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ABSTRACT

Sequence-to-sequence models with soft attention have been successfully applied
to a wide variety of problems, but their decoding process incurs a quadratic time
and space cost and is inapplicable to real-time sequence transduction. To ad-
dress these issues, we propose Monotonic Chunkwise Attention (MoChA), which
adaptively splits the input sequence into small chunks over which soft attention
is computed. We show that models utilizing MoChA can be trained efficiently
with standard backpropagation while allowing online and linear-time decoding
at test time. When applied to online speech recognition, we obtain state-of-the-
art results and match the performance of a model using an offline soft attention
mechanism. In document summarization experiments where we do not expect
monotonic alignments, we show significantly improved performance compared to
a baseline monotonic attention-based model.

1 INTRODUCTION

Sequence-to-sequence models (Sutskever et al., 2014; Cho et al., 2014) with a soft attention mecha-
nism (Bahdanau et al., 2015) have been successfully applied to a plethora of sequence transduction
problems (Luong et al., 2015; Xu et al., 2015; Chorowski et al., 2015; Wang et al., 2017; See et al.,
2017). In their most familiar form, these models process an input sequence with an encoder recurrent
neural network (RNN) to produce a sequence of hidden states, referred to as a memory. A decoder
RNN then autoregressively produces the output sequence. At each output timestep, the decoder is
directly conditioned by an attention mechanism, which allows the decoder to refer back to entries
in the encoder’s hidden state sequence. This use of the encoder’s hidden states as a memory gives
the model the ability to bridge long input-output time lags (Raffel & Ellis, 2015), which provides
a distinct advantage over sequence-to-sequence models lacking an attention mechanism (Bahdanau
et al., 2015). Furthermore, visualizing where in the input the model was attending to at each out-
put timestep produces an input-output alignment which provides valuable insight into the model’s
behavior.

As originally defined, soft attention inspects every entry of the memory at each output timestep,
effectively allowing the model to condition on any arbitrary input sequence entry. This flexibility
comes at a distinct cost, namely that decoding with a soft attention mechanism has a quadratic time
and space cost O(TU), where T and U are the input and output sequence lengths respectively. This
precludes its use on very long sequences, e.g. summarizing extremely long documents. In addition,
because soft attention considers the possibility of attending to every entry in the memory at every
output timestep, it must wait until the input sequence has been processed before producing output.
This makes it inapplicable to real-time sequence transduction problems. Raffel et al. (2017) recently
pointed out that these issues can be mitigated when the input-output alignment is monotonic, i.e. the
correspondence between elements in the input and output sequence does not involve reordering. This
property is present in various real-world problems, such as speech recognition and synthesis, where
the input and output share a natural temporal order (see, for example, fig. 2). In other settings, the
alignment only involves local reorderings, e.g. machine translation for certain language pairs (Birch
et al., 2008).

Based on this observation, Raffel et al. (2017) introduced an attention mechanism that explicitly en-
forces a hard monotonic input-output alignment, which allows for online and linear-time decoding.

∗Equal contribution.
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Figure 1: Schematics of the attention mechanisms discussed in this paper. Each node represents
the possibility of the model attending to a given memory entry (horizontal axis) at a given output
timestep (vertical axis). (a) In soft attention, the model assigns a probability (represented by the
shade of gray of each node) to each memory entry at each output timestep. The context vector is
computed as the weighted average of the memory, weighted by these probabilities. (b) At test time,
monotonic attention inspects memory entries from left-to-right, choosing whether to move on to the
next memory entry (shown as nodes with×) or stop and attend (shown as black nodes). The context
vector is hard-assigned to the memory entry that was attended to. At the next output timestep, it starts
again from where it left off. (c) MoChA utilizes a hard monotonic attention mechanism to choose
the endpoint (shown as nodes with bold borders) of the chunk over which it attends. The chunk
boundaries (here, with a window size of 3) are shown as dotted lines. The model then performs soft
attention (with attention weighting shown as the shade of gray) over the chunk, and computes the
context vector as the chunk’s weighted average.

However, the hard monotonicity constraint also limits the expressivity of the model compared to
soft attention (which can induce an arbitrary soft alignment). Indeed, experimentally it was shown
that the performance of sequence-to-sequence models utilizing this monotonic attention mechanism
lagged behind that of standard soft attention.

In this paper, we aim to close this gap by introducing a novel attention mechanism which retains the
online and linear-time benefits of hard monotonic attention while allowing for soft alignments. Our
approach, which we dub “Monotonic Chunkwise Attention” (MoChA), allows the model to perform
soft attention over small chunks of the memory preceding where a hard monotonic attention mech-
anism has chosen to attend. It also has a training procedure which allows it to be straightforwardly
applied to existing sequence-to-sequence models and trained with standard backpropagation. We
show experimentally that MoChA effectively closes the gap between monotonic and soft attention
on online speech recognition and provides a 20% relative improvement over monotonic attention
on document summarization (a task which does not exhibit monotonic alignments). These benefits
incur only a modest increase in the number of parameters and computational cost. We also provide
a discussion of related work and ideas for future research using our proposed mechanism.

2 DEFINING MOCHA

To develop our proposed attention mechanism, we will first review the sequence-to-sequence frame-
work and the most common form of soft attention used with it. Because MoChA can be considered
a generalization of monotonic attention, we then re-derive this approach and point out some of its
shortcomings. From there, we show how soft attention over chunks can be straightforwardly added
to hard monotonic attention, giving us the MoChA attention mechanism. We also show how MoChA
can be trained efficiently with respect to the mechanism’s expected output, which allows us to use
standard backpropagation.

