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ABSTRACT

Symbolic graphics code generation, particularly text-to-SVG generation, plays
a critical role in numerous practical applications, including web design, digital
publishing, and user interface prototyping. However, current open large language
models face significant challenges in handling these visually intricate and struc-
turally precise tasks, often exhibiting a considerable performance gap compared to
leading proprietary models. In this paper, we present a novel approach aimed at sub-
stantially improving the capabilities in text-to-SVG tasks. Our main contributions
are threefold: First, we propose a reinforcement learning framework that leverages
vision-language models (VLMs) as visual reward model, providing comprehensive
visual feedback that guides LLMs towards generating more accurate and visually
coherent SVG outputs. Second, we investigate inference-time scaling methods
through extended long Chain-of-Thought (CoT) reasoning combined with large-
scale RL, revealing that such methods inherently counteract reward hacking by
refining prompt engineering and making task objectives more explicit and concrete.
Third, we introduce a new, high-quality benchmark alongside a rigorously curated
training dataset dedicated to text-to-SVG generation, addressing the notable ab-
sence of specialized benchmarks and datasets in this domain. Experiments on open
model, i.e., Qwen3 demonstrate that our approach achieves results comparable to
state-of-the-art proprietary and larger models, including Claude-4.0-Sonnet. This
work substantially narrows the performance gap and provides both methods and
resources to advance symbolic code generation research.

1 INTRODUCTION

Large language models (LLMs), have made remarkable progress across a wide range of do-
mains (Hurst et al.| 2024} Jaech et al.| [2024; OpenAl} 2025c} [Team et al.| [2023), including question
answer (Ouyang et al.,2022;|Yang et al.| [2025a; [Team et al.,|2024), code generation (Hui et al., 2024)),
and complex problem-solving (Guo et al.,2025; Wang et al., 2024bj |Yang et al.| 2024; Team, [2025)).
Nevertheless, generating symbolic graphics code, particularly from natural language to Scalable
Vector Graphics (SVG), remains a persistent challenge (Nishina & Matsui, [2024). Unlike conven-
tional code generation, text-to-SVG tasks require not only syntactic correctness but also adherence
to structural precision and visual semantics (Cai et al., 2023). Bridging the gap between textual
descriptions and visually faithful SVG would significantly advance a variety of practical applications,
including digital publishing, web design, educational illustration, and user interface prototyping.

Although proprietary models have achieved strong performance in symbolic graphics tasks (Yang
et al.,2025b)), open-source models still fall noticeably behind. One major factor underlying to this
gap is the lack of visual feedback during pre-training and post-training. Many current methods
focus primarily on textual correctness, overlooking the visual quality of the rendered outputs. Yet
in symbolic graphics generation, success is ultimately determined by how well the generated image
reflects the intended meaning of the input. Without explicit visual feedback, models often produce
outputs that are syntactically correct but visually misaligned with the user’s instructions.

To address this limitation, we propose a reinforcement learning (RL) framework that incorporates
visual feedback into the post-training of LLMs. Central to our approach is the use of frozen vision-
language models (VLMs) (Bai et al., 2025 |OpenAl, 2023; [Lu et al.| 2024} Wu et al., 2024b) as
perceptual judges, which evaluate the alignment between the rendered SVG output and the reference
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Figure 1: Training curves for Qwen3-8B under different settings. The Chat model (orange) initially
improves but exhibits reward hacking (red dotted) by inserting descriptive text instead of graphical
elements. In contrast, the Thinking model (green), enabled by inference-time reasoning, maintains
consistent gains without reward hacking, producing visually faithful SVG code.

image. Rather than relying on token-level or syntactical correctness, the reward signal is grounded
in perceptual fidelity across multiple visual dimensions (Baumli et al.| 2023)). These include object
presence and accuracy, spatial arrangement, and overall stylistic quality (Rodriguez et al.,|2023). The
resulting reward functions are not only sensitive to visual details but are also fine-grained, enabling
scalable optimization. Compared to conventional methods, our approach introduces a stronger
inductive bias toward generating SVG code that is both semantically faithful and visually coherent.

However, the introduction of perceptual rewards also brings new challenges. As shown in Figure|[T}
reward hacking is observed (Weng, 2024), where the model exploits weaknesses in the reward signal,
such as embedding descriptive text into the image in place of rendering the graphical elements. This
behavior is largely driven by biases in vision-language models pretraining stage, many of which are
pretrained with grounding data that assigns comparable importance to textual overlays and visual
features (Wang et al., |2024a; Bai et al., 2025). To mitigate such failure modes, we investigate
inference-time scaling as a complementary strategy (Team et al.| 2025} |Guo et al.||2025; Jaech et al.|
2024} |OpenAlL 2025¢}; Yang et al., [2025a). Specifically, we employ reasoning model and prompt
it to engage in long chain-of-thought (CoT) decomposition prior to code generation (Yang et al.|
2025a;|Guo et al., 2025). This “thinking mode” encourages the model to reflect on the instruction
and internalize task constraints before producing code. We find that such reflective generation
significantly reduces reward hacking and leads to improved output quality across both visual fidelity
and instruction compliance.

