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Abstract

Discovering novel materials is essential for advancing technology, yet generating
thermodynamically stable crystal structures remains a significant challenge due
to the difficulty of directly steering generative models toward physically realistic
structures. We investigate the impact of reinforcement learning (RL) finetuning
of Large Language Models (LLMs) for crystal structure generation using energy-
based rewards. Our results show that RL-finetuning improves the rate of generating
metastable crystals compared to supervised finetuning (SFT) and performs com-
parably to established diffusion-based baselines. Notably, the RL-steered model
produces structures significantly closer to their relaxed states, which potentially
reduces the computational overhead of downstream structural optimization. Future
efforts may build upon these results by investigating reward formulations better
aligned with thermodynamic stability and exploring methods to maintain structural
variety during optimization.

1 Introduction

The discovery of new materials drives technological innovation, enabling advances in fields ranging
from energy storage [1] to electronics [2] and medicine [3]. Traditionally, the process of identi-
fying and synthesizing novel materials has been slow and resource-intensive, relying on iterative
experimentation and domain expertise. Machine learning (ML) offers an alternative, data-driven
approach that can accelerate this process by guiding exploration within vast chemical and structural
spaces. While predictive models can identify promising candidates from existing materials datasets
[4], generative models provide the additional capability of proposing entirely new compositions and
structures, thereby expanding the search space beyond existing materials and opening opportunities
for breakthrough discoveries.

Modeling materials is particularly challenging because it requires capturing joint distributions over
variables of different types: atomic species, which are discrete, and lattice parameters and atomic
positions, which are continuous. A further challenge in generative materials design is ensuring that the
proposed candidates are thermodynamically stable, meaning they can exist without spontaneously
breaking down into other material phases. Among the vast number of ways atoms can be arranged,
only a tiny fraction corresponds to such stable structures. Despite progress in generative modeling, re-
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Figure 1: Left: Example representation of a crystal structure, showing lattice parameters (lengths
and angles) along with atom types and positions, encoded as a string. Middle: Text prompt provided
to the model, with a chemical composition given as input. Right: Overview of our reinforcement
learning (RL) finetuning setup, where an energy predictor (CHGNet [9]) guides the model toward
lower-energy, more stable structures.

liably producing stable candidates under high-fidelity quantum-mechanical (QM) evaluation remains
a difficult task [5-8].

Large language models (LLMs) offer a promising avenue for generative materials design due to their
ability to incorporate natural language prompting, enabling straightforward and flexible conditioning
on desired properties or constraints. Pretrained on broad corpora that include chemistry and materials
science knowledge from the scientific literature, these models possess strong prior knowledge of
chemical rules and patterns. Finetuning an LLM for crystallographic information file (CIF) generation
further aligns it with the structural and compositional distributions of known materials, improving its
capacity to generate valid candidates.

In this work, we explicitly steer generation toward thermodynamically stable materials by integrating
an LLM-based generative model with a reinforcement learning (RL) framework, as shown in 1. The
RL component provides feedback based on stability evaluations, enabling the model to iteratively
refine its outputs and improve the likelihood of producing candidates with