2.1 SEQUENCE-TO-SEQUENCE MODELS

A sequence-to-sequence model is one which transduces an input sequence x = {x1, . . . , xT } to
an output sequence (potentially of a different modality) y = {y1, . . . , yU}. Typically, the input
sequence is first converted to a sequence of hidden states h = {h1, . . . , hT } by an encoder recurrent
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neural network (RNN):
hj = EncoderRNN(xj , hj−1) (1)

A decoder RNN then updates its hidden state autoregressively and an output layer (typically using a
softmax nonlinearity) produces the output sequence:

si = DecoderRNN(yi−1, si−1, ci) (2)
yi = Output(si, ci) (3)

where si is the decoder’s state and ci is a “context” vector which is computed as a function of the
encoder hidden state sequence h. Note that ci is the sole conduit through which the decoder has
access to information about the input sequence.

In the originally proposed sequence-to-sequence framework (Sutskever et al., 2014), the context
vector is simply set to the final encoder hidden state, i.e. ci = hT . It was subsequently found that
this approach exhibits degraded performance when transducing long sequences (Bahdanau et al.,
2015). Instead, it has become standard to use an attention mechanism which treats the hidden state
sequence as a (soft-)addressable memory whose entries are used to compute the context vector ci.
In the following subsections, we discuss three such approaches for computing ci; otherwise, the
sequence-to-sequence framework remains unchanged.

2.2 STANDARD SOFT ATTENTION

Currently, the most commonly used attention mechanism is the one originally proposed in (Bah-
danau et al., 2015). At each output timestep i, this approach proceeds as follows: First, an unnor-
malized scalar “energy” value ei,j is produced for each memory entry:

ei,j = Energy(hj , si−1) (4)

A common choice for Energy(·) is

Energy(hj , si−1) := v> tanh(Whhj +Wssi−1 + b) (5)

where Wh ∈ Rd×dim(hj), Ws ∈ Rd×dim(si−1), b ∈ Rd and v ∈ Rd are learnable parameters and
d is the hidden dimensionality of the energy function. Second, these energy scalars are normalized
across the memory using the softmax function to produce weighting values αi,j :

αi,j =
exp(ei,j)∑T
k=1 exp(ei,k)

= softmax(ei,:)j (6)

Finally, the context vector is computed as a simple weighted average of h, weighted by αi,::

ci =

T∑
j=1

αi,jhj (7)

We visualize this soft attention mechanism in fig. 1a.

Note that in order to compute ci for any output timestep i, we need to have computed all of the
encoder hidden states hj for j ∈ {1, . . . , T}. This implies that this form of attention is not applicable
to online/real-time sequence transduction problems, because it needs to have observed the entire
input sequence before producing any output. Furthermore, producing each context vector ci involves
computing T energy scalar terms and weighting values. While these operations can typically be
parallelized, this nevertheless results in decoding having a O(TU) cost in time and space.

2.3 MONOTONIC ATTENTION

To address the aforementioned issues with soft attention, Raffel et al. (2017) proposed a hard mono-
tonic attention mechanism whose attention process can be described as follows: At output timestep
i, the attention mechanism begins inspecting memory entries starting at the memory index it at-
tended to at the previous output timestep, referred to as ti−1. It then computes an unnormalized
energy scalar ei,j for j = ti−1, ti−1 + 1, . . . and passes these energy values into a logistic sigmoid
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function σ(·) to produce “selection probabilities” pi,j . Then, a discrete attend/don’t attend decision
zi,j is sampled from a Bernoulli random variable parameterized by pi,j . In total, so far we have

ei,j = MonotonicEnergy(si−1, hj) (8)
pi,j = σ(ei,j) (9)
zi,j ∼ Bernoulli(pi,j) (10)

As soon as zi,j = 1 for some j, the model stops and sets ti = j and ci = hti . This process is
visualized in fig. 1b. Note that because this attention mechanism only makes a single pass over the
memory, it has a O(max(T,U)) (linear) cost. Further, in order to attend to memory entry hj , the
encoder RNN only needs to have processed input sequence entries x1, . . . , xj , which allows it to be
used for online sequence transduction. Finally, note that if pi,j ∈ {0, 1} (a condition which is en-
couraged, as discussed below) then the greedy assignment of ci = hti is equivalent to marginalizing
over possible alignment paths.

Because this attention process involves sampling and hard assignment, models utilizing hard mono-
tonic attention can’t be trained with backpropagation. To remedy this, Raffel et al. (2017) propose
training with respect to the expected value of ci by computing the probability distribution over the
memory induced by the attention process. This distribution takes the following form:

αi,j = pi,j

(
(1− pi,j−1)

αi,j−1

pi,j−1
+ αi−1,j

)
(11)

The context vector ci is then computed as a weighted sum of the memory as in eq. (7). Equation (11)
can be explained by observing that (1 − pi,j−1)αi,j−1/pi,j−1 is the probability of attending to
memory entry j − 1 at the current output timestep (αi,j−1) corrected for the fact that the model did
not attend to memory entry j (by multiplying by (1−pi,j−1) and dividing by pi,j−1). The addition of
αi−1,j represents the additional possibility that the model attended to entry j at the previous output
timestep, and finally multiplying it all by pi,j reflects the probability that the model selected memory
item j at the current output timestep i. Note that this recurrence relation is not parallelizable across
memory indices j (unlike, say, softmax), but fortunately substituting qi,j = αi,j/pi,j produces the
first-order linear difference equation qi,j = (1 − pi,j−1)qi,j−1 + αi−1,j which has the following
solution (Kelley & Peterson, 2001):

qi,: = cumprod(1− pi,:)cumsum
(

αi−1,:

cumprod(1− pi,:)

)
(12)

where cumprod(x) = [1, x1, x1x2, . . . ,
∏|x|−1

i xi] and cumsum(x) = [x1, x1+x2, . . . ,
∑|x|

i xi].
Because the cumulative sum and product can be computed in parallel (Ladner & Fischer, 1980),
models can still be trained efficiently with this approach.