In parallel with these technical contributions, we also address a data limitation in this domain. Existing
benchmarks are either absent or insufficiently tailored to capture the nuances of symbolic graphics
generation. To fill this gap, we construct a high-quality benchmark and a curated training dataset
using a scalable pipeline. Our process ensures both structural diversity and semantic alignment
between code, rendered images, and textual instructions, supporting reliable evaluation and training.

In summary, we present a unified framework for symbolic graphics code generation that integrates
perceptual feedback and inference-time scaling. Applied to open-source models such as Qwen3 (Yang
et al.,[2025a)), we substantially narrows the performance gap with state-of-the-art proprietary models.
Beyond demonstrating empirical gains, this work contributes scalable methodologies and resources
that advance the broader goal of aligning language models with visually grounded semantics.
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2 TASK FORMULATION

Let Q be the space of natural language query (instructions), and let O denote the set of syntactically
valid SVG code. The text-to-SVG task is to learn a mapping 7y : Q — O, parameterized by 6, that
generates an SVG program o € O given an input instruction ¢ € Q. Each SVG code o is rendered
into an image I € 7 via a deterministic function render : O — Z. The goal is to learn a policy 7y
that produces code o whose rendered image I = render(o) faithfully reflects the visual semantics
described by g. Due to the inherent ambiguity of the task, multiple distinct codes may yield visually
identical or semantically equivalent images. As a result, evaluation is conducted primarily in the
visual domain, rather than based on token-level similarity between codes. This task is motivated by
real-world applications such as web design, UI/UX, and digital publishing, where SVGs provide a
compact and resolution-independent representation of icons, charts, and other vector graphics.

3 METHOD

3.1 PRELIMINARY

Group Relative Policy Optimization (GRPO) Reinforcement learning excels at code and mathe-
matical reasoning tasks (Guo et al.,[2025; Jaech et al., 2024} |Yang et al., 2025a), where programmatic
oracles (e.g., unit tests, symbolic solvers) provide explicit correctness signals. Text-to-SVG genera-
tion lacks such ground truth: many syntactically different codes render the same image, and textual
metrics correlate poorly with visual fidelity. Unlike actor—critic methods such as PPO (Schulman
et al.,[2017)) that learn a separate critic, GRPO (Shao et al.,|2024) eliminates the need for a critic by
comparing a group of completions directly. For a query ¢, the behavior policy 7, samples a group
of G completions {0;}$ ;. Each completion o; receives a task-specific reward R; = R(q,0;). Its
group-relative advantage is then the computed via z-score normalization:

N R; —mean({RJ’}jG=1)

A = . (1)
Std({Rj }]-GZI)

Policy improvement is performed at the token level. Let o, ; denote the ¢-th token of code o;. GRPO
maximizes a clipped surrogate objective with a KL regularization term:
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Here, ¢ is the clipping threshold, 5 controls the strength of the KL regularization toward a fixed
reference policy 7.r, and expectations are taken first over tokens, then averaged over the G sampled
codes. GRPO thus optimizes the policy toward completions that outperform others.

3.2 REINFORCEMENT LEARNING WITH VISUAL FEEDBACK

Reinforcement learning excels in code and math reasoning because deterministic oracles supply
explicit correctness signals (Guo et al.| 2025). However, text-to-SVG generation lacks such ground-
truth supervision. A visually accurate SVG may have multiple structurally distinct implementations,
and textual similarity metrics often fail to reflect perceived visual fidelity. We overcome this gap with
a frozen state-of-the-art vision-language model (VLM). At each training step, the model generates
SVG code, we render it, pair the image with the prompt, and query VLM for a score. This dense
scalar reward proxies human preference, pushing the model toward syntactically valid, semantically
faithful, and visually coherent graphics.
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Prompt for Visual-Langauge Model

