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ABSTRACT

Reinforcement Learning (RL) can model complex behavior policies for goal-
directed sequential decision making tasks. A hallmark of RL algorithms is Tempo-
ral Difference (TD) learning: value function for the current state is moved towards a
bootstrapped target that is estimated using the next state’s value function. λ-returns
define the target of the RL agent as a weighted combination of rewards estimated by
using multiple many-step look-aheads. Although mathematically tractable, the use
of exponentially decaying weighting of n-step returns based targets in λ-returns
is a rather ad-hoc design choice. Our major contribution is that we propose a
generalization of λ-returns called Confidence-based Autodidactic Returns (CAR),
wherein the RL agent learns the weighting of the n-step returns in an end-to-end
manner. In contrast to λ-returns wherein the RL agent is restricted to use an ex-
ponentially decaying weighting scheme, CAR allows the agent to learn to decide
how much it wants to weigh the n-step returns based targets. Our experiments, in
addition to showing the efficacy of CAR, also empirically demonstrate that using
sophisticated weighted mixtures of multi-step returns (like CAR and λ-returns)
considerably outperforms the use of n-step returns. We perform our experiments
on the Asynchronous Advantage Actor Critic (A3C) algorithm in the Atari 2600
domain.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton & Barto, 1998) is often used to solve goal-directed sequential
decision making tasks wherein conventional Machine Learning methods such as supervised
learning are not suitable. Goal-directed sequential decision making tasks are modeled as Markov
Decision Process (MDP) (Puterman, 2014). Traditionally, tabular methods were extensively used for
solving MDPs wherein value function or policy estimates were maintained for every state. Such
methods become infeasible when the underlying state space of the problem is exponentially large or
continuous. Traditional RL methods have also used linear function approximators in conjunction
with hand-crafted state spaces for learning policies and value functions. This need for hand-crafted
task-specific features has limited the applicability of RL, traditionally.

Recent advances in representation learning in the form of deep neural networks provide us
with an effective way to achieve generalization (Bengio et al., 2009; LeCun et al., 2015). Deep
neural networks can learn hierarchically compositional representations that enable RL algorithms
to generalize over large state spaces. The use of deep neural networks in conjunction with RL
objectives has shown remarkable results such as learning to solve the Atari 2600 tasks from raw
pixels (Bellemare et al., 2013; Mnih et al., 2015; 2016; Sharma et al., 2017; Jaderberg et al., 2017),
learning to solve complex simulated physics tasks (Todorov et al., 2012; Schulman et al., 2015a;
Lillicrap et al., 2015) and showing super-human performance on the ancient board game of Go
(Silver et al., 2016; 2017). Building accurate and powerful (in terms of generalization capabilities)
state and action value function (Sutton & Barto, 1998) estimators is important for successful RL
solutions. This is because many practical RL solutions (Q-Learning (Watkins & Dayan, 1992),
SARSA (Rummery & Niranjan, 1994) and Actor-Critic Methods (Konda & Tsitsiklis, 2000)) use
Temporal Difference (TD) Learning (Sutton, 1988). In TD learning, a n-step return is used as an
estimate of the value function by means of bootstrapping from the nth state’s value function estimate.
On the other hand, in Monte Carlo learning, the cumulative reward obtained in the entire trajectory
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following a particular state is used as an estimate for the value function of that state. The ability
to build better estimates of the value functions directly results in better policy estimates as well as
faster learning. λ-returns (LR) (Sutton & Barto, 1998) are very effective in this regard. They are
effective for faster propagation of delayed rewards and also result in more reliable learning. LR
provide a trade-off between using complete trajectories (Monte Carlo) and bootstrapping from n-step
returns (TD learning). They model the TD target using a mixture of n-step returns, wherein the
weights of successively longer returns are exponentially decayed. With the advent of deep RL, the
use of multi-step returns has gained a lot of popularity (Mnih et al., 2016). However, it is to be noted
that the use of exponentially decaying weighting for various n-step returns seems to be an ad-hoc
design choice made by LR. In this paper, we start off by extensively benchmarking λ-returns (our
experiments only use truncated λ-returns due to the nature of the DRL algorithm (A3C) that we work
with and we then propose a generalization called the Confidence-based Autodidactic Returns (CAR),
In CAR, the DRL agent learns in an end-to-end manner, the weights to assign to the various n-step
return based targets. Also in CAR, it’s important to note that the weights assigned to various n-step
returns change based on the different states from which bootstrapping is done. In this sense, CAR
weights are dynamic and using them represents a significant level of sophistication as compared to
the usage of λ-returns.