Note that training is no longer online or linear-time, but the proposed solution is to use this “soft”
monotonic attention for training and use the hard monotonic attention process at test time. To en-
courage discreteness, Raffel et al. (2017) used the common approach of adding zero-mean, unit-
variance Gaussian noise to the logistic sigmoid function’s activations, which causes the model to
learn to produce effectively binary pi,j . If pi,j are binary, zi,j = 1(pi,j > .5), so in practice
sampling is eschewed at test-time in favor of simple thresholding. Separately, it was observed that
switching from the softmax nonlinearity to the logistic sigmoid resulted in optimization issues due
to saturating and sensitivity to offset. To mitigate this, a slightly modified energy function was used:

MonotonicEnergy(si−1, hj) = g
v>

‖v‖
tanh(Wssi−1 +Whhj + b) + r (13)

where g, r are learnable scalars and v,Ws,Wh, b are as in eq. (5). Further discussion of these
modifications is provided in (Raffel et al., 2017) appendix G.

2.4 MONOTONIC CHUNKWISE ATTENTION

While hard monotonic attention provides online and linear-time decoding, it nevertheless imposes
two significant constraints on the model: First, that the decoder can only attend to a single entry
in memory at each output timestep, and second, that the input-output alignment must be strictly
monotonic. These constraints are in contrast to standard soft attention, which allows a potentially
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Algorithm 1 MoChA decoding process (test time). During training, lines 4-19 are replaced with
eqs. (20) to (26) and yi−1 is replaced with the ground-truth output at timestep i− 1.

1: Input: memory h of length T , chunk size w

2: State: s0 = ~0, t0 = 1, i = 1, y0 = StartOfSequence
3: while yi−1 6= EndOfSequence do // Produce output tokens until end-of-sequence token is produced
4: for j = ti−1 to T do // Start inspecting memory entries hj left-to-right from where we left off
5: ei,j = MonotonicEnergy(si−1, hj) // Compute attention energy for hj

6: pi,j = σ(ei,j) // Compute probability of choosing hj

7: if pi,j ≥ 0.5 then // If pi,j is larger than 0.5, we stop scanning the memory
8: v = j − w + 1 // Set chunk start location
9: for k = v to j do // Compute chunkwise softmax energies over a size-w chunk before j

10: ui,k = ChunkEnergy(si−1, hk)
11: end for
12: ci =

∑j
k=v

exp(ui,k)∑j
l=v

exp(ui,l)
hk // Compute softmax-weighted average over the chunk

13: ti = j // Remember where we left off for the next output timestep
14: break // Stop scanning the memory
15: end if
16: end for
17: if pi,j < 0.5, ∀j ∈ {ti−1, ti−1 + 1, . . . , T} then
18: ci = ~0 // If we scanned the entire memory without stopping, set ci to a vector of zeros
19: end if
20: si = DecoderRNN(si−1, yi−1, ci) // Update output RNN state based on the new context vector
21: yi = Output(si, ci) // Output a new symbol using the softmax output layer
22: i = i+ 1
23: end while

arbitrary and smooth input-output alignment. Experimentally, it was shown that performance de-
grades somewhat on all tasks tested in (Raffel et al., 2017). Our hypothesis is that this degradation
stems from the aforementioned constraints imposed by hard monotonic attention.

To remedy these issues, we propose a novel attention mechanism which we call MoChA, for
Monotonic Chunkwise Attention. The core of our idea is to allow the attention mechanism to
perform soft attention over small “chunks” of memory preceding where a hard monotonic attention
mechanism decides to stop. This facilitates some degree of softness in the input-output alignment,
while retaining the online decoding and linear-time complexity benefits.

At test time, we follow the hard monotonic attention process of section 2.3 in order to determine ti
(the location where the hard monotonic attention mechanism decides to stop scanning the memory
at output timestep i). However, instead of setting ci = hti , we allow the model to perform soft
attention over the length-w window of memory entries preceding and including ti:

v = ti − w + 1 (14)
ui,k = ChunkEnergy(si−1, hk), k ∈ {v, v + 1, . . . , ti} (15)

ci =

ti∑
k=v

exp(ui,k)∑ti
l=v exp(ui,l)

hk (16)

where ChunkEnergy(·) is an energy function analogous to eq. (5), which is distinct from the
MonotonicEnergy(·) function. MoChA’s attention process is visualized in fig. 1c. Note that
MoChA allows for nonmonotonic alignments; specifically, it allows for reordering of the mem-
ory entries hv, . . . , hti . Including soft attention over chunks only increases the runtime complexity
by the constant factor w, and decoding can still proceed in an online fashion. Furthermore, using
MoChA only incurs a modest increase in the total number of parameters (corresponding to adding
the second attention energy function ChunkEnergy(·)). For example, in the speech recognition
experiments described in section 3.1, the total number of model parameters only increased by about
1%. Finally, we point out that setting w = 1 recovers hard monotonic attention. For completeness,
we show the decoding algorithm for MoChA in full in algorithm 1.