Please help me evaluate SVG images against specified instructions and a reference image through three major assessment areas.
Each area is scored independently, with scores summed for a final rating.
- First Image: the generated image to be evaluated
- Second Image: the reference “ground-truth” image
Here’s the specified instructions for SVG code writing:
{THE_SVG_INSTRUCTION}
1. Object and Text Accuracy (0-3 points)
Criteria: Object Presence, Object Completeness, Shape Accuracy, Text Accuracy, Typography
- 0 points: Significant deviation from requirements, critical objects missing or severely distorted
- 1 points: [Base GOOD score] All required objects present and identifiable, though may have minor flaws in shape or execution
- 2 points: [Perfect shapes] All objects match specified shapes, with correct proportions and proper sizing relative to each other
- 3 points: [Outstanding accuracy] Perfect shaping with precise edges, and perfect text implementation matching reference exactly
2. Positioning and Stroke Precision (0-4 points)
Criteria: Relative Positioning, Size and Proportion, Stroke Accuracy, Clean Layout, Viewbox Utilization
- 0 points: Completely incorrect layout or missing stroke elements
- 1 points: Significant layout issues, problematic stroke implementations or poor positioning with major overlapping issues
- 2 points: [Base GOOD score] Objects positioned correctly with proper spacing and appropriate stroke weights
- 3 points: [Excellent positioning] Perfect layout matching reference image with precise spacing and optimal viewbox utilization
- 4 points: [Masterful execution] Perfect positioning that match reference image with exceptional accuracy down to the pixel level
3. Color and Overall Quality (0-3 points)
Criteria: Color Matching, Opacity/Transparency, Rendering Quality, Detail Precision, Overall Impression
- 0 points: Incorrect colors, severe rendering failures or major quality problems
- 1 points: [Base GOOD score] Colors match specifications, rendering is clean with no artifacts
- 2 points: [Perfect coloring] Exact color matching to reference image, with appropriate use of opacity/transparency if specified
- 3 points: [Outstanding quality] Perfect color implementation that perfectly matches or exceeds reference image
Evaluation Guideline
- Reference the second image (the reference “ground-truth” image) when assessing
- Always compare to the reference when assigning higher scores than the [Base GOOD score]
- If an element does not match the reference image, it must be noted and reflected in the score
Please write your evaluation in the following format:
Tt xml
<comparison_summary>
...brief overall comparison between the generated image and the reference image...
</comparison_summary>
<object_text_accuracy> <review>...</review> <score>...a integer...</score>
</object_text_accuracy>
<positioning_stroke> <review>...</review> <score>...</score> </positioning.stroke>
<color_overall> <review>...</review> <score>...</score> </color._overall>
<final_score>...a integer...</final_score>

Figure 2: Prompt used for the VLM judge, specifying evaluation criteria and XML output format.
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Figure 3: Overview of reinforcement learning with visual feedback for text-to-SVG. The policy
model generates SVG based on a textual query, which is then rendered into an image and evaluated
by a vision-language model (VLM). The reward provides visual feedback to guide policy updates.

VLM-as-a-Judge The evaluation prompt used for reinforcement learning is designed based on three
key principles: (1) Comprehensive coverage. We decompose “visual quality” into three independent
dimensions critical to SVG graphics: (i) object and text correctness, (ii) geometric alignment and
stroke accuracy, and (iii) color fidelity and overall polish. Each dimension is supported by a checklist,
ensuring that every visible flaw maps to a concrete criterion. (2) Fine-grained scoring. Each
dimension is rated on a short integer scale with human-interpretable levels (e.g., adequate, perfect,
excellent). The overall score ranges from O to 10, with each increment representing a meaningful
visual improvement. This dense feedback provides smooth reward gradients and supports stable
policy updates. (3) Machine-readable output. The judge returns its decision in a fixed XML format
that contains both the written assessments and the numeric scores. The consistent output structure
allows direct extraction of rewards during training, eliminating the need for custom parsing and
ensuring deterministic behavior across runs.
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Mitigating Reward Hacking via Inference-Time Scaling

Instruction:

Help me create an SVG code that renders a simple house with an orange trapezoid roof, white walls, two blue windows, a set of four steps on the left side
with purple accents, a green base, and some dashed curved lines on the right side to represent wind or rain.

Response:

<think>

Okay, I need to create an SVG of a simple house based on the instruction. Let’s start by breaking down the components. First, the house has an orange
trapezoid roof. A trapezoid has two parallel sides, so I’ll need to define a polygon or use a path ... So the walls are white. Let’s plan the structure.
Let’s say the house has a square base, like a rectangle for the walls ... So for the roof: trapezoid. Let’s make it large enough ...

</think>

TTxml

<svg viewBox="0 0 300 300" xmlns="http://www.w3.0rg/2000/svg">
<!-- Orange trapezoid roof —-->
<polygon points="80,100 220,100 250,150 50,150" £ill="4#FF8C00"/>
<!--White walls —-—>

<rect x="50" y="150" width="200" height="150" fill="#FFFFFF"/>

</svg>

Figure 5: An example of inference-time scaling using Qwen3 with a <think> directive, where the
model reflects step by step before generating SVG.

