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ABSTRACT

In this paper, we propose a novel explanation module to explain the predictions
made by a deep network. Explanation module works by embedding a high-
dimensional deep network layer nonlinearly into a low-dimensional explanation
space while retaining faithfulness, so that the original deep learning predictions
can be constructed from the few concepts extracted by the explanation module.
We then visualize such concepts for human to learn about the high-level concepts
that deep learning is using to make decisions. We propose an algorithm called
Sparse Reconstruction Autoencoder (SRAE) for learning the embedding to the
explanation space. SRAE aims to reconstruct part of the original feature space
while retaining faithfulness. A visualization system is then introduced for human
understanding of features in the explanation space. The proposed method is applied
to explain CNN models in image classification tasks, and several novel metrics
are introduced to evaluate the performance of explanations quantitatively without
human involvement. Experiments show that the proposed approach could generate
better explanations of the mechanisms CNN use for making predictions.

1 INTRODUCTION

Deep learning has made significant strides in recent years. It has surpassed human performance in
many tasks, such as image classification ( , ; , ), go-playing (

, ), and classification of medical images ( , ). However, the usage of deep
learning in real applications still must overcome a trust barrier. Imagine scenarios with a doctor facing
a deep learning prediction: this CT image indicates malignant cancer, or a pilot facing a prediction:
make an emergency landing immediately. These predictions may be backed up with a claimed high
accuracy on benchmarks, but it is human nature not to trust them unless we are convinced that
they are reasonable for each individual case. The lack of trust is worsened because of known cases
where adversarial examples can fool deep learning to output wrong answers (

, ). In order to establish trust, human needs to understand how deep learmng
makes decisions. Such understanding could also help the human to gain additional insights into new
problems, potentially improve deep learning algorithms, and improve human-machine collaboration.

People prefer explanations of the form “A is something because of B, C, and D", e.g. this is a bird
because it has feathers, wings and a beak. This type of explanation has two properties. Firstly, it
is concise — there are not a hundred different reasons that add up to explain that A is something.
Secondly, it relies on B, C, and D, which are high-level concepts as well. Both are often at odds with
deep learning predictions, which are combinations of outputs from thousands of neurons in dozens
of layers. Approaches have been proposed to visualize each of the filters ( , )
and for humans to name them ( , ), but it is difficult for these approaches to obtain
a concise representation. On the other hand, many other approaches generate attention maps that
backtrack a decmon to spemﬁc important areas in the original image (

s ). These are often nice and
qulte 1nf0rmat1ve but they work on 1nd1v1dua1 1mages and do not provide any high-level concept
that can be broadly applicable to many images simultaneously, nor can we believe they are complete
explanations so that we can trust them.

In this paper, we make an attempt to reconcile these explanation approaches by extracting several
high-level concepts from deep networks to aid human understanding. Our model attaches a separate
explanation module to a certain layer in the deep network to reduce the network to a few human-
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Figure 1: (a) The explanation module is a dimensionality reduction mechanism so that the original prediction ¢
can be reproduced from this low-dimensional space. An explanation module can be attached to any layer in the
prediction deep network (DNN). The output of the DNN can be faithfully recovered from this low-dimensional
explanation space, which represents high-level features that are interpretable to humans. (b) Two non-localized
and highly correlated heat map explanations in the first row; two localized and largely orthogonal heat map
explanations in the second row.

understandable concepts, from where one can generate predictions similar to the original deep
network (Fig. 1(a)). We focus on making those concepts to have several properties: faithfulness, that
the deep learning predictions can be faithfully approximated from those few concepts; locality, that
the concepts are relatively spatially localized in images so that human can understand them; as well
as orthogonality, that the concepts themselves are as independent from each other as possible.

Our model does not train from ground truth concepts defined by human, but directly infers concepts
from the learning network, hence it is difficult to evaluate the explanations quantitatively. We evaluate
our approach on a fine-grained bird classification dataset where rich ground truth annotations allow
us to define quantitative metrics for the aforementioned properties without active human involvement.

Although the experiments in the paper focus on convolutional neural networks (CNN) applied to
images, the explanation framework we develop is general and applicable to other types of deep
networks as well. We believe this is one of the first steps towards general explainable deep learning
that can advance human knowledge and enhance future collaboration between humans and machines.

Our contributions in this paper are as follows:

e We propose a novel explanation module to form a low-dimensional explainable concept space
from deep networks. A sparse reconstruction autoencoder approach is proposed to make the
explanation module faithful and orthogonal as defined previously.

e We present a visualization paradigm for human understanding of the concept space.

e We propose automatic quantitative metrics to evaluate the performance of an explanation
algorithm for faithfulness, locality and orthogonality. Experimental results show that the
proposed explanation methods provide insights to how the deep network models work.