During training, we proceed in a similar fashion as with monotonic attention, namely training the
model using the expected value of ci based on MoChA’s induced probability distribution (which we
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denote βi,j). This can be computed as

βi,j =

j+w−1∑
k=j

(
αi,k exp(ui,j)

/
k∑

l=k−w+1

exp(ui,l)

)
(17)

The sum over k reflects the possible positions at which the monotonic attention could have stopped
scanning the memory in order to contribute probability to βi,j and the term inside the summation
represents the softmax probability distribution over the chunk, scaled by the monotonic attention
probability αi,k. Computing each βi,j in this fashion is expensive due to the nested summation.
Fortunately, there is an efficient way to compute βi,j for j ∈ {1, . . . , T} in parallel: First, for a
sequence x = {x1, . . . , xT } we define

MovingSum(x, b, f)n :=

n+f−1∑
m=n−(b−1)

xm (18)

This function can be computed efficiently, for example, by convolving x with a length-(f + b − 1)
sequence of 1s and truncating appropriately. Now, we can compute βi,: efficiently as

βi,: = exp(ui,:)MovingSum

(
αi,:

MovingSum(exp(ui,:), w, 1)
, 1, w

)
(19)

Putting it all together produces the following algorithm for computing ci during training:

ei,j = MonotonicEnergy(si−1, hj) (20)
ε ∼ N (0, 1) (21)

pi,j = σ(ei,j + ε) (22)

αi,: = pi,: cumprod(1− pi,:)cumsum
(

αi−1,:

cumprod(1− pi,:)

)
(23)

ui,j = ChunkEnergy(si−1, hj) (24)

βi,: = exp(ui,:)MovingSum

(
αi,:

MovingSum(exp(ui,:), w, 1)
, 1, w

)
(25)

ci =

T∑
j=1

βi,jhj (26)

Equations (20) to (23) reflect the (unchanged) computation of the monotonic attention probability
distribution, eqs. (24) and (25) compute MoChA’s probability distribution, and finally eq. (26) com-
putes the expected value of the context vector ci. In summary, we have developed a novel attention
mechanism which allows computing soft attention over small chunks of the memory, whose loca-
tions are set adaptively. This mechanism has an efficient training-time algorithm and enjoys online
and linear-time decoding at test time. We attempt to quantify the resulting speedup compared to soft
attention with a synthetic benchmark in appendix B.

3 EXPERIMENTS

To test out MoChA, we applied it to two exemplary sequence transduction tasks: Online speech
recognition and document summarization. Speech recognition is a promising setting for MoChA
because it induces a naturally monotonic input-output alignment, and because online decoding is
often required in the real world. Document summarization, on the other hand, does not exhibit a
monotonic alignment, and we mostly include it as a way of testing the limitations of our model. We
emphasize that in all experiments, we took a strong baseline sequence-to-sequence model with stan-
dard soft attention and changed only the attention mechanism; all hyperparameters, model structure,
training approach, etc. were kept exactly the same. This allows us to isolate the effective difference
in performance caused by switching to MoChA. Of course, this may be an artificially low estimate of
the best-case performance of MoChA, due to the fact that it may benefit from a somewhat different
hyperparameter setting. We leave eking out the best-case performance for future work.
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Specifically, for MoChA we used eq. (13) for both the
MonotonicEnergy and the ChunkEnergy functions. Following
(Raffel et al., 2017), we initialized g = 1/

√
d (d being the at-

tention energy function hidden dimension) and tuned initial val-
ues for r based on validation set performance, using r = −4 for
MoChA on speech recognition, r = 0 for MoChA on summariza-
tion, and r = −1 for our monotonic attention baseline on summa-
rization. We similarly tuned the chunk size w: For speech recog-
nition, we were surprised to find that all of w ∈ {2, 3, 4, 6, 8} per-
formed comparably and thus chose the smallest value of w = 2.
For summarization, we found w = 8 to work best. We demon-
strate empirically that even these small window sizes give a sig-
nificant boost over hard monotonic attention (w = 1) while in-
curring only a minor computational penalty. In all experiments,
we report metrics on the test set at the training step of best perfor-
mance on a validation set.

3.1 ONLINE SPEECH RECOGNITION

First, we apply MoChA in its natural setting, i.e. a domain where
we expect roughly monotonic alignments:1 Online speech recog-
nition on the Wall Street Journal (WSJ) corpus (Paul & Baker,
1992). The goal in this task is to produce the sequence of words
spoken in a recorded speech utterance. In this setting, RNN-based
models must be unidirectional in order to satisfy the online re-
quirement. We use the model of (Raffel et al., 2017), which is
itself based on that of (Zhang et al., 2016). Full model and train-
ing details are provided in appendix A.1, but as a broad overview,
the network ingests the spoken utterance as a mel-filterbank spec-
trogram which is passed to an encoder consisting of convolution
layers, convolutional LSTM layers, and unidirectional LSTM lay-
ers. The decoder is a single unidirectional LSTM, which attends
to the encoder state sequence via either MoChA or a standard soft
attention mechanism. The decoder produces a sequence of distri-
butions over character and word-delimiter tokens. Performance
is measured in terms of word error rate (WER) after segmenting
characters output by the model into words based on the produced
word delimiter tokens. None of the models we report integrated a
separate language model.