In summary, our contributions are:

1. To alleviate the need for some ad-hoc choice of weights as in the case of λ-returns, we
propose a generalization called Autodidactic Returns and further present a novel derivative
of it called Confidence-based Autodidactic Returns (CAR) in the DRL setting.

2. We empirically demonstrate that using sophisticated mixtures of multi-step return methods
like λ-returns and Confidence-based Autodidactic Returns leads to considerable improve-
ment in the performance of a DRL agent.

3. We analyze how the weights learned by CAR are different from that of λ-returns, what the
weights signify and how they result in better estimates for the value function.

2 BACKGROUND

In this section, we present some basic concepts required to understand our work.

2.1 PRELIMINARIES

An MDP (Puterman, 2014) is defined as the tuple 〈S,A, r,P, γ〉, where S is the set of states in the
MDP, A is the set of actions, r : S ×A 7→ R is the reward function, P : S ×A× S 7→ [0, 1] is the
transition probability function such that

∑
s′ p(s, a, s

′) = 1, p(s, a, s′) ≥ 0, and γ ∈ [0, 1) is the
discount factor. We consider a standard RL setting wherein the sequential decision-making task is
modeled as an MDP and the agent interacts with an environment E over a number of discrete time
steps. At a time step t, the agent receives a state st and selects an action at from the set of available
actions A. Given a state, the agent could decide to pick its action stochastically. Its policy π is in
general a mapping defined by: π : S ×A 7→ [0, 1] such that

∑
a∈A π(s, a) = 1, π(s, a) ≥ 0 ∀s ∈

S, ∀a ∈ A. At any point in the MDP, the goal of the agent is to maximize the return, defined as:
Gt =

∑∞
k=0 γ

krt+k which is the cumulative discounted future reward. The state value function of a
policy π, V π(s) is defined as the expected return obtained by starting in state s and picking actions
according to π.

2.2 ACTOR CRITIC ALGORITHMS

Actor Critic algorithms (Konda & Tsitsiklis, 2000) are a class of approaches that directly parameterize
the policy (using an actor) πθa(a|s) and the value function (using a critic) Vθc(s). They update the
policy parameters using Policy Gradient Theorem (Sutton et al., 1999; Silver et al., 2014) based
objective functions. The value function estimates are used as baseline to reduce the variance in policy
gradient estimates.

2



Under review as a conference paper at ICLR 2018

2.3 ASYNCHRONOUS ADVANTAGE ACTOR CRITIC

Asynchronous Advantage Actor Critic(A3C) (Mnih et al. (2016)) introduced the first class of
actor-critic algorithms which worked on high-dimensional complex visual input space. The key
insight in this work is that by executing multiple actor learners on different threads in a CPU, the RL
agent can explore different parts of the state space simultaneously. This ensures that the updates
made to the parameters of the agent are uncorrelated.

The actor can improve its policy by following an unbiased low-variance sample estimate of
the gradient of its objective function with respect to its parameters, given by:

∇θa log πθa(at|st)(Gt − V (st))

In practice, Gt is often replaced with a biased lower variance estimate based on multi-step returns. In
the A3C algorithm n-step returns are used as an estimate for the target Gt, where n ≤ m and m is a
hyper-parameter (which controls the level of rolling out of the policies). A3C estimates Gt as:

Gt ≈ V̂ (st) =

n∑
i=1

γi−1rt+i + γnV (st+n)

and hence the objective function for the actor becomes:

L(θa) = log πθa(at|st)δt

where δt =
t+j−1∑
i=t

γi−tri + γjV (st+j)− V (st) is the j-step returns based TD error.

The critic in A3C models the value function V (s) and improves its parameters based on
sample estimates of the gradient of its loss function, given as: ∇θc(V̂ (st)− Vθc(st))2.

2.4 WEIGHTED RETURNS

Weighted average of n-step return estimates for different n’s can be used for arriving at TD-targets
as long as the sum of weights assigned to the various n-step returns is 1 (Sutton & Barto (1998)).