These designs yield a reward function that is comprehensive, modifiable, and reproducible, which are
essential properties for reliable reinforcement learning in text-to-SVG generation.

Reward Score Each training sample consists of a textual instruction ¢ and its reference SVG code
o*. The policy my generates a candidate o. Both are rendered into images:

I" = render(0"), I = render(o). 4)
The tuple (g, I, I*), together with the prompt (Figure , is passed to a frozen vision—-language model,
which returns an integer score r € [0, 10], labelled as <final_score></final_score> in the

XML output. To reduce the effect of randomness in VLM outputs, we query the VLM five times
(R = {r1,...,75}), drop the highest and lowest scores, and average the rest to define the reward:

Rym(g,0) = mean(R \ {min R, max R}). ®)

3.3 MITIGATING REWARD HACKING VIA INFERENCE-TIME SCALING

Reward Hacking While reinforcement learn-

ing based on visual feedback can improve text- House Icon Design Elements
to-SVG performance in the early stages of train- AR SMMO
ing, we observe that it often leads to reward - s 'jhwe ‘
hacking in later stages (Weng}, 2024} IDi Lan; o ettt WAL

gt blue shafes BafiR B RasRIE

gosco et al.,2022), which results in degradation
of output quality (Pan et al.,|2022; |Skalse et al., oo koo ROk S e
2022). A prominent failure mode occurs when \wﬁfiﬁ“&?ﬁﬁi‘mﬂs ]
the model generates SVGs that include textual g e e rouee ceson
annotations describing visual elements, such as e
“Red Roof” or “Blue Body of the House”, in-

stead of rendering the corresponding graphics. Figure 4: A case of reward hacking where the
These outputs frequently receive high reward model embeds descriptive text like “Red Roof” in-
scores from the vision-language model, even stead of rendering the intended visual concept.
though they fail to capture the intended visual

semantics.

This behavior stems from biases in the reward signal introduced by vision-language models, many of
which are pretrained with grounding-based supervision (Wang et al.,2024a; Bai et al.,|2025)). In such
settings, both textual overlays and object-level features contribute similarly during alignment. As a
result, rendering relevant words within the SVG becomes a shortcut for maximizing reward, even
when the output fails to reflect the intended graphical content.

Inference-time Scaling Accordingly, we choose a thinking-enabled model as the RL policy back-
bone, using inference-time reasoning to avoid reward hacking and promote visually grounded, seman-
tically coherent outputs. Figure [5]shows our implementation with Qwen3, whose explicit <think>
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Figure 6: Data pipeline for constructing text-to-SVG training examples.

directive triggers a chain-of-thought (CoT, [Wei et al.| (2022)) before SVG synthesis. Reflection lets
the model parse the instruction, decompose the visual specification, and embed implicit structure
and task-specific constraints. For example, it reasons about each SVG component before coding,
reducing reliance on reward shortcuts and producing outputs that remain both visually grounded and
semantically faithful.

3.4 DATA SYNTHESIS PIPELINE

Manual text-to-SVG annotation is prohibitively expensive, demanding design expertise, coding skills,
and pixel-level alignment. We instead build a synthetic pipeline that programmatically converts raw
SVGs into large, diverse, high-quality instruction—code pairs with minimal human effort (Figure [6).
The pipeline has three stages: data collection, semantic selection, and query construction.

Data Collection. We begin by retrieving all SVG files from The Stack V2 (Lozhkov et al.| 2024),
a permissively licensed code dataset. We randomly sample around 1 million SVG files out of 20.8
million. Files that fail to render, produce blank or corrupt outputs, or have invalid dimensions or
extreme aspect ratios are filtered out, resulting in approximately 0.5 million valid code-image pairs.

Semantic Selection. We then apply a frozen vision-language model (VLM) to each rendered image.
The model performs two core tasks: (i) semantic categorization, which assigns coarse labels for
purpose (e.g., Ul chart, icon) and style (e.g., flat, line, modern); and (ii) scalar grading, which
evaluates each image’s educational clarity and visual appeal on a [0-10] scale. From approximately
400K graded samples, we apply a human-informed selection strategy based on labels’ combinations.
This process yields a curated set of roughly 100K examples with improved quality and diversity.

Query Construction. For each selected image, we generate textual instructions using VLM-based
captioning. We synthesize two complementary prompt styles: (i) a description-style instruction
providing a detailed natural language account of the image, and (ii) a question-style instruction
emulating typical user queries (e.g., “Create an SVG of...””). A difficulty score is assigned to each
sample based on structural and visual complexity. The final dataset contains around 25K instances,
each consisting of the SVG code, rendered image, associated textual instructions, and difficulty score,
forming tuples of the form (Instruction, SVG Code, Image, Difficulty).