We show the results of our experiments, along with those obtained
by prior work, in table 1. MoChA was able to beat the state-of-
the-art by a large margin (20% relative). Because the performance
of MoChA and the soft attention baseline was so close, we ran 8
repeat trials for both attention mechanisms and report the best,

average, and standard deviation of word error rates across these trials. We found MoChA-based
models to have slightly higher variance across trials, which resulted in it having a lower best WER
but a slightly higher mean WER compared to soft attention (though the difference in means was not
statistically significant for N = 8 under an unpaired Student’s t-test). This is the first time, to our
knowledge, that an online attention mechanism matched the performance of standard (offline) soft
attention. To get an idea of the behavior of the different attention mechanisms, we show attention
alignments for an example from the WSJ validation set in fig. 2. As expected, the alignment looks
roughly the same for all attention mechanisms. We note especially that MoChA is indeed taking
advantage of the opportunity to produce a soft attention distribution over each length-2 chunk.

Since we empirically found the small value ofw = 2 to be sufficient to realize these gains, we carried
out a few additional experiments to confirm that they can indeed be attributed to MoChA. First, the

1Even for nonphonemic utterances (e.g. “AAA” being transcribed as “triple A”), the learned alignment still
tends to be monotonic – see e.g. (Chan et al., 2016) figure 6.
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Prior Result WER

(Raffel et al., 2017) (CTC baseline) 33.4%
(Luo et al., 2016) (Reinforcement Learning) 27.0%
(Wang et al., 2016) (CTC) 22.7%
(Raffel et al., 2017) (Monotonic Attention) 17.4%

Attention Mechanism Best WER Average WER

Soft Attention (offline) 14.2% 14.6 ± 0.3%
MoChA, w = 2 13.9% 15.0 ± 0.6%

Table 1: Word error rate on the Wall Street Journal test
set. Our results (bottom) reflect the statistics of 8 trials.

Mechanism R-1 R-2

Soft Attention (offline) 39.11 15.76
Hard Monotonic Attention 31.14 11.16
MoChA, w = 8 35.46 13.55

Table 2: ROUGE F-scores for docu-
ment summarization on the CNN/Daily
Mail dataset. The soft attention baseline
is our reimplementation of (See et al.,
2017).

use of a second independent attention energy function ChunkEnergy(·) incurs a modest increase in
parameter count – about 1% in our speech recognition model. To ensure the improved performance
was not due to this parameter increase, we also re-trained the monotonic attention baseline with
an energy function with a doubled hidden dimensionality (which produces a comparable increase
in the number of parameters in a natural way). Across eight trials, the difference in performance
(a decrease of 0.3% WER) was not significant compared to the baseline and was dwarfed by the
gains achieved by MoChA. We also trained the w = 2 MoChA model with half the attention energy
hidden dimensionality (which similarly reconciles the parameter difference) and found it did not
significantly undercut our gains, increasing the WER by only 0.2% (not significant over eight trials).
Separately, one possible benefit of MoChA is that the attention mechanism can access a larger
window of the input when producing the context vectors. An alternative approach towards this
end would be to increase the temporal receptive field of the convolutional front-end, so we also re-
trained the monotonic attention baseline with this change. Again, the difference in performance (an
increase of 0.3% WER) was not significant over eight trials. These additional experiments reinforce
the benefits of using MoChA for online speech recognition.

3.2 DOCUMENT SUMMARIZATION

Having proven the effectiveness of MoChA in the comfortable setting of speech recognition, we
now test its limits in a task without a monotonic input/output alignment. Raffel et al. (2017) experi-
mented with sentence summarization on the Gigaword dataset, which frequently exhibits monotonic
alignments and involves short sequences (sentence-length sequences of words). They were able
to achieve only slightly degraded performance with hard monotonic attention compared to a soft
attention baseline. As a result, we turn to a more difficult task where hard monotonic attention
struggles more substantially due to the lack of monotonic alignments: Document summarization on
the CNN/Daily Mail corpus (Nallapati et al., 2016). While we primarily study this problem because
it has the potential to be challenging, online and linear-time attention could also be beneficial in
real-world scenarios where very long bodies of text need to be summarized as they are being created
(e.g. producing a summary of a speech as it is being given).

The goal of this task is to produce a sequence of “highlight” sentences from a news article. As a
baseline model, we chose the “pointer-generator” network (without the coverage penalty) of (See
et al., 2017). For full model architecture and training details, refer to appendix A.2. As a brief
summary, input words are converted to a learned embedding and passed into the model’s encoder,
consisting of a single bidirectional LSTM layer. The decoder is a unidirectional LSTM with an
attention mechanism whose state is passed to a softmax layer which produces a sequence of distri-
butions over the vocabulary. The model is augmented with a copy mechanism, which interpolates
linearly between using the softmax output layer’s word distribution, or a distribution of word IDs
weighted by the attention distribution at a given output timestep. We tested this model with standard
soft attention (as used in (See et al., 2017)), hard monotonic attention, and MoChA with w = 8.

The results are shown in table 2. We found that using a hard monotonic attention mechanism de-
graded performance substantially (nearly 8 ROUGE-1 points), likely because of the strong reorder-
ing required by this task. However, MoChA was able to effectively halve the gap between monotonic
and soft attention, despite using the modest chunk size of w = 8. We consider this an encouraging
indication of the benefits of being able to deal with local reorderings.
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4 RELATED WORK

A similar model to MoChA is the “Neural Transducer” (Jaitly et al., 2015), where the input sequence
is pre-segmented into equally-sized non-overlapping chunks and attentive sequence-to-sequence
transduction is performed over each chunk separately. The full output sequence is produced by
marginalizing out over possible end-of-sequence locations for the sequences generated from each
chunk. While our model also performs soft attention over chunks, the locations of our chunks are
set adaptively by a hard monotonic attention mechanism rather than fixed, and it avoids the marginal-
ization over chunkwise end-of-sequence tokens.