2 MODEL FORMULATION

2.1 THE EXPLANATION MODULE

Given a deep learning network (DNN) as a prediction module, we propose to learn an extra explanation
module (Fig. 1(a)), which can be attached to any intermediate layer of the DNN. The explanation
module attempts to learn an embedding that lowers the dimensionality of the intermediate layer of
the DNN, and then directly learn a mapping from the embedding space to mimic the output of the
original DNN model. We denote the input feature space of the explanation module as Z(x; W),
where x and W are the input features and parameters (from multiple layers) of the original DNN
model, respectively, and Z represents the output of a particular intermediate layer of the DNN.
The explanation module is used to embed Z to an explanation space, denoted as Eg(Z), where 0
represents parameters of the embedding that need to be learned. As a shorthand, we will also refer
to the explanation space as an x-layer, and each dimension in the x-layer an x-feature. Note that in
the explanation, we do not attempt to change the parameters W of the original DNN model. The
explanation module can in principle be attached to any intermediate layer of the DNN, although
the closer to the prediction, the higher level the concepts are and it becomes easier to mimic the
prediction of DNN with a low-dimensional embedding.
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We believe that for the explanation module to be understandable, it needs to generate a small amount
of concepts that preserve the original prediction results y. In other words, we would need a low-
dimensional feature embedding to be faithful to the DNN. This is generally difficult if the DNN
is predicting many concepts simultaneously, such as a multi-class classification. In this paper we
propose to obtain faithfulness by explaining 1-dimensional outputs, such as binary classification
or one-against-all classifiers. A multi-class explanation can in principle be built up from separate
explanations of one-against-all classifiers. For a 1-dimensional prediction ¢, we can definitely assume
that the explanation module could remain faithful to the prediction, since a naive case would be
to use the 1-dim ¢ as the explanation, which is perfectly faithful but not interpretable. Hence, the
low-dimensional embedding E can also be thought of as expanding ¢ to several dimensions, therefore
enriching the explanations for a single prediction.

In this paper, we focus on attaching explanation modules to fully-connected layers. The concepts
generated in these layers are rather high-level, and our conceptual goal is to visualize those concepts
and to make humans learn them: human has a quite deep neural network for learning and generalizing
perceptual concepts very well. Therefore we would like to show humans examples from a small
number of perceptual concepts from the explanation space, so that they can utilize their own perceptual
neural network for learning and naming those. Our primary tool for this display is heatmaps (e.g.
Fig. 1(b), Fig. 3(a)) highlighting a specific region in the image, similar as those used in attention
models in prior work. Our work will provide several different and largely orthogonal concepts,
visualized by heatmaps, for improving the understanding of the predictions from a DNN. The two
main topics in the explanation module are the embedding algorithm and the visualization of the
explanations, which will be discussed in the next three subsections.

2.2 EMBEDDING TO THE EXPLANATION SPACE

Explanation space optimization attempts to be faithful to the prediction of the original DNN:

M
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where Z(V) = Z(x(?); W) is the output of an intermediate layer in DNN for instance x(*); parameter

0 is used to form the explanation space Eg(Z(")); parameter v is used to build a predictor f(E;v)

5t ,e.g. f(E;v) = v E would be a simple linear predictor from the

A7)

from the x-features to mimic

explanation space and the one we use in this work; g, is j-th output of the original DNN model and

the explanation target for instance x(), we usually use the DNN output before the softmax layer to
prevent interactions with other predictions; M is the number of the training examples; L is a loss
function, usually a regression loss such as squared loss or log loss. However, as we argued in Sec. 2.1,

this formulation might be almost degenerate if y( ") can be used as the explanation variable. Hence,
additional terms need to be added to prevent degeneracy and improve interpretability.

We claim that low-dimensional embeddings are more effective when they reconstruct the original
high-dimensional feature space better. If the original DNN features are localized, then one can hope
the low-dimensional explanation features are also localized, since aggregating different localities in
the same dimension is also not helpful for reconstructing each of them. Thus, adding reconstruction

loss L (Eg1 (Eo(Z)), Z(i)) to optimization (1) will prevent degeneracy and improve locality. Here

Egl is a mapping that maps from the explanation space E back to Z, 6 is the parameter for this

mapping. However, when the weight of the reconstruction loss is large in the optimization, features
irrelevant to the predict target may also be reconstructed.