In other words, given a weight vector w =
(
w(1), w(2), · · · , w(h)

)
, such that

h∑
i=1

w(i)=1, and n-step

returns for n ∈ {1, 2, · · · , h}: G(1)
t , G

(2)
t , · · · , G(h)

t , we define a weighted return as

Gwt =

h∑
n=1

w(n)G
(n)
t (1)

Note that the n-step return G(n)
t is defined as:

G
(n)
t =

n∑
i=1

γi−1rt+i + γnV (st+n) (2)

2.5 λ-RETURNS

A special case of Gwt is Gλt (known as λ-returns) which is defined as:

Gλt = (1− λ)
h−1∑
n=1

λn−1G
(n)
t + λh−1G

(h)
t (3)

What we have defined here are a form of truncated λ-returns for TD-learning. These are the only
kind that we experiment with, in our paper. We use truncated λ-returns because the A3C algorithm
is designed in a way which makes it suitable for extension under truncated λ-returns. We leave the
problem of generalizing our work to the full λ-returns as well as eligibility-traces (λ-returns are the
forward view of eligibility traces) to future work.
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3 λ-RETURNS AND BEYOND: AUTODIDACTIC RETURNS

3.1 AUTODIDACTIC RETURNS

Autodidactic returns are a form of weighted returns wherein the weight vector is also learned
alongside the value function which is being approximated. It is this generalization which makes
the returns autodidactic. Since the autodidactic returns we propose are constructed using weight
vectors that are state dependent (the weights change with the state the agent encounters in the MDP),
we denote the weight vector as w(st). The autodidactic returns can be used for learning better
approximations for the value functions using the TD(0) learning rule based update equation:

Vt(st)← Vt(st) + α
(
G
w(st)
t − Vt(st)

)
(4)

In contrast with autodidactic returns, λ-returns assign weights to the various n-steps returns which
are constants given a particular λ. We reiterate that the weights assigned by λ-returns don’t change
during the learning process. Therefore, the autodidactic returns are a generalization and assign
weights to returns which are dynamic by construction. The autodidactic weights are learned by the
agent, using the reward signal it receives while interacting with the environment.

3.2 CONFIDENCE-BASED AUTODIDACTIC RETURNS

All the n-step returns for state st are estimates for V (st) bootstrapped using the value function of
corresponding nth future state (V (st+n)). But all those value functions are estimates themselves.
Hence, one natural way for the RL agent to weigh an n-step return

(
G

(n)
t

)
would be to compute this

weight using some notion of confidence that the agent has in the value function estimate, V (st+n),
using which the n-step return was estimated. The agent can weigh the n-returns based on how
confident it is about bootstrapping from V (st+n) in order to obtain a good estimate for V (st). We
denote this confidence on V (st+n) as c(st+n). Given these confidences, the weight vector w(st) can
computed as:

w(st) =
(
w(st)

(1), w(st)
(2), · · · , w(st)(m)

)
where w(st)(i) is given by:

w(st)
(i) =

ec(st+i)∑j=m
j=1 ec(st+j)

(5)

The idea of weighing the returns based on a notion of confidence has been explored earlier (White
& White, 2016; Thomas et al., 2015). In these works, learning or adapting the lambda parameter
based on a notion of confidence/certainty under the bias-variance trade-off has been attempted, but
the reason why only a few successful methods have emerged from that body of work is due to the
difficult of quantifying, measuring and optimizing this certainty metric. In this work, we propose a
simple and robust way to model this and we also address the question of what it means for a particular
state to have a high value of confidence and how this leads to better estimates of the value function.

3.3 USING λ-RETURNS IN A3C

λ-returns have been well studied in literature (Peng & Williams, 1996; Sutton & Barto, 1998; Seijen
& Sutton, 2014) and have been used in DRL setting as well (Schulman et al., 2015b; Gruslys
et al., 2017). We propose a straightforward way to incorporate (truncated) λ-returns into the A3C
framework. We call this combination as LRA3C.

The critic in A3C uses n-step return for arriving at good estimates for the value function.
However, note that the TD-target can in general be based on any n-step return (or a mixture thereof).
The A3C algorithm in specific is well suited for using weighted returns such as λ-returns since the
algorithm already uses n-step return for bootstrapping. Using eqs. (1) to (3) makes it very easy to
incorporate weighted returns into the A3C framework. The sample estimates for the gradients of the
actor and the critic respectively become:

∇θa log πθa(at|st)(Gλt − V (st))

∇θc(Gλt − Vθc(st))2
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Figure 1: CARA3C network - Confidence-based weight vector calculation for state s1.