Chorowski et al. (2015) proposes a similar idea, wherein the range over which soft attention is
computed at each output timestep is limited to a fixed-sized window around the memory index
of maximal attention probability at the previous output timestep. While this also produces soft
attention over chunks, our approach differs in that the chunk boundary is set by an independent hard
monotonic attention mechanism. This difference resulted in Chorowski et al. (2015) using a very
large chunk size of 150, which effectively prevents its use in online settings and incurs a significantly
higher computational cost than our approach which only required small values for w.

A related class of non-attentive sequence transduction models which can be used in online set-
tings are connectionist temporal classification (Graves et al., 2006), the RNN transducer (Graves,
2012), segment-to-segment neural transduction (Yu et al., 2016), and the segmental RNN (Kong
et al., 2015). These models are distinguished from sequence-to-sequence models with attention
mechanisms by the fact that the decoder does not condition directly on the input sequence, and that
decoding is done via a dynamic program. A detailed comparison of this class of approaches and
attention-based models is provided in (Prabhavalkar et al., 2017), where it is shown that attention-
based models perform best in speech recognition experiments. Further, Hori et al. (2017) recently
proposed jointly training a speech recognition model with both a CTC loss and an attention mecha-
nism. This combination encouraged the model to learn monotonic alignments, but Hori et al. (2017)
still used a standard soft attention mechanism which precludes the model’s use in online settings.

Finally, we note that there have been a few other works considering hard monotonic alignments,
e.g. using reinforcement learning (Zaremba & Sutskever, 2015; Luo et al., 2016; Lawson et al.,
2017), by using separately-computed target alignments (Aharoni & Goldberg, 2016) or by assuming
a strictly diagonal alignment (Luong et al., 2015). We suspect that these approaches may confer
similar benefits from adding chunkwise attention.

5 CONCLUSION

We have proposed MoChA, an attention mechanism which performs soft attention over adaptively-
located chunks of the input sequence. MoChA allows for online and linear-time decoding, while
also facilitating local input-output reorderings. Experimentally, we showed that MoChA obtains
state-of-the-art performance on an online speech recognition task, and that it substantially outper-
formed a hard monotonic attention-based model on document summarization. In future work, we are
interested in applying MoChA to additional problems with (approximately) monotonic alignments,
such as speech synthesis (Wang et al., 2017) and morphological inflection (Aharoni & Goldberg,
2016). We would also like to investigate ways to allow the chunk size w to also vary adaptively. To
facilitate building on our work, we provide an example implementation of MoChA online.2
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A EXPERIMENT DETAILS

In this appendix, we provide specifics about the experiments carried out in section 3. All experiments
were done using TensorFlow (Abadi et al., 2016).

A.1 ONLINE SPEECH RECOGNITION

Overall, our model follows that of (Raffel et al., 2017), but we repeat the details here for posterity.
We represented speech utterances as mel-scaled spectrograms with 80 coefficients, along with delta
and delta-delta coefficients. Feature sequences were first fed into two convolutional layers, each
with 3×3 filters and a 2×2 stride with 32 filters per layer. Each convolution was followed by batch
normalization (Ioffe & Szegedy, 2015) prior to a ReLU nonlinearity. The output of the convolutional
layers was fed into a convolutional LSTM layer, using 1 × 3 filters. This was followed by an
additional 3 × 3 convolutional layer with 32 filters and a stride of 1 × 1. Finally, the encoder had
three additional unidirectional LSTM layers with a hidden state size of 256, each followed by a
dense layer with a 256-dimensional output with batch normalization and a ReLU nonlinearity.

The decoder was a single unidirectional LSTM layer with a hidden state size of 256. Its input
consisted of a 64-dimensional learned embedding of the previously output symbol and the 256-
dimensional context vector produced by the attention mechanism. The attention energy function
had a hidden dimensionality d of 128. The softmax output layer took as input the concatenation of
the attention context vector and the decoder’s state.

The network was trained using the Adam optimizer (Kingma & Ba, 2014) with β1 = 0.9, β2 =
0.999, and ε = 10−6. The initial learning rate 0.001 was dropped by a factor of 10 after 600,000,
800,000, and 1,000,000 steps. Note that Raffel et al. (2017) used a slightly different learning rate
schedule, but we found that the aforementioned schedule improved performance both for the soft
attention baseline and for MoChA, but hurt performance for hard monotonic attention. For this
reason, we report the hard monotonic attention performance from (Raffel et al., 2017) instead of
re-running that baseline. Inputs were fed into the network in batches of 8 utterances, using standard
teacher forcing. Localized label smoothing (Chorowski & Jaitly, 2017) was applied to the target
outputs with weights [0.015, 0.035, 0.035, 0.015] for neighbors at [−2,−1, 1, 2]. We used gradient
clipping, setting the norm of the global gradient vector to 1 whenever it exceeded that threshold. We
added variational weight noise to LSTM layer parameters and embeddings with standard deviation
of 0.075 starting after 20,000 training steps. We also applied L2 weight decay with a coefficient of
10−6. At test time, we used a beam search with rank pruning at 8 hypotheses and a pruning threshold
of 3.