To avoid this, we propose to enhance the objective by adding a sparsity term which reconstructs
some dimensions of the original features Z, but not all of them. By attempting to reconstruct some
dimensions of Z with only a few embeddings, and to mimic the original predictions § with the same
embeddings, the maximal amount of diverse information that are relevant to g in Z needs to be packed
in the low-dimensional space. Packing redundant information in correlated dimensions would be
harmful for reconstruction, and reconstructing irrelevant features would harm the ability to recover .
By introducing a sparse penalty in the reconstruction loss, we obtain:

M
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Figure 2: Illustration of the SRAE used for the explanation module. Both the prediction and a sparse
reconstruction are generated from the explanation space; (b) The log penalty function log(1 + g - 72) when
q = 1; (c) The log penalty function log(1 + g - %) when ¢ = 10.

where Qp, Z,iz), and Egl (Eg(Z(i)))k are the k-th dimension of Q, Z(*), and Egl(Eg(Z(i))),
respectively and [ is the parameter for the sparsity term. In the optimization, () measures the
capability of reconstructing the k-th dimension in the space of Z. The sparsity term will be detailed
in Sec. 2.3. With this term, optimization (2) achieves faithfulness, locality, orthogonality, and little
irrelevant information for the explanation space.

2.3 DIMENSIONALITY REDUCTION METHOD

In general, any dimensionality reduction method can be used to obtain the explanation space Eg(Z)
Here we propose a novel network called Sparse Reconstruction Autoencoder (SRAE), which handles
the objective as defined in (2). SRAE is also a neural network, hence can seamlessly combine with
the prediction DNN, making the following visualization process (introduced in Sec. 2.4) simple.
Our aim is at reconstructing some specific features which focus on the prediction target instead of
reconstructing the whole feature space. We utilize the log penalty log(1 + ¢ - 7?) ( , )
(Figure 2(b-c)) to achieve the sparsity of the reconstruction errors for different features. Here 7 is
the average squared reconstruction loss on each dimension over the whole training set, which equals
to () using a square loss. Hence, we obtain:

2

> 3)
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where ¢ > 0 is a sparsity parameter (as shown in Figure 2(b-c)), .S is the dimensionality of the

feature space Z. Note that SRAE is different from conventional sparse autoencoders in which the

autoencoder activations in the hidden layers are constrained to be sparse. In SRAE, the sparsity

constraint is on the amount of input dimensions to be reconstructed. In general, various sparsity

functions can be used here such as the L penalty function, epsilon-L; penalty function (

), the Kullback-Leibler divergence (Ng, ), etc. Here we choose the log penalty log(14+q-r )
in our proposed model. The log penalty (Figure 2(b-c)) is a robust loss function, in the sense that
large 7 increases the loss function sublinearly (less than an L penalty || where the increase is linear).
Some dimensions of Z can afford to have no reconstruction at all (large r) without suffering too
much loss. Hence this loss function achieves the goal that only some of the input dimensions are
selectively reconstructed, instead of all of them. The exact dimensions that are reconstructed are
chosen automatically by the learning procedure itself.

The illustration of the proposed SRAE used for explanation module is shown in Figure 2(a). The
encoding layers in SRAE forms the explanation space E (Figure 2(a)). Using the least squares loss
again for faithfulness, the optimization of the SRAE is shown as follows:

min — v Eg Z() 5
min 3 ZH — 45

Sz
2 1 ~
+ 85D log(l+q- Q)+ MBI + 2081° + XsllvI® @)
? k=1

where the first 2 terms are faithfulness and sparse reconstruction, and the last 3 terms are Lo
regularizations for the weights of SRAE; A\q, A5, A3 are the parameters to the three regularizations;

and the prediction result v ' Eg(Z (")) of SRAE is denoted as yy).

Compared with traditional autoencoders, the proposed SRAE method reconstructs only part of the
inputs. SRAE can be applied as a general method to the domains where input feature selection and
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Figure 3: (a) an example generated by our SRAE. The first line shows the original image, the part labels
of the image in the ground truth, and the Voronoi diagram of the image; the second and third lines show the
visualization results for the 9 neurons in the x-layer sorted by the weights (v; E;, ¢ = 1,2, ...,9) for the final
prediction; (b) Examples of the interactive visualization system.

feature coding are both needed. The optimization in (4) can be solved effectively by backpropagation
with the regularization terms handled by weight decay, with no weight decay on the bias terms
in the network. Finally, we obtain an explanation embedding Eg(Z) and a linear predictor v E
which explains the prediction of a single-output deep network as a linear combination of explanation
features. In conjunction with the visualization paradigm in the next subsection, this facilitates better
understanding of black-box DNN models to both experts and non-specialists.