3.4 USING AUTODIDACTIC RETURNS IN A3C

We propose to use autodidactic returns in place of normal n-step returns in the A3C framework.
We call this combination as CARA3C. In a generic DRL setup, a forward pass is done through
the network to obtain the value function of the current state. The parameters of the network are
progressively updated based on the gradient of the loss function and the value function estimation (in
general) becomes better. For predicting the confidence values, a distinct neural network is created
which shares all but the last layer with the value function estimation network. So, every forward pass
of the network on state st now outputs the value function V (st) and the confidence the network has
in its value function prediction, c(st). Figure 1 shows the CARA3C network unrolled over time and
it visually demonstrates how the confidence values are calculated using the network. Next, using
eqs. (1) to (5) the weighted average of n-step returns is calculated and used as a target for improving
V (st). Algorithm 1, in Appendix F , presents the detailed pseudo-code for training a CARA3C agent.
The policy improvement is carried out by following sample estimates of the loss function’s gradient,
given by: ∇θa log πθa(at|st)δt, where δt is now defined in terms of the TD error term obtained by
using autodidactic returns as the TD-target. Overall, the sample estimates for the gradient of the
actor and the critic loss functions respectively are:

∇θa log πθa(at|st)(G
w(st)
t − V (st))

∇θc(G
w(st)
t − Vθc(st))2

3.5 AVOIDING PITFALLS IN TD LEARNING OF CRITIC

The LSTM-A3C neural networks for representing the policy and the value function share all but
the last output layer. In specific, the LSTM (Hochreiter & Schmidhuber, 1997) controller which
aggregates the observations temporally is shared by the policy and the value networks. As stated in
the previous sub-section, we extend the A3C network to predict the confidence values by creating
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a new output layer which takes as input the LSTM output vector (LSTM outputs are the pre-final
layer). Figure 1 contains a demonstration of how w(s1) is computed. Since all the three outputs
(policy, value function, confidence on value function) share all but the last layer, Gw(st)

t depends on
the parameters of the network which are used for value function prediction. Hence, the autodidactic
returns also influence the gradients of the LSTM controller parameters. However, it was observed
that when the TD target, Gwt , is allowed to move towards the value function prediction V (st), it
makes the learning unstable. This happens because the L2 loss between the TD-target and the value
function prediction can now be minimized by moving the TD-target towards erroneous value function
predictions V (st) instead of the other way round. To avoid this instability we ensure that gradients
do not flow back from the confidence values computation’s last layer to the LSTM layer’s outputs.
In effect, the gradient of the critic loss with respect to the parameters utilized for the computation
of the autodidactic return can no longer influence the gradients of the LSTM parameters (or any of
the previous convolutional layers). To summarize, during back-propagation of gradients in the A3C
network, the parameters specific to the computation of the autodidactic return do not contribute to the
gradient which flows back into the LSTM layer. This ensures that the parameters of the confidence
network are learned while treating the LSTM outputs as fixed feature vectors. This entire scheme of
not allowing gradients to flow back from the confidence value computation to the LSTM outputs has
been demonstrated in Figure 1. The forward arrows depict the parts of the network which are involved
in forward propagation whereas the backward arrows depict the path taken by the back-propagation
of gradients.

4 EXPERIMENTAL SETUP AND RESULTS

We performed general game-play experiments with CARA3C and LRA3C on 22 tasks in the Atari
domain. All the networks were trained for 100 million time steps. The hyper-parameters for each of
the methods were tuned on a subset of four tasks: Seaquest, Space Invaders, Gopher and Breakout.
The same hyper-parameters were used for the rest of the tasks. The baseline scores were taken from
Sharma et al. (2017). All our experiments were repeated thrice with different random seeds to ensure
that our results were robust to random initialization. The same three random seeds were used across
experiments and all results reported are the average of results obtained by using these three random
seeds. Since the A3C scores were taken from Sharma et al. (2017), we followed the same training
and testing regime as well. Appendix A contains experimental details about the training and testing
regimes. Appendix G documents the procedure we used for picking important hyper-parameters for
our methods.

Figure 2: Training curves for raw scores obtained by CARA3C and LRA3C.

4.1 GENERAL GAMEPLAY PERFORMANCE

Table 1: Mean and median of A3C normalized scores across all games.