By synthesizing data grounded in both symbolic structure and visual semantics, our pipeline provides
scalable, controllable supervision for training LLMs via reinforcement learning in text-to-SVG tasks.
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Table 1: Comparison of closed-source and open-source on the text-to-SVG benchmark. Qwen3-8B
with proposed RL method achieves competitive performance.

| Description | Question
Model Thinking " -
| Easy Medium Hard Overall | Easy Medium Hard Overall
Closed-Source LLMs
Claude-4-Sonnet 5.87 5.61 4.95 5.69 - - - -
Claude-4-Sonnet v 5.78 5.88 4.64 5.73 - - - -
Claude-3.7-Sonnet 6.08 5.80 4.21 5.81 5.67 5.23 4.08 5.36
Claude-3.7-Sonnet v 5.89 571 3.59 5.64 5.76 5.48 4.28 5.53
Claude-3.5-Sonnet 5.86 5.26 3.46 541 5.56 4.87 2.97 5.07
GPT-4.1 5.86 5.42 5.15 5.62 - - - -
GPT-4.5-Preview 5.90 571 4.13 571 5.63 5.23 431 5.35
ChatGPT-40 5.73 5.70 4.56 5.62 5.59 5.25 3.79 5.31
GPT-40-mini 5.02 479 3.87 4.83 4.73 4.01 3.46 433
Open-Source LLMs

R1-Distill-Llama-70B v 4.47 3.78 2.20 4.00 4.37 3.74 2.28 3.94
R1-Distill-Qwen-32B v 435 3.85 2.23 3.97 433 3.44 2.02 3.77
R1-Distill-Qwen-14B v 3.99 3.17 1.65 3.46 3.84 3.11 1.76 3.37
R1-Distill-Qwen-7B v 1.71 1.26 0.51 1.43 1.60 1.19 0.54 1.34
Llama-4-Maverick 5.13 4.72 3.37 4.82 4.73 425 2.70 437
Llama-4-Scout 4.37 3.99 291 4.10 4.46 3.79 2.28 4.01
Llama-3.1-70B 4.70 4.09 2.57 4.28 4.48 3.88 2.03 4.03
Llama-3.1-8B 3.31 2.64 1.58 2.89 3.20 2.62 1.09 2.79
Qwen2.5-Coder-32B 4.82 4.43 2.78 4.49 4.66 4.07 2.44 4.24
Qwen2.5-Coder-14B 4.43 3.73 2.38 3.97 4.33 3.63 2.03 3.85
Qwen?2.5-Coder-7B 3.98 3.24 1.75 3.50 3.68 3.10 1.61 3.27
Qwen3-235B-A22B 5.40 5.06 3.55 5.11 5.28 4.64 2.94 4.83
Qwen3-235B-A22B v 5.28 5.18 3.52 5.10 5.18 4.70 3.34 4.83
Qwen3-32B 5.13 4.69 2.67 4.75 491 4.36 2.66 4.50
Qwen3-32B v 5.03 493 3.40 4.86 5.04 4.63 3.06 4.71
Qwen3-30B-A3B 4.95 4.66 2.53 4.63 4.75 4.15 2.46 432
Qwen3-30B-A3B v 4.98 4.83 3.48 4.80 4.80 4.44 2.97 4.50
Qwen3-14B 4.96 4.49 2.84 4.60 4.85 4.17 2.17 435
Qwen3-14B v 493 4.75 3.35 4.73 4.90 437 2.58 4.49
Qwen3-8B 4.63 4.09 2.79 4.26 4.36 3.66 2.11 3.89
*Qwen3-8B v 4.78 4.51 3.12 4.54 4.80 4.15 2.34 433
*Qwen3-8B w/RL v 5.79 5.48 4.15 5.53 5.58 5.24 3.72 5.29

4 EXPERIMENTS

4.1 EVALUATION

Benchmark While emerging datasets like SVG—Benclﬂ provide initial resources, the field still lacks
a standardized evaluation suite. To address this, we curate a high-quality test set of 300 text-to-SVG
instances disjoint from training data, following the filtering pipeline in Section[3.4] After iterative
multi-dimensional validation, we retain 164 verified samples. To support detailed performance
analysis, we categorize the test set into three difficulty levels: Easy (82), Medium (69), and Hard (13).
The difficulty annotations are inherited from the scalar grading stage of our data pipeline, where a
vision-language model assigns a complexity score to each image. These automatic scores are further
verified. There’s two prompt styles for each instance to reflect different forms of user intent: (1) a
natural Description-style prompt and (2) a Question-style prompt.