2.4 VISUALIZING THE EXPLANATION SPACE

The goal in the visualization of low-dimensional explanation features is to bridge the communication
gap between human and machine, and enable human to name concepts learned by the explanation
module and be able to construct sentences with those named concepts. For this paper though, we
only focus on visualizing the concepts. We utilize ExcitationBP (Zhang et al., 2016b) to compute the
contrastive marginal winning probability (c-MWP) from each neuron in x-layer to the pixels in the
original image, then generate the heat maps using c-MWP normalized on each neuron for each image.
A prototype interactive visualization system is introduced for human understanding of neurons in the
explanation space, which contains two types of visualizations (Fig. 3(a) and Fig. 3(b)). The first type
shows the heatmap for different neurons and their prediction weights in a single image (Fig. 3(a)),
and the second type shows a single neuron across many images for human to name this particular
neuron (Figure 3(b)) and vote for whether to trust this neuron in the final classifier.

3 RELATED WORK

The explanation for high accuracy but black-box models has become a significant need in many real
applications. In the medical domain, several approaches were proposed to utilize interpretable models
to explain the predictions for individual patients in a concise way (Caruana et al., 2015; Letham et al.,
2015; Ustun & Rudin, 2016). In Natural Language Processing, Kulesza et al. (2015) propose an
interactive system which builds a cycle of explanations from the learning system to the user, and then
back to the system. In computer vision, methods have been introduced to explain the predictions
either by associating the images with captions/descriptions (Kiros et al., 2014; Kong et al., 2014; Lin
et al., 2014; Karpathy & Fei-Fei, 2015; Hendricks et al., 2016), visualizing individual convolutional
filters in the network (Zeiler & Fergus, 2014; Bau et al., 2017) or heatmaps that indicate important
regions in the original images (Simonyan et al., 2014; Cao et al., 2015; Zhou et al., 2016; Zhang et al.,
2016b; Selvaraju et al., 2016a). Park et al. (2016) and Selvaraju et al. (2016a) propose to explain via
visual question answering which utilized both natural language descriptions and heatmaps. Ribeiro
et al. (2016) propose an explanation technique which tries to explain single prediction of general
models, and select several representative predictions to provide a global view of the model.

Image captioning approaches (Kiros et al., 2014; Kong et al., 2014; Lin et al., 2014; Karpathy &
Fei-Fei, 2015; Hendricks et al., 2016) need to be trained on human-generated sentences, hence they
would not work in any domain where human is not an expert in. Our approach does not require
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any natural language descriptions. Vlsuahzmg individual neurons/ﬁlters were important for human
intuition about CNNs ( s ) ). Recently,
( ) went to great lengths in V1sua1121ng thousands of neurons and asking human to name
each of them. However, it is difficult for such efforts to provide a concise yet complete representation.
( ) analyzed the number of filters required to generate good performance on the
PASCAL VOC dataset and the conclusion is that each class would need at least dozens of filters. We
adopt the heatmap approach in ( ), but visualize explanation features instead of
directly visualizing classification results. W1th this approach we can generate high-level concepts that
are broadly applicable to multiple images in the same category.

Recently, there has been a focus of detecting parts using deep neural networks without part anno-

tations, usually in fine-grained classification. ( ) and ( ) use
combinations of convolutional filters to generate part proposals that improves prediction performance.
( ) and ( ;d;c) use various approaches to detect parts. Our focus

is different in that we focus on explaining a trained deep model instead of trying to enhance it, and
the explanation may not necessarily be parts that can be expressed in terms of bounding boxes as in
those approaches. ( ) conducted comprehensive experiments on whether
semantic parts naturally emerge from convolutional filters. They explored combinations of filters
using a genetic algorithm but only combine an average of 5 filters, hence did not have the dramatic
dimensionality reduction effect as in our work. Independent from our work, recently

( ) train a hybrid CNN-LSTM model featuring diversified attention models jointly and generate
diverse attention maps similar to ours in the middle of the network, but it cannot be utilized to explain
an already-trained DNN because of the joint training that is needed, and there was no attempt in
quantitatively evaluating the explanations.

Model compression for deep learning was proposed in ( , ), where a shallow model
is used to mimic the output of a deep network Most model compression work since then were
used for speeding up testing ( , ). ( ) learn a

decision tree on top of deep network results in an attempt for an 1nterpretable model, however their
framework cannot discover new features as they were only utilizing categorical predictions with
known categories (that were trained on) as the basis for interpretation.

4 EXPERIMENTS

4.1 EVALUATION METRICS

The most challenging part in the experiments is to find objective metrics to evaluate the performance
of the explanation module, since the explanation of images is a relatively subjective matter. Evaluating
explanations objectively without a human study is important, because simple parameter variations
can easily generate thousands of different explanations, vastly outpacing the speed of human studies.
In this paper we make an attempt to define some quantitative metrics. We utilize the CUB-200-2011
dataset ( R ) in the experiments. This is a task for fine-grained bird classification into
200 categories. This dataset is chosen because in addition to category labels and bounding boxes
surrounding each object, it also has part labels denoted as one pixel per part (Fig. 3(a)) for each
object as additional ground truth. One can argue that the majority of bird classifications are based
on specific, discriminative parts of the bird, which can be confirmed from encyclopedias and expert
annotations ( , ). In order to measure locality, we propose a metric which associates
neurons in the x-layer with various parts of one category in the image, and measures how well
they associate with these parts. Note that this metric is by no means perfect and would struggle at
features that do not represent a single part, it merely reflects our current best efforts in quantitatively
measuring different explanations.