A.2 DOCUMENT SUMMARIZATION

For summarization, we reimplemented the pointer-generator of See et al. (2017). Inputs were pro-
vided as one-hot vectors representing ID in a 50,000 word vocabulary, which were mapped to a
512-dimensional learned embedding. The encoder consisted of a single bidirectional LSTM layer
with 512 hidden units, and the decoder was a single unidirectional LSTM layer with 1024 hidden
units. Our attention mechanisms had a hidden dimensionality d of 1024. Output words were em-
bedded into a learned 1024-dimensional embedding and concatenated with the context vector before
being fed back in to the decoder.

For training, we used the Adam optimizer with β1 = 0.9, β2 = 0.999, and ε = 0.0000008. Our
optimizer had an initial learning rate of 0.0005 which was continuously decayed starting at 50,000
steps such that the learning rate was halved every 10,000 steps until it reached 0.00005. Sequences
were fed into the model with a batch size of 64. As in See et al. (2017), we truncated all input
sequence to a maximum length of 400 words. The global norm of the gradient was clipped to never
exceed 5. Note that we did not include the “coverage penalty” discussed in See et al. (2017) in our
models. During eval, we used an identical beam search as in the speech recognition experiments
with rank pruning at 8 hypotheses and a pruning threshold of 3.
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Figure 3: Speeds of different attention mechanisms on a synthetic benchmark.

B SPEED BENCHMARK

To get an idea of the possible speedup incurred by using MoChA instead of standard soft attention,
we carried out a simple synthetic benchmark analogous to the one in (Raffel et al., 2017), appendix
F. In this test, we implemented solely the attention mechanism and measured its speed for various
input/output sequence lengths. This isolates the speed of the portion of the network we are studying;
in practice, other portions of the network (e.g. encoder RNN, decoder RNN, etc.) may dominate the
computational cost of running the full model. Any resulting speedup can therefore be considered an
upper bound on what might be observed in the real-world. Further, we coded the benchmark in C++
using the Eigen library (Guennebaud et al., 2010) to remove any overhead incurred by a particular
model framework.

In this synthetic setting, attention was performed over a randomly generated encoder hidden state
sequence, using random decoder states. The encoder and decoder state dimensionality was set
to 256. We varied the input and output sequence lengths T and U simultaneously, in the range
{10, 20, 30, . . . , 100}. We measured the speed for soft attention, monotonic attention (i.e. MoChA
with w = 1), and MoChA with w = {2, 4, 8}. For all times, we report the mean of 100 trials.

The results are shown in fig. 3. As expected, soft attention exhibits a roughly quadratic time com-
plexity, where as MoChA’s is linear. This results in a larger speedup factor as T and U increase.
Further, the complexity of MoChA increases linearly with w. Finally, note that for T,U = 10 and
w = 8, the speed of MoChA and soft attention are similar, because the chunk effectively spans the
entire memory. This confirms the intuition that speedups from MoChA will be most dramatic for
large T and U and relatively small w.
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C MONOTONIC ADAPTIVE CHUNKWISE ATTENTION (MATCHA)
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Figure 4: Schematic of the test-time de-
coding procedure of MAtChA. The se-
mantics of the nodes and horizontal and
vertical axes are as in figs. 1a to 1c.
MAtChA performs soft attention over
variable-sized chunks set by the loca-
tions attended to by a monotonic atten-
tion mechanism.

In this paper, we considered an attention mechanism
which attends to small, fixed-length chunks preceding the
location set by a monotonic attention mechanism. In par-
allel with this work, we also considered another online
and linear-time attention mechanism which instead set
the chunks to be the region of memory between ti and
ti−1. We called this approach MAtChA, for Monotonic
Adaptive Chunkwise Attention. The motivation behind
this alternative was that in some cases it may be sub-
optimal to use a fixed chunk size for all locations in
all sequences. However, as we will discuss below, we
found that it did not improve performance over MoChA
on any of the tasks we tried despite the training-time al-
gorithm having increased memory and computational re-
quirements. We include a discussion and derivation of
MAtChA here for posterity, in case other researchers are
interested in pursuing similar ideas.

Overall, the test-time decoding process of MAtChA
(which is also online and linear-time) is extremely sim-
ilar to algorithm 1 except that instead of setting the chunk
start location v to v = j−w+1, we set v = ti−1 so that

ci =

ti∑
k=ti−1

exp(ui,k)∑ti
l=ti−1

exp(ui,l)
hk (27)

This process is visualized in fig. 4. Note that if ti = ti−1, then MAtChA must assign all attention to
memory entry ti because the sole entry of the chunk must be assigned a probability of 1.

The overall equation for MAtChA’s attention for memory entry j at output timestep i can be ex-
pressed as

βi,j =

j∑
k=1

T∑
l=j

(
exp(ui,j)∑l

m=k exp(ui,m)
αi−1,kpi,l

l−1∏
n=k

(1− pi,n)

)
(28)

This equation can be explained left to right as follows: First, we must sum over all possible positions
that monotonic attention could have attended to at the previous timestep k ∈ {1, . . . , j}. Second, we
sum over all possible locations where we can attend at the current output timestep l ∈ {j, . . . , T}.
Third, for a given input/output timestep combination, we compute the softmax probability of mem-
ory entry j over the chunk spanning from k to l (as in the main text, we refer to attention energies
produced by ChunkEnergy as ui,j). Fourth, we multiply by αi−1,k which represents the probability
that the monotonic attention mechanism attended to memory entry k at the previous timestep. Fifth,
we multiply by pi,l, the probability of the monotonic attention mechanism choosing memory entry
l at the current output timestep. Finally, we multiply by the probability of not choosing any of the
memory entries from k to l − 1. Using eq. (28) to compute βi,j to obtain the expected value of the
context vector ci allows models utilizing MAtChA to be trained with backpropagation.