Algorithm Normalized Scores
Mean Median

A3C 1.00 1.00
LRA3C 1.63 1.05
CARA3C 4.53 1.15

Evolution of the average performance of our methods with training progress has been shown in
Figure 2. An expanded version of the graph for all the tasks can be found in Appendix C. Table 1

6



Under review as a conference paper at ICLR 2018

Figure 3: Percentage improvement achieved by CARA3C and LRA3C over A3C.

shows the mean and median of the A3C normalized scores of CARA3C and LRA3C. If the scores
obtained by one of the methods and A3C in a task are p and q respectively, then the A3C normalized
score is calculated as:

(
p
q

)
. As we can see, both CARA3C and LRA3C improve over A3C with

CARA3C doing the best: on an average, it achieves over 4× the scores obtained by A3C. The raw
scores obtained by our methods against A3C baseline scores can be found in Table 2 (in Appendix
B). Figure 3 shows the percentage improvement achieved by sophisticated mixture of n-step return
methods (CARA3C and LRA3C) over A3C. If the scores obtained by one of the methods and A3C in
a task are p and q respectively, then the percentage improvement is calculated as:

(
p−q
q × 100

)
. As

we can see, CARA3C achieves a staggering 67× performance in the task Kangaroo.

4.2 ANALYSIS OF DIFFERENCE IN WEIGHTS ASSIGNED BY CARA3C AND LRA3C

Figure 4: Difference in weights given by CARA3C and LRA3C to each of the n-step returns (where
n ≤ 20) during an episode.

Figure 4 demonstrates the difference in weights assigned by CARA3C and LRA3C (i.e w(i)
CARA3C −

w
(i)
LRA3C ) to various n-step returns over the duration of an episode by fully trained DRL agents. The

four games shown here are games where CARA3C achieves large improvements in performance
over LRA3C. It can be seen that for all the four tasks, the difference in weights evolve in a dynamic
fashion as the episode goes on. The motivation behind this analysis is to understand how different the
weights used by CARA3C are as compared to LRA3C and as it can be seen, it’s very different. The
agent is clearly able to weighs it’s returns in a way that is very different from LRA3C and this, in
fact, seems to give it the edge over both LRA3C and A3C in many games. These results once again
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reiterates the motivation for using dynamic Autodidactic Returns. An expanded version of the graphs
for all the tasks can be found in Appendix D.

4.3 SIGNIFICANCE OF THE CONFIDENCE VALUES

Figure 5: Relation between the confidence assigned to a state and the percent change in their value
estimate. Percentage change in value estimates were obtained by calculating the value estimate of a
state just before and after a batch gradient update step.

In Figure 5 each bin (x, y) denotes the average confidence value assigned by the network to the states
that were encountered during the training time between y million and y + 1 million steps and whose
value estimates were changed by a value between x and x + 1 percent, where 0 ≤ x < 100 and
0 ≤ y < 100. In all the graphs we can see that during the initial stages of the training(lower rows of
the graph), the confidence assigned to the states is approximately equal irrespective of the change
is value estimate. As training progresses the network learns to assign relatively higher confidence
values to the states whose value function changes by a small amount than the ones whose value
function changes more. So, the confidence value can be interpreted as a value that quantifies the
certainty the network has on the value estimate of that state. Thus, weighing the n-step returns based
on the confidence values will enable the network to bootstrap the target value better. The confidence
value depends on the certainty or the change in value estimate and it is not the other way round, i.e.,
having high confidence value doesn’t make the value estimate of that state to change less. This is true
because the confidence value can not influence the value estimate of a state as the gradients obtained
from the confidence values are not back propagated beyond the dense layer of confidence output.

4.4 ANALYSIS OF EVOLUTION OF CONFIDENCE VALUES DURING AN EPISODE

Figure 6: Evolution of confidence over an episode along with game frames for certain states with
high confidence values.

Figure 6 shows the confidence values assigned to states over the duration of an episode by a fully
trained CARA3C DRL agent for two games where CARA3C achieves large improvements over
LRA3C and A3C: Kangaroo and Beam Rider.

For both the games it’s clear that the confidence values change dynamically in response to
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the states encountered. Here, it’s important to note that the apparent periodicity observed in the
graphs is not because of the nature of the confidences learnt but is instead due to the periodic nature
of the games themselves. From the game frames shown one can observe that the frames with high
confidence are highly recurring key states of the game. In case of Beam Rider, the high confidence
states correspond to the initial frames of every wave wherein a new horde of enemies (often similar
to the previous wave) come in after completion of the penultimate wave in the game. In the case of
Kangaroo, apart from many other aspects to the game, there is piece of fruit which keeps falling
down periodically along the left end of the screen (can be seen in the game’s frames). Jumping up at
the appropriate time and punching the fruit gives you 200 points. By observing game-play, we found
that the policy learnt by the CARA3C agent identifies exactly this facet of the game to achieve such
large improvements in the score. Once again, these series of states encompassing this transition of the
fruit towards the bottom of the screen form a set of highly recurring states, Especially states where
the piece of fruit is "jumping-distance" away the kangaroo and hence are closer to the reward are
found to form the peaks. These observations reiterate the results obtained in Section 4.3 as the highly
recurring nature of these states (during training over multiple episodes) would enable the network to
estimate these value functions better. The better estimates of these value functions are then suitably
used to obtain better estimates for other states by bootstrapping with greater attention to the high
confidence states. We believe that this ability to derive from a few key states by means of an attention
mechanism provided by the confidence values enables CARA3C to obtain better estimates of the
value function. An expanded version of the graphs for all the tasks can be found in Appendix E.