Given image I, for each neuron n in the x-layer and each pixel (i,4) in I,,, we denote

Si™ £ P(Pixel}; |Neuron,, ) = o, where C}"\™ is the c-MWP generated by ExcitationBP

Xiper ©

for pixel (i, 7) in I,,, with neuron n in x- layer, (4, 7) is the coordinate of the pixel. For the CUB
dataset, since the given part label (p = 1, ..., 15) of each image is just one pixel in the middle of
the part, and there is no extra information about the shape and the size of the part regions, we
utilize the Voronoi diagram to partition the bounding box into 15 regions where the nearest neighbor
part annotation in each region would be the same (Fig. 3(a)). Then we compute the probability

Sp-m £ P(Part))! |[Neuron,) = > (ijyer, P (Part)[Pixel”;) P(Pixel;|[Neurony, ) using Algorithm
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1 in the Appendix. The Voronoi diagram is used instead of a segmentation, because firstly we do
not have segmentation ground truth and do not wish to include additional errors from an arbitrary
segmentation algorithm, and secondly because some of the heatmap activations fall slightly outside
the object and we still want to capture those. For all the c-MWP outside of the ground truth bounding
box, we introduce a 16-th part called context, which indicates that the x-feature is using the context
to classify rather than the object features.

Next, we propose several metrics to evaluate the performance of the explanation module. For

each x-feature n we have a histogram S,, whose element is Sg = ﬁ Zm S;}*m. The Locality for

each x-feature is defined as the entropy: H,, = —>_ (Zsiﬁgn . log(zsiggn)). Locality is roughly
PP PP

measuring the log of the number of parts captured by each x-feature. If the x-feature falls perfectly
in one part, locality will be 0. Note that there are many small parts hence often x-features will fall
on more than one of them just because the blur in the attention map. For the whole explanation
module, we have: (1) Faithfulness: We introduce a regression metric and a classification metric for
faithfulness. (a) Freq = 37 >, L™ — ™) = 43 [5™ — §(™)|, the mean absolute loss
between (™) and its approximation 7(™); (b) We replace 4™ with (™) in the original multi-class
prediction vector y(") before softmax and check whether the classification result changes. We denote
¢, as the number of examples whose classification results remain the same, then Fi;s = 7. (2)
Orthogonality: In order to measure whether different attention maps fall on the same region, we
directly treat attention maps of different x-features as different vectors and compute their covariance
matrix. We denote C as the covariance matrix among x-features aggregated over the dataset. Then
P = diag(C)~'/2Cdiag(C)~'/? is the matrix of correlation coefficients. The orthogonality between
neurons in the x-layer is defined as: (a) Oy = ||P||r — v/n, where || - || is the Frobenius norm for
matrix; (b) O2 = —logdet(P), where logdet is the logarithm of determinant of a matrix. Both O
and O obtain the optimum at 0, when P is a unit matrix.

4.2 EXPERIMENT SETTINGS AND RESULTS

The fine-tuned VGG19 model ( s ) for CUB-200-2011 birds is used as the
prediction DNN to be explained. The explanation module is a 3-middle-layer SRAE with 800—100—n
hidden units in each layer, where n represents the number of x-features. We trained an explanation
module on a random 30 of the 200 bird categories. For each category, we utilized 50 positive
examples and 8, 000 negative examples as the training data; the remaining positive examples (8 — 10)
and 2, 000 negative examples as the testing data. In the training process, we enhance the weights
of the positive examples to avoid imbalance. n is set to 5, as our experiments showed that more
x-features do not improve performance and create x-features which have 0 weight in v; F;, indicating
that one one-against-all classifier of one bird does not depend on many high-level visual features. We
compared the proposed SRAE with a fully-connected neural network (NN), a conventional stacked
autoencoder with faithfulness loss and traditional reconstruction loss (SAE), a classic autoencoder
with only traditional reconstruction loss and without faithfulness loss (CAE), a feature selection
model (Lasso) on Z, as well as directly performing ExcitationBP on the classification output
(ExcitationBP). The baseline neural network methods (NN and SAE) can also perform a faithful
dimensionality reduction, and are the most closely related to our approach. Lasso represents a feature
selection approach which selects several most useful dimensions directly from Z and tries to mimic
the network decision as a linear combination of these features. All the learning-based approaches
(SRAE, NN, SAE, CAE, and Lasso) were tuned to the optimal parameters by cross-validation on the
training set.