Compared Models We conducted evaluations using a diverse set of models on our text-to-SVG
benchmark. For proprietary closed-source models, we selected the largest variants of the Claude
3.5, 3.7 and 4 Sonnet series (Anthropic, [2023;2025ab)), with the 3.7 and 4 generation supporting
extended reasoning capabilities (referred to as “thinking” models). Additionally, we included
OpenAl’'s GPT-4.1, GPT-4.5-Preview, GPT-40 and GPT-40-mini (OpenAll [2025azb; Hurst et al.|
2024) in our assessment. For open-source models, we first evaluated several variants distilled from
DeepSeek-R1 (Guo et al., [2025)) across different sizes. We also considered Llama 3.1 and the latest
Llama 4 series (Grattafiori et al.| [2024; |Al@Metal 2024} [2025). Within the Qwen family, we selected
the Qwen 2.5 Coder series (Hui et al., [2024) and the Qwen3 series (Yang et al., |[2025a) featuring
Hybrid Thinking Modes, where the “Hybrid” refers to the ability to control the model’s depth of
reasoning via prompt-based instructions.

!Available at: https://github.com/johnbean393/SVGBench
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Instruction Reference Qwen3-8B w/RL Qwen3 8B Claude-3.7 Sonnet Qwen3-235B-A22B
Write SVG code that creates this letter H —
logo with two blue eve-like circles, the two /\ - RN /\
blue circular elements have centered black H ( \ |—I-
dots functioning as pupils, and the entire U | | \ ) k J
design is contained within a perfect black /
circular border:
Write SVG code that creates this mountain
landscape scene with four evergreen trees in
the foreground and layered teal mountains M
with snow caps in the background. ———
A

Generate SVG code for a necktie symbol
with light blue outlines, semi-transparent
overlapping triangles at the top, and a long
pointed rectangle at the bottom. Use pink 4\
and light blue with transparency to achieve a
sofi gradient and layered look.

Figure 8: Case study comparing text-to-SVG outputs across models.

4.2 TRAINING DETAILS

We conduct RL experiments on Qwen3-8B, which supports “Hybrid Thinking Modes” (Yang et al.,
2025a)), allowing us to investigate the impact of enabling the Thinking Mode within the same model.
To provide the perceptual reward signal essential for our RL, we employ Qwen2.5-VL 72B (Bai et al.|
2025) as the frozen vision-language model judge. For training runs without the Thinking Mode (i.e.,
standard instruction model), we set the maximum generation length to 8,192 tokens. In contrast, for
experiments with Thinking Mode enabled, the maximum generation length was extended to 16,384
tokens. Each RL training step involved inference over a batch of 256 queries, with 8 rollouts per
sample. We set the GRPO mini-batch size to 32 and set clipping parameter to 0.2(Schulman et al.;
2017). The learning rate was fixed at 1.5e-6. All other training details followed the standard GRPO
algorithm (Shao et al.} 2024])). All experiments were conducted on 16 NVIDIA A800 80GB GPUs,
with a total runtime of approximately 300 hours.

4.3 RESULTS

Main Results Table [1] shows that closed-source mod-
els outperform open-source models on the text-to-SVG
benchmark. Within the open-source Qwen family, per-
formance improves with model size, with Qwen3-32B
yielding higher scores than 14B and 8B. Moreover, en-
abling the thinking mode in Qwen models, particularly in
smaller ones, brings consistent gains. Notably, incorpo-
rating our proposed reinforcement learning method with
visual feedback into Qwen3-8B leads to a substantial im-
provement. The RL-enhanced model achieves an overall
score of 5.29, significantly outperforming its supervised A e R
counterpart (4.33). This result demonstrates that proposed Training Step
method can effectively bridge the performance gap, en-
abling open-source models to approach the capabilities
of stronger proprietary models in text-to-SVG tasks. A
qualitative comparison in Figure [§] further illustrates the
improvement, where RL-trained outputs show greater se-
mantic fidelity and visual completeness.

8000 1
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6000 1

Entropy Loss
(=]
3

=
=

Figure 7: Trends of response length and
entropy loss during training with Qwen3-
8B in thinking mode.