4.5 ANALYSIS OF THE LEARNED VALUE FUNCTION

Figure 7: Comparison of value function estimates of CARA3C, LRA3C and A3C.

In this paper, we propose two methods for learning value functions in a more sophisticated manner
than using n-step returns. Hence, it is important to analyze the value functions learned by our methods
and understand whether our methods are indeed able to learn better value functions than baseline
methods or not. For this sub-section we trained a few A3C agents to serve as baselines. To verify our
claims about better learning of value functions, we conducted the following experiment. We took
trained CARA3C, LRA3C and A3C agents and computed the L2 loss between the value function
V (st) predicted by a methods and the actual discounted sum of returns (

∑T−t
k=0 γ

krt+k). We averaged
this quantity over 10 episodes and plotted it as a function of time steps within an episode. Figure 7
demonstrates that our novel method CARA3C learns a much better estimate of the Value function
V (st) than LRA3C and A3C. The only exception to this is the game of Kangaroo. The reason that
A3C and LRA3C critics manage to estimate the value function well in Kangaroo is because the policy
is no better than random and in fact their agents often score just around 0 (which is easy to estimate).

5 CONCLUSION AND FUTURE WORK

We propose a straightforward way to incorporate λ-returns into the A3C algorithm and carry out
a large-scale benchmarking of the resulting algorithm LRA3C. We go on to propose a natural
generalization of λ-returns called Confidence-based Autodidactic returns (CAR). In CAR, the agent
learns to assign weights dynamically to the various n-step returns from which it can bootstrap. Our
experiments demonstrate the efficacy of sophisticated mixture of multi-steps returns with at least
one of CARA3C or LRA3C out-performing A3C in 18 out of 22 tasks. In 9 of the tasks CARA3C
performs the best whereas in 9 of them LRA3C is the best. CAR gives the agent the freedom to learn
and decide how much it wants to weigh each of its n-step returns.

The concept of Autodidactic Returns is about the generic idea of giving the DRL agent the
ability to model confidence in its own predictions. We demonstrate that this can lead to better
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TD-targets, in turn leading to improved performances. We have proposed only one way of modeling
the autodidactic weights wherein we use the confidence values that are predicted alongside the value
function estimates. There are multiple other ways in which these n-step return weights can be
modeled. We believe these ways of modeling weighted returns can lead to even better generalization
in terms how the agent perceives it’s TD-target. Modeling and bootstrapping off TD-targets is
fundamental to RL. We believe that our proposed idea of CAR can be combined with any DRL
algorithm (Mnih et al., 2015; Jaderberg et al., 2017; Sharma et al., 2017) wherein the TD-target is
modeled in terms of n-step returns.
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APPENDIX A: EXPERIMENTAL DETAILS

Since the baseline scores used in this work are from Sharma et al. (2017), we use the same training
and evaluation regime as well.

ON HYPER-PARAMETERS

We used the LSTM-variant of A3C [Mnih et al. (2016)] algorithm for the CARA3C and LRA3C
experiments. The async-rmsprop algorithm [Mnih et al. (2016)] was used for updating parameters
with the same hyper-parameters as in Mnih et al. (2016). The initial learning rate used was 10−3 and it
was linearly annealed to 0 over 100 million time steps, which was the length of the training period. The
n used in n-step returns was 20. Entropy regularization was used to encourage exploration, similar to
Mnih et al. (2016). The β for entropy regularization was found to be 0.01 after hyper-parameter tuning,
both for CARA3C and LRA3C, separately. The β was tuned in the set {0.01, 0.02}. The optimal
initial learning rate was found to be 10−3 for both CARA3C and LRA3C separately. The learning
rate was tuned over the set {7 × 10−4, 10−3, 3 × 10−3}. The discounting factor for rewards was
retained at 0.99 since it seems to work well for a large number of methods (Mnih et al., 2016; Sharma
et al., 2017; Jaderberg et al., 2017). The most important hyper-parameter in the LRA3C method is the
λ for the λ-returns. This was tuned extensively over the set {0.05, 0.15, 0.5, 0.85, 0.9, 0.95, 0.99}.
The best four performing models have been reported in Figure 11b. The best performing models had
λ = 0.9.