In Table 1(a), we summarize the results for different explanation embedding approaches with different
parameters. Results show that we can achieve excellent faithfulness to the predictions when using
SRAE, NN, and SAE. The F..4 in both training and testing are less than 0.2. Since % before softmax
usually has a range in [0, 50] and especially large in the positive examples, we consider the regression
loss to be small. The classification faithfulness F;s is even better, as only 1 — 2 examples out of all
the categories we tested have switched labels after replacing the original § with the approximation
from the x-features. We also summarize the faithfulness for Lasso using different parameters in Table
2(a), where « is the parameter that multiplies the L; term in Lasso, Num, is the average number of
the selected features for 30 categories. From Table 1(a) and Table 2(a) we observe that the faithfulness
for Lasso are all very bad with different parameters, indicating that it is almost impossible for the
feature selection method to select few X-features form Z directly to make the prediction faithful.
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Table 1: (a) The average faithfulness, orthogonality, and locality for different approaches in 30 categories
selected randomly. The column Z represents the average locality computed over all the dimensions of Z,
the 4096-dimensional first fully-connected layer of the deep network. This is obtained by separately running
ExcitationBP on each dimension of Z and evaluating the resulting heatmaps. (b) A preliminary human study
comparing SRAE with Lasso.

(a) (b)
[ Method [ SRAE | NN ] SAE]| Lasso | CAE | Z | ExcitationBP ]| Method | SRAE | Lasso
Freg Training | 0.0831 0.0657 | 0.0987 | 3.8039 | 3.9202 — — 0, 1.39 1.88
Testing | 0.1539 | 0.1170 | 0.1928 | 3.7028 | 3.8216 — — [ 8.17 | 9.21
Fus | Training | 99.99% | 99.99% | 99.99% | 71.82% | 62.38% = — | [Tocality | 183] 1.92]
Testing | 99.99% | 99.99% | 99.98% | 68.33% | 67.21% — —

[ Ol [ Positive | 0.6141 | 0.8851 | 0.7161 | 1.1407 | 0.5755 — ] —
[ 02 | Positive | 20790 | 3.6483 | 2.7710 | 2.8632 | 1.7585 | — | —

[ Locality | Positive | 1.9694 | 23078 | 2.1492 | 2.0041 | 1.0989 | 1.9623 | 24934 |

Table 2: (a) The average faithfulness for Lasso with different «; (b) The average classification accuracy for
images masked by our method and ExcitationBP so that only highlighted areas are shown to the classifier.

(a) (b)
Lasso a| 25 1.5] 05| 0.1 Method Original | Mask by Mask by
Num, 8 21 68 | 232 Image | X features | ExcitationBP
Frey Training | 3.80 | 3.06 | 1.86 | 1.00 Classification
Testing | 3.70 | 2.99 | 1.84 | 1.03 Accuracy 0.8798 0.8428 0.6742

In terms of orthogonality and locality, our algorithm showed significant improvements over NN, SAE,
and Lasso (o« = 2.5 in Table 1(a)). The orthogonality of CAE is better than that of the proposed
SRAE, which is reasonable because the features in E(Z) are definite more orthogonal when there is
only reconstruction loss in the optimization. The locality of CAE is slightly worse than SRAE, but
the most important problem is that it is very difficult for CAE to achieve faithfulness to the original
predictions because of the lack of the faithfulness loss in the optimization. Besides, the locality of
SRAE improves significantly over the ones from ExcitationBP, indicating that we are capable of
separating information that come from different parts. The average locality of the x-features generated
by SRAE are almost matching the average locality of features in Z. This means we are close to the
limit of part separation on this layer: many of the features on the Z layer already represent multiple
parts. In future work we plan to conduct more experiments explaining earlier convolutional layers to
see whether the locality could be further lowered while preserving faithfulness.

In Table 1(b), we show the results from a preliminary human study to compare the performance of
SRAE and Lasso. Given the visualization heatmaps for each x-feature, each participant needs to
choose which parts (including 15 parts of birds and the context) each heatmap represents. For each
neuron in E(Z), we summarize how many times it represents each part over the whole training set.
Then we obtain a n - p matrix, where n is the number of neurons in E(Z), p is the number of parts,
and the element is the times each neuron associates with each part. We use this matrix to compute the
locality and orthogonality to validate whether the automatic ones have been computed properly. 8
persons participate in the human study, including 4 experts and 4 non-experts in computer science.
We compared SRAE with Lasso in 5 randomly selected categories with 2,810 heatmaps in total. The
number of the x-features is 5. We observe that the orthogonality and locality of SRAE are smaller
than those of Lasso (the approach with the best locality among competitors), indicating that our
method performs better in explaining the deep networks from human subjective judgments. From
Table 1(a) and 1(b) we observe that the Locality, O1, and O of the most top important features of Z
are all larger than those of E(Z) both from quantitative evaluations and human study, indicating that
the explanation space E(Z) is better than the given latent space Z.