Findings To better understand the behavior of our reinforcement learning method, we monitor two
key metrics throughout training: response length and entropy loss. The results for Qwen3-8B under
both chat and thinking modes are shown in Figure[7] We observe that when trained with proposed
method in thinking mode, the model exhibits a steady increase in response length. This suggests that
the policy is actively encouraged to perform inference-time scaling during training. At the same time,
the entropy loss also increases consistently, indicating a growing degree of exploration. This enables
the model to sample potentially higher-reward SVG candidates, further improving learning dynamics.
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4.4 ABLATION STUDY 65

As discussed earlier, Qwen3-8B exhibits reward hack-
ing during training. We investigate whether this can be
mitigated by (a) scaling model size and (b) using a code-
specialized model. Thus, we conduct training on Qwen?2.5-
Coder-32B-Instruct, which satisfies both conditions. Fig-
ure 9] shows its training reward curve: reward hacking still 0
occurs, though its onset is delayed compared to Qwen3-

8B, suggesting that scaling and specialization slow down ++ (Hacked) Quen3-8B Char
hacking but do not eliminate it. In our experiments, only 30 i
enabling the thinking mode consistently prevents reward O T
hacking, highlighting the critical role of inference-time

scaling in preserving reward integrity.

Training Reward

Qwen3-8B Chat

Figure 9: Training reward curves for
Qwen3-8B and Qwen2.5-Coder-32B-

5 RELATED WORK Instruct.

Recent efforts have explored enhancing LLMs’ capabilities in SVG understanding and generation.
LLM4SVG (Xing et al., [2024) proposed a modular architecture combining semantic tagging and
vector encoders, supported by a 580K-sample dataset. Chat2SVG (Wu et al.| |2024a) combined
LLMs with diffusion models to generate visually expressive SVGs from text. StarVector (Rodriguez
et al.| 2023) fused vision encoders and CodeLLMs to generate SVGs. Follow-up study (Rodriguez
et al., 2025) have also applied reinforcement learning with rendering feedback, but typically rely
on VLM-based image reconstruction and holistic visual similarity for rewards. Several works have
also investigated SVG as an evaluation or reasoning medium. SVGEditBench (Nishina & Matsui,
2024) introduced a benchmark for assessing LLMs on structured SVG editing tasks. (Cai et al.| (2023)
demonstrated that LLMs can perform vision-language reasoning via SVG-based representations.
However, a common limitation of these reward mechanisms (e.g., FID (Theis et al.| 2015), CLIP
Score (Radford et al., 2021), FID-CLIP (Wu et al., |2023) or image reconstruction) is their struggle
with fine-grained fidelity, as they are ill-suited for a task where a single prompt can have multiple
valid visual outputs. In contrast, our method introduces a generative reward model that produces a
semantic checklist, enabling fine-grained feedback through RL.

6 DISCUSSION

Limitation and future directions This work has several limitations. First, due to resource
constraints, we only applied our method to Qwen-8B, as larger models require significantly more
compute. Second, regarding reward hacking, our work explores a different path from directly
engineering the reward function. While methods like using perceptual metrics or masking textual
artifacts are valid strategies, we focused on improving the model’s intrinsic reasoning process. Our
findings suggest that the “thinking mode” acts as an effective regularizer, compelling the model to
follow instructions more faithfully rather than exploiting reward signals. Third, our evaluation relied
on a single VLM as the judge. To validate that our improvements are robust and not an artifact of
overfitting to a specific judge’s biases, we plan to re-evaluate key model outputs using a distinct,
powerful VLM (e.g., (InternVL-3 and Qwen3-VL) and report the agreement. Fourth, the model
still struggles with prompts involving complex spatial reasoning, such as 3D shapes, likely due to
insufficient visual feedback. Building on these points, our future work will focus on applying visual
feedback—driven reinforcement learning to broader symbolic code domains, such as front-end web
generation, while employing a more rigorous multi-judge evaluation framework.

Conclusion In this paper, we introdue a reinforcement learning framework for symbolic graphics
code generation, with a focus on text-to-SVG tasks. By leveraging vision-language models as visual
reward models, we align model outputs with perceptual semantics. To address reward hacking,
we introduce inference-time scaling with thinking-enabled policies, encouraging the generation of
visually grounded and semantically faithful code. Furthermore, we construct a high-quality training
dataset through a VLM-guided selection and captioning pipeline. These components significantly
narrow the performance gap between open-source and proprietary models, and establish a foundation
for scalable, perceptually aligned code generation.
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REPRODUCIBILITY STATEMENT

We have taken several steps to support the reproducibility of our work. The construction of our
datasets, the design of evaluation prompts, and the overall experimental setup are detailed in Section 3,
along with Figures 2, 3, and 6. Section 4 specifies the models used and reports the corresponding
evaluation scores. To further facilitate replication, we provide a zipped supplementary material,
which include: (1) all prompts used in our experiments, (2) the full evaluation datasets, (3) end-to-end
evaluation code described in the paper, and (4) a step-by-step README that guides users to conduct
evaluations, which can also be integrated into any standard RL framework.
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A  EVALUATION OF GENERAL CAPABILITIES AFTER RL

A.1 GENERAL CAPABILITIES

A central challenge in model development is the specialization-generalization dilemma: task-specific
fine-tuning, while effective for the target domain, often risks degrading a model’s broader, general-
purpose capabilities. This phenomenon is a significant concern, particularly when using reinforcement
learning (RL) on highly structured, synthetic data like text-to-SVG. To investigate this issue, we
conducted a comprehensive evaluation of our final model, Qwen3-8B w/ RL, against its original base
model, Qwen3-8B.