All the models were trained for 100 million time steps. This is in keeping with the training regime in
Sharma et al. (2017) to ensure fair comparisons to the baseline scores. Evaluation was done after
every 1 million steps of training and followed the strategy described in Sharma et al. (2017) to
ensure fair comparison with the baseline scores. This evaluation was done after each 1 million time
steps of training for 100 episodes , with each episode’s length capped at 20000 steps, to arrive at an
average score. The evolution of this average game-play performance with training progress has been
demonstrated for a few tasks in Figure 2. An expanded version of the figure for all the tasks can be
found in Appendix C.

Table 2 in Appendix B contains the raw scores obtained by CARA3C, LRA3C and A3C
agents on 22 Atari 2600 tasks. The evaluation was done using the latest agent obtained after training
for 100 million steps, to be consistent with the evaluation regime presented in Sharma et al. (2017)
and Mnih et al. (2016).

ARCHITECTURE DETAILS

We used a low level architecture similar to Mnih et al. (2016); Sharma et al. (2017) which in turn
uses the same low level architecture as Mnih et al. (2015). Figure 1 contains a visual depiction of the
network used for CARA3C. The common parts of the CARA3C and LRA3C networks are described
below.

The first three layers of both the methods are convolutional layers with same filter sizes,
strides, padding and number of filters as Mnih et al. (2015; 2016); Sharma et al. (2017). These
convolutional layers are followed by two fully connected (FC) layers and an LSTM layer. A policy
and a value function are derived from the LSTM outputs using two different output heads. The
number of neurons in each of the FC layers and the LSTM layers is 256. These design choices have
been taken from Sharma et al. (2017) to ensure fair comparisons to the baseline A3C model and
apply to both the CARA3C and LRA3C methods.

Similar to Mnih et al. (2016) the Actor and Critic share all but the final layer. In the case of CARA3C,
Each of the three functions: policy, value function and the confidence value are realized with a
different final output layer, with the confidence and value function outputs having no non-linearity
and one output-neuron and with the policy and having a softmax-non linearity of size equal to size of
the action space of the task. This non-linearity is used to model the multinomial distribution.
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APPENDIX B: TABLE OF RAW SCORES

Table 2: Game Playing Experiments on Atari 2600

Name CARA3C LRA3C A3C

Amidar 973.73 954.79 1028.34
Assault 2670.74 2293.74 1857.61
Asterix 16048.00 19139.00 2364.00
Bank Heist 1378.60 1382.97 1731.40
Beam Rider 5076.10 2099.71 2189.96
Bowling 40.94 26.90 16.88
Breakout 678.06 733.87 555.05
Centipede 3553.82 3226.94 3293.33
Demon Attack 17065.22 69373.42 26742.75
Freeway 4.9 19.97 17.68
Frostbite 310.00 289.27 306.8
Gopher 9468.07 9626.53 9360.60
James Bond 421.50 118.33 285.5
Kangaroo 1777.33 16.67 26.00
Koolaid 66.67 663.67 1136
Name this game 11354.37 11515.33 12100.80
Phoenix 10407.83 6084.73 5384.1
Sea quest 4056.4 13257.73 2799.60
Space Invaders 2703.83 3609.65 1268.75
Star Gunner 24550.33 44942.33 39835.00
Tutankhamun 245.86 271.46 252.82
Wizard of Wor 5529.00 2205.67 3230.00

All the evaluations were done using the agent obtained after training for 100 million steps, to be
consistent with the evaluation paradigm presented in Sharma et al. (2017) and Mnih et al. (2016).
Both CARA3C and LRA3C scores are obtained by averaging across 3 random seeds. The scores for
A3C column were taken from Table 4 of Sharma et al. (2017).
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APPENDIX C: TRAINING GRAPHS

The evaluation strategy described in Appendix A was executed to generate training curves for all the
22 Atari tasks. This appendix contains all those training curves. These curves demonstrate how the
performance of the CARA3C and LRA3C agents evolves with time.