We also show some qualitative examples from different categories in Fig. 4. Fig. 4(a) shows the
most important x-feature in several categories, where we can see that they fit our intuitions on the
discriminative features of the birds. Fig. 4(b) compares x-features with directly running ExcitationBP
on §. One can see x-features nicely separate different discriminative aspects of the bird while
ExcitationBP sometimes focuses only on one part and miss others, and sometimes produces a
heatmap that incorporates many parts simultaneously. Also, each x-feature seems distinct enough as
a concept. Hence we believe they indeed provide more explanation on the decisions made by CNN
algorithms. More qualitative results are shown in the Appendix.

To further examine whether the proposed algorithm offers a complete explanation of the decision
made by the CNN, we attempted to try to classify just using the regions that are presented in the
heatmaps, similar to ( s ). First, images are masked so that pixels that have
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< 5% of the highest response in the heatmap are painted as black; then an inpainting algorithm is
applied to recover the masked images; finally we utilize the prediction CNN to classify the recovered
images and test the classification accuracy. In our work, we keep the highlighted regions while mask
the background, which is different from (Gonzalez-Garcia et al., 2016) where the highlighted regions
are removed. In Table 2(b), one can see that ExcitationBP fails in more cases whereas the 5 heatmaps
from x-features result in substantially increased classification accuracy. More experimental results
are shown in the Appendix.

Downy 17.5820 16,8553 _19.46: 26,5238

Laysan
Albatross |,
Excitation

(a)

Figure 4: (a) The most important x-feature for several categories. The weight above the feature is v; E;, the
product of the weight of the x-feature in the approximation of g timed by the activation of the x-feature; (b)
ExcitationBP on the predictions and on the x-features.

5 CONCLUSION

In this paper we propose an explanation module, that can be attached to any layer in a deep network
to compress the layer into several concepts that can approximate a 1-dimensional prediction output
from the network. A sparse reconstruction autoencoder (SRAE) is proposed to avoid degeneracy and
improve orthogonality. We also proposed automatic evaluation metrics to evaluate the explanations
on a fine-grained bird classification dataset. Quantitative and qualitative results show that the network
can indeed extract high-level concepts from a CNN that make sense to human. We view this
work as one of the first steps toward understanding deep learning and have many future plans to it,
including performing more experiments on different kinds of data, including those without ground
truth, and extending it to explain other types of neural networks, such as recurrent networks and
convolutional-recurrent ones.
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APPENDIX

For the CUB-200-2011 dataset, the given part label of each image is just one pixel in the middle
of the part. For the p-th part label of image I,,,, we denote (i, j,) as its pixel location. The pixel
level probability is defined as SZ Z"p = P(Pixel]” ; |Neuron,,). Figure 5(a) shows the probability
SZ)TP for each neuron (n = 1,...,9) at the pixel locations of the part labels (p = 1, ...,15) for
the example image shown in Figure 3(a). From Figure 5(a) we observe that the probability SZD le is
reasonable when capturing small parts like eye and beak, but is not on larger parts like wing and tail,
for the part label is just one pixel in the middle of the wing or fail, while the x-features mainly focus
on the edges (Fig. 3(a) shows an example). Thus, we utilize the Voronoi diagram to partition the
bounding box into 15 regions in which the nearest neighbor part annotation in each region would be
the same. However, the larger parts such as wing and fail always obtain a much higher scores than the
smaller parts such as eye and beak do; and there are also many background pixels far from the center
contained in the Voronoi diagram. To solve these issues, we introduce the inverse distance as a factor
when computing the Voronoi-based probability S7-"™ in Algorithm 1, trying to keep the balance
between the large part region and the small part region. Figure 5(b) shows the probability S;»™ for
each neuron and each part label for the same example image in Figure 3(a). From Figure 5(b) one can
also see evidence that the probabilities on wing, tail, and belly of some neurons are higher, indicating
the metric based on the Voronoi diagram enhances the evaluation on these larger parts.

Algorithm 1: The metric based on Voronoi diagram

foreach Neuron n of X layer in image I,,, do
foreach Part p with its Voronoi graph G, do
foreach Pixel (i,5) € G, do

L Compute the distance between (i, j) and part label (ip, jp): dijp = ((i — ip)* + (4 — jp)?)

N|=

Normalize the distance d;;, into [0, 1], obtain the normalized distance d;;y,
foreach Pixel (i,j) ¢ G do
| dijp=1
P(Part)[Pixel];) = 1 — dijp
Compute the probability S;°™ £ P(Part}’|[Neuron,,) =
i jyery, P(PartyPixel7”;) P(Pixel}; [Neurony, ) = 37, sy p (1 — dijp)S7™.