Our evaluation spans a suite of established text-only benchmarks designed to measure founda-
tional abilities, including general knowledge (MMLU, Hendrycks et al.|[2020), mathematical
reasoning (GSM8K,Cobbe et al.|[2021| and MATHHendrycks et al.|[2021), and code generation
(HumanEval.Chen et al.|2021| and MBPP, |Austin et al.|2021)) with their enhanced version Hu-
manEval+ and MBPP+ in EvalPlus (Liu et al.||2023)). To ensure a fair and thorough comparison, we
evaluated both models under two distinct decoding strategies: with and without “thinking mode”.
The aggregated results are presented in Table[2] We can draw the following conclusions:

Table 2: Performance comparison on general text-based benchmarks. The results demonstrate that RL
fine-tuning for SVG generation does not degrade, and in some cases enhances, general capabilities.
Higher is better.

Model Thinking MMLU HumanEval HumanEval+ MBPP MBPP+ GSMS8K MATH
Qwen3-8B v 89.5 89.6 81.7 85.0 69.7 94.8 48.5
Qwen3-8B w/RL v 88.6 93.9 86.6 86.2 72.7 93.6 46.7
Qwen3-8B 83.8 82.9 80.5 69.2 59.4 88.2 25.0
Qwen3-8B w/ RL 84.5 82.3 79.9 71.9 60.9 91.5 25.0

Robust Preservation of Foundational Reasoning and Knowledge Across benchmarks, the
performance of Qwen3-8B w/ RL remains remarkably stable. On challenging tasks like MMLU,
GSMBS8K, and MATH, the scores are either marginally higher or exhibit only negligible decreases
(typically within a 1-2 point margin). This stability demonstrates that the specialized training for SVG
generation did not impair the model’s fundamental language understanding and complex reasoning
abilities.

Clear Evidence of Positive Transfer to Code Generation More strikingly, the model after RL
shows consistent and significant improvements across multiple code generation benchmarks, including
a +4.3 point gain on HumanEval and a +4.9 point gain on HumanEval+ in the “thinking mode”. This
suggests a powerful positive transfer effect. We hypothesize that the process of learning to generate
structured SVG code acts as a beneficial regularizer. This training helps the model learn to follow
instructions precisely, think logically, and stick to syntax constraints.

A.2 TARGETED VALIDATION OF CODING SKILLS
To further probe this observed enhancement in coding capabilities, we performed a more targeted

evaluation on LiveCodeBench (Jain et al.|2024; versions 5 and 6), a dynamic benchmark for
real-world coding challenges. We report pass@1 and pass@8 scores in the non-thinking mode.

13



Under review as a conference paper at ICLR 2026

Table 3: LiveCodeBench results (non-thinking mode), reported as “pass@1 / pass@8”. The model
after RL maintains or improves performance, corroborating the positive transfer effect on coding
tasks.

Model LiveCodeBench (v5) LiveCodeBench (v6)
Qwen3-8B 24.2/34.1 25.9/34.3
Qwen3-8B w/RL 24.0/35.3 26.8/33.5

As shown in Table[3] the Qwen3-8B w/ RL model maintains highly competitive performance. Notably,
it improves the pass @8 rate on v5 and the pass@1 rate on v6, suggesting that the RL training may
encourage the model to generate a broader set of correct candidates or improve its first-attempt
accuracy, depending on the contest’s nature.

In summary, the collective evidence from this multi-faceted evaluation is compelling. Our specialized
RL training pipeline for text-to-SVG does not lead to a trade-off. Instead, it enhances the target
capability without sacrificing—and in the important domain of code generation, even meaningfully
improving—the model’s general-purpose performance. This suggests our approach yields a model
that is both a master of its specialized domain and an even more capable generalist.

B LLM USAGE STATEMENT

In this work, we used a large language model as a general-purpose writing assistance tool. Specifically,
the LLM was used to help refine the clarity, grammar, and overall fluency of the text during the
drafting and revision stages. The model provided suggestions for rephrasing sentences, improving
paragraph structure, and ensuring consistent academic tone. However, all ideas, research design,
analysis and interpretation of results were made by the authors.
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