Note that eq. (28) contains multiple nested summations and products for computing each i, j pair.
Fortunately, as with monotonic attention and MoChA there is a dynamic program which allows βi,:
to be computed completely in parallel which can be derived as follows:

βi,j =

j∑
k=1

T∑
l=j

(
exp(ui,j)∑l

m=k exp(ui,m)
αi−1,kpi,l

l−1∏
n=k

(1− pi,n)

)
(29)

= exp(ui,j)

j∑
k=1

T∑
l=j

(
αi−1,k∑l

m=k exp(ui,m)
pi,l

l−1∏
n=k

(1− pi,n)

)
(30)

= exp(ui,j)

T∑
l=j

j∑
k=1

(
αi−1,k∑l

m=k exp(ui,m)
pi,l

l−1∏
n=k

(1− pi,n)

)
(31)
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= exp(ui,j)

T∑
l=j

pi,l

j∑
k=1

(
αi−1,k∑l

m=k exp(ui,m)

l−1∏
n=k

(1− pi,n)

)
(32)

= exp(ui,j)

T∑
l=j

pi,l

j∑
k=1

 αi−1,k∑l
m=k exp(ui,m)

j−1∏
n=k

(1− pi,n)
l−1∏
o=j

(1− pi,o)

 (33)

= exp(ui,j)

T∑
l=j

pi,l

l−1∏
o=j

(1− pi,o)
j∑

k=1

(
αi−1,k∑l

m=k exp(ui,m)

j−1∏
n=k

(1− pi,n)

)
(34)

ri,j,l =

j∑
k=1

(
αi−1,k∑l

m=k exp(ui,m)

j−1∏
n=k

(1− pi,n)

)
(35)

=

j−1∑
k=1

(
αi−1,k∑l

m=k exp(ui,m)

j−1∏
n=k

(1− pi,n)

)
+

αi−1,j∑l
m=j exp(ui,m)

(36)

= (1− pi,j−1)
j−1∑
k=1

(
αi−1,k∑l

m=k exp(ui,m)

j−2∏
n=k

(1− pi,n)

)
+

αi−1,j∑l
m=j exp(ui,m)

(37)

= (1− pi,j−1)ri,j−1,l +
αi−1,j∑l

m=j exp(ui,m)
(38)

βi,j = exp(ui,j)

T∑
l=j

pi,l

l−1∏
o=j

(1− pi,o)ri,j,l (39)

Note that eq. (38) has the same form as eq. (11); following the derivation of (Raffel et al., 2017)
appendix C.1 suggests that it can similarly be expressed in terms of (parallelizable) cumulative sum
and cumulative product operations. However, a notable difference between eq. (38) and eq. (11)
is that the former has a dependence on an additional index variable l. This is due to the fact that
computing ri,j,l for all j and l requires computing the sum of all possible subsequences of exp(ui,:).
Fortunately, these subsequence sums can also be computed efficiently; first, define

AllPartialSums(x)j,l =


l∑

m=j

xm, j ≤ l

1, j > l

(40)

Note that, for a sequence x of length T , AllPartialSums(x) produces a matrix of shape T × T .
Now, for j ≤ l we have

AllPartialSums(x)j,l = (x1 + x2 + . . .+ xl)− (0 + x1 + . . .+ xj−1) (41)

The sum in the first set of parentheses is simply the lth entry of the cumulative sum of x; the sum
in the second is the jth entry of the exclusive cumulative sum of x. It follows that all entries of
AllPartialSums(x) can be computed efficiently in parallel by computing the cumulative sum and
subtracting appropriately. Combining the above and the derivation of (Raffel et al., 2017) appendix
C.1, we have that

ri,:,: = cumprod(1− pi,:)cumsum
(

αi−1,:

AllPartialSums(exp(ui,:))cumprod(1− pi,:)

)
(42)

where, as a minor abuse, we are using “broadcasting”3 notation. In a similar fashion, the product
over terms (1 − pi,o) in eq. (39) involves computing the product of all possible subsequences. A
function AllPartialProducts(·) can be analogously defined to eq. (40) and computed efficiently
with a cumulative product and division. Putting it all together, we can compute all of the terms βi,j
in parallel for a given output timestep i as

βi,: = exp(ui,:)

T∑
l=j

pi,: AllPartialProducts(1− pi,:):,lri,:,l (43)

3https://docs.scipy.org/doc/numpy-1.13.0/user/basics.broadcasting.html
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While we have demonstrated a parallelizable procedure for computing MAtChA’s attention distri-
bution, the marginalization over all possible chunk start and end locations necessitates a quadratic
number of terms to be computed for each output timestep/memory entry combination. Even in the
case of perfectly efficient parallelization, the result is an algorithm which requires O(UT 2) mem-
ory for decoding (as opposed to the O(UT ) memory required when training standard soft attention,
monotonic attention, or MoChA). This puts it at a distinct disadvantage, especially for large val-
ues of T . Experimentally, we had hoped that these drawbacks would be outweighed by superior
empirical performance of MAtChA, but we unfortunately found that it did not perform any better
than MoChA for the tasks we tried. As a result, we decided not to include discussion of MAtChA
in the main text and recommend against its use in its current form. Nevertheless, we are interested
in mixing MoChA and MAtChA in future work in attempt to reap the benefits of their combined
strength.
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