most
optimization methods based regularization image registration are typically computationally expensive
and time-consuming, an alternative is to regularize network parameters θ. This regularization
considers the mean of the sum of squares of the network weights (MSW ):

MSW (θ) =
1

Nw

Nw∑
n=1

w2
n, (2)

whereNw represents the number of network weight parameters and wn is an element of the parameter
matrix in a vector expression W . The weights and biases of the network are initialized as random
variables drawn from a Gaussian distribution. Finally, our optimization problem can be formulated as
follows:

E(θ, {ti}ni=1) = Edata(θ, {ti}ni=1) + λMSW (θ), (3)

The above optimization problem can be solved by backpropagation with stochastic gradient descent.

Our model is implemented using tensorflow. Adam optimization technique Kingma and Ba [2014] is
used with learning rate 1× 10−4, image batch size 10 and λ = 0.1. The results were obtained with
NVIDIA GTX 1080 Ti GPU, and 2000 iterations were adopted for the optimization that takes 4–6
minutes per image.

3 Experimental Evaluation and Comparisons

We applied our method to 100 short axis cardiac cine MR sequences of 10 patients (30000 images).
We compared the accuracy of the proposed method with a moving mesh correspondence algorithm
presented in Punithakumar et al. [2017, 2013] by using the same datasets.
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Figure 3: Representative examples of the displacement field obtained by the proposed method

3.1 Data

The proposed method is evaluated with clinical Magnetic Resonance Imaging (MRI) images from
MICCAI Automated Cardiac Diagnosis Challenge (ACDC) dataset ACDC [2017]. The ACDC 2017
dataset contains 100 exams (all from different patients) that each exam has a sequence with 25–30
frames. Cine MR images were acquired in breath hold with a retrospective or prospective gating and
with a steady-state free precession (SSFP) sequence in short axis orientation. A series of short axis
slices cover the Left Ventricle (LV) from the base to the apex, with a thickness of 5 to 8 mm and with
an interslice gap of 5 mm. The spatial resolution goes from 0.83 to 1.75 mm/pixel. For more details
on the dataset, please refer to the ACDC website ACDC [2017].

3.2 Evaluation measures

3.2.1 Dice metric

For the geometrical metrics, we use Dice Metric (DM) which usually is used to measure the similarity
(overlap) between two surfaces. DM is defined as the ratio of the intersection by the sum of the two
regions:

D(M,N) =
2(M

⋂
N)

M +N
(4)

where M is the area or volume enclosed by the automatic counters and N is the manual counter. DM
varies from 0 (total mismatch) to 1 (perfect match).

3.2.2 Reliability

We evaluate the reliability of our method by using a reliability function (the complementary cumulative
distribution function (ccdf)) of the obtained Dice metrics Ayed et al. [2009]:

R(d) = P (DM > d), (5)

where for each d ∈ [0, 1], R(d) is ratio of number of images segmented with DM higher than d and
total number of images. R(d) measures how reliable the algorithm is in yielding accuracy d.

3.3 Quantitative Evaluation

The proposed method is evaluated on 100 short axis cardiac cine MR sequences, a total of 30000
images. In each sequence Ii is selected as a moving image and Ii+1 is selected as a fixed image
Figure 2. Our suggestion approach yielded a DM equal to 0.89 ± 0.03 for all the data analyzed
(DM is expressed as mean ± standard deviation). Table 1 shows DM statistics for the proposed
method and the moving mesh correspondence method Punithakumar et al. [2017]. Using the
same data, the method in Punithakumar et al. [2017] yielded a DM equal to 0.85 ± 0.03. Figure
6 (a) depicts the DM for a representative sample of the analyzed images. Table 1 reports the
accuracies for FCNet in comparison with moving mesh correspondence method and it shows that
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Figure 4: Sample of the boundary results with the proposed FCNet.

Figure 5: Representative examples of obtained borders of the LV with FCNet (blue) and moving
mesh correspondence Punithakumar et al. [2017] (red) methods where FCNet provided significantly
more accurate results than Punithakumar et al. [2017].

our approach led to a significant improvement in average the accuracy. In addition, Table 1 reports
the reliability of the proposed method and Punithakumar et al. [2017] in different accuracy levels
d = 0.80, d = 0.85, d = 0.90 and plot R(d) as a function of d in Figure 6 (b). Our algorithm led to a
higher reliability curve and improvement in reliabilities.

3.4 Visual Assessment

By using a grid mesh, we show the displacement fields obtained by FCNet Figure 3. The comparison
of the result of FCNet and moving mesh correspondence method Punithakumar et al. [2017] are given
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Table 1: The mean, standard deviation of Dice score and Reliability function (R(d) = P (DM > d)).
The higher the DM and R, the better the performance.

Dice R(0.80) R(0.85) R(0.90)

Punithakumar et al. [2017] 0.85 ± 0.03 0.95 0.66 0.06

our method 0.89 ± 0.03 1 0.91 0.44

Figure 6: Comparison between proposed method and the methods by Punithakumar et al. [2017] for
100 sequences (30000 images). (a) Dice metric (DM) for the proposed method and Punithakumar
et al. [2017]. (b) Reliability R(d) = Pr(DM > d)) for the proposed method and Punithakumar
et al. [2017]. The proposed method led to a higher reliability curve.

in Figure 5. In Figure 3, we give a representative sample of borders obtained by our method. The
FCNet approach yielded more accurate results than the moving mesh correspondence method in a
number of image sequences.

4 Discussion and Conclusion

In this paper, we proposed a deformable image registration algorithm based on the deep fully con-
nected network to generate spatial transformations. Our network predicted deformation field at the
same resolution of fixed and moving images. The image registration optimizes spatial transforma-
tion with deep supervision network through feedforward and backpropagation computation. The
experimental results show that our method obtained promising performance to register a sequence of
cardiac MRI images.

Most deep learning based image registration methods learn spatial transformations from training data
with known deformation fields Sokooti et al. [2017], Yang et al. [2017], Krebs et al. [2017], Yoo
et al. [2017]. On the other hand, other methods estimate spatial transformations by using the pairs of
images (fixed and moving images) de Vos et al. [2017], Li and Fan [2017]. Unlike these methods,
our algorithm directly generates spatial transformations by maximizing a similarity metric between
fixed and deformed images based on low dimensional learnable vector initialized by random vector,
independent from moving and fixed image.

In conclusion, the results have demonstrated that unsupervised deep learning models built upon
generative fully connected networks can achieve satisfying performance for deformable medical
image registration. This study shows that the proposed approach improves the performance over
recent state-of-the-art image registration with respect to accuracy.
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