B 7

Table 3 shows more results for the mask, inpainting, and classification task. In Table 3, images are
masked so that pixels that have < -y of the highest response in the heatmap are painted as black; then
an inpainting algorithm is applied to recover the masked images; finally we utilize the prediction
CNN to classify the recovered images and test the classification accuracy.

Figure 7 shows the most important x-feature for several categories. The weight above the feature is
v; B, the product of the weight of the x-feature in the approximation of g timed by the activation of
the x-feature.

Figure 8 shows some examples to illustrate the degeneration issue. Our propose method SRAE can
avoid degeneration, and make the prediction model explainable.

Figure 9 compares x-features with directly running ExcitationBP on . One can see x-features nicely
separate different discriminative aspects of the bird while ExcitationBP sometimes focus only on one
part and miss others, and sometimes produces a heatmap that incorporates many parts simultaneously.
Also, each x-feature seems like a distinct visual feature that makes sense at least to the authors.
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Figure 5: (a) Pixel-level probability SZ) an’ (b) Voronoi-based probability .S;;"™ for the example image in
Figure 3(a).
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Table 3: The average classification accuracy on images masked by our method and ExcitationBP, respectively.
Here results with different thresholds v are reported. With larger -, less image region is shown to the classifier
hence classification becomes more difficult.

Method | Original Image | Mask by x-features | Mask by ExcitationBP
Classification Accuracy | v = 1% 0.8798 0.8762 0.7921
v =5% 0.8798 0.8428 0.6742
v =10% 0.8798 0.7771 0.5481
v =30% 0.8798 0.4097 0.1832
17.5820 18.8553 19.4658 20.7744 28.5238
Downy
Woodpecker
(Male)
Neuron 1
Downy
Woodpecker
(Male)
Neuron 2
(a) Male downy woodpeckers
13.7874 23.2790 27.5506 _15. _ 23.1400
Downy
Woodpecker
(Female)
Neuron 1
Downy
Woodpecker
(Female)
Neuron 2

(b) Female downy woodpeckers

Figure 6: The x-features for male and female downy woodpeckers.

Figure 6 shows the x-features for male and female birds of downy woodpecker, respectively. The
difference between the male and female birds of downy woodpecker is that the male birds have a red
spot on the head while the female birds do not. Hence, for male birds Neuron 1 in the explanation
space captures the red spot; while for female birds Neuron 1 captures the stripes on the ahead and the
body. Neuron 2 in the explanation space captures the strips on the body for both male and female
birds of downy woodpecker. The results indicate that the x-features in the explanation space truly
justify the classification decisions by capturing the key features of the birds, and the proposed model
generates visualizations which are explainable to human. However, the orthogonality and locality on
the female birds suffered, probably because the most indicative feature (Neuron 1) was only available
in the males, hence the algorithm went on to pick some other features into Neuron 1 as well. Neuron
2 was, however, consistent in both the male and the female birds.
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Sooty Albatross 11.9532 14.1647 11.6429 14.2218
Neuron 2 -

12.4981 13.5583

-~

Parakeet Auklet 23.0851 26.1272

20.3171
Neuron 7

12.4120 11.2153 12.0864

Long Tailed Jaeger
Neuron 3

Figure 7: The most important x-feature for several categories. The weight above the feature is v; E;,

the product of the weight of the x-feature in the approximation of g timed by the activation of the
x-feature.

Neuron 1: positive Neuron 3: positive Neuron 2: negative Neuron 3: positive Neuron 2: zero Neuron 2: negative

Nowen 1 3 25

e 7 55500 Voo S0

Neuron &: 3.6562 Neuron 4: 0.0000

Neuron 5: 0.0000 Neuron 6: 0.0000 Neuron 7: 0.0000 Neuron 9: -0.4920 Neuron 2: -1.0817

Figure 8: (a) Good examples learned by SRAE, the number of the x-feature is 3, where the 3 neurons
are orthogonal to each other; (b) Degenerated examples learned by NN, the number of the x-feature
is 3, where the first two neurons are very similar, and there is only one positive neuron; (c) Another

degenerated example learned by NN, the number of the x-feature is 9. Most of the neurons are very
similar, and there are only two positive neurons.
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Figure 9: ExcitationBP on the predictions and on the x-features.
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Figure 10: The first row shows the heatmaps generated by ExcitationBP using the original images;
the second row shows the heatmaps generated by ExcitationBP using the images with a constant
vector shift similar to (Kindermans et al., 2017). The results show that ExcitationBP doesn’t suffer
from the issue that most of the existing saliency methods are sensitive to the transformation of the
input.
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