Figure 8: Training curves for CARA3C and LRA3C
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APPENDIX D: DIFFERENCE IN WEIGHTS ASSIGNED BY CARA3C AND LRA3C

This appendix presents the expanded version of the results shown in Section 4.2. These plots show
the vast differences in weights assigned by CARA3C and LRA3C to various n-step returns over the
duration of a single episode.

Figure 9: Difference in weights given by CARA3C and LRA3C to each of the n-step returns (where
n ≤ 20) during an episode.
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APPENDIX E: EVOLUTION OF CONFIDENCE VALUES DURING AN EPISODE

This appendix presents the expanded version of the results shown in Section 4.4. The aim is to show
the how the confidence values dynamically change over the duration of an episode and show the
presence of explicit peaks and troughs in many games. Here, it’s important to note that the apparent
periodicity observed in some graphs is not because of the nature of the confidences learnt but is
instead due to the periodic nature of the games themselves.

Figure 10: Evolution of confidence values over an episode.
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APPENDIX F: ALGORITHM FOR TRAINING CARA3C

The algorithm corresponding to CARA3C, our main contribution, has been presented in Algorithm 1.
The get_weights_matrix function used by this algorithm in line 30 is given by Algorithm 2. A similar
algorithm can be constructed for LRA3C easily.

Algorithm 1 CARA3C

1: // Assume global shared parameter vectors θ.
2: // Assume global step counter (shared) T = 0
3:
4: K ← Maximum value of n in n-step returns
5: Tmax ← Total number of training steps for CARA3C
6: π ← Policy of the agent
7: Initialize local thread’s step counter t← 1
8: Let θ′ be the local thread’s parameters
9:

10: repeat
11: tinit = t
12: dθ ← 0
13: dw ← 0
14: Synchronize local thread parameters θ′ = θ
15: confidences←[ ]
16: Obtain state st
17: states← [ ]
18: repeat
19: states.append(st)
20: Sample at ∼ π(at|st; θ′)
21: Execute action at to obtain reward rt and obtain next state st+1

22: confidences.append(c(st+1; θ
′))

23: t← t+ 1
24: T ← T + 1
25: until st is terminal or t == tinit +K
26: if st is terminal then
27: R← 0
28: else
29: R← V (st; θ

′)

30: C ← get_weights_matrix(confidences)
31: Gij ← the i-step return used for bootstraping estimate for states[j] // K ×K matrix
32: for i ∈ {t− 1, · · · , tinit} do
33: j ← i− tinit

34: R
′ ← R

35: for k ∈ {K − 1, · · · , j} do
36: R

′ ← ri + γR
′

37: Gkj ← Ckj .R
′

// Assuming 0-based indexing
38: R← V (si; θ

′)

39:
40: for i ∈ {t− 1, . . . tinit} do
41: j ← i− tinit

42: TD-target←
∑K−1
j=0 Gij

43: Gradients for θ based on π: dθ′ ← dθ′ +∇θ
(
log(π(ai|si; θ′)

)(
TD-target− V (si)

)
44: Gradients for θ based on V : dθ′ ← dθ′ +∇θ

(
TD-target− V (si; θ

′)
)2

45: Perform asynchronous update of θ using dθ′
46: until T > Tmax
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Algorithm 2 Creates a 2D weights matrix with the confidence numbers

function GET_WEIGHTS_MATRIX(C)
2: w ← softmax(C)

W ← 1⊗ wT // W is a K ×K weight matrix with Wi = wT . ⊗ is outer product.

4: for wi,j ∈W do
if i > j then

6: wi,j ← 0

for wi ∈W do
8: wi =

wi

sum(wi)
return W

APPENDIX G: CHOICE OF IMPORTANT HYPER-PARAMETERS FOR OUR METHODS

(a) Tuning architecture for CAR (b) Tuning the λ for LR

Figure 11: Tuning the important hyper-parameters for our methods

Perhaps the most important hyper-parameter in CARA3C is the network which calculates the
confidence values. Since gradients do not flow back from confidence computation to the LSTM
controller, this becomes an important design choice. We experimented extensively with different
types of confidence computation networks including shallow ones, deep ones, wide ones and narrow
ones. We found a "zero hidden layer" network on top of the LSTM controller (much like one
which computes the value function) works the best (Figure 11a). Similarly, the most important
hyper-parameter in λ-returns is the λ from eq. (3). While we experimented with a large number and
range of values for λ the best performing ones have been reported in Figure 11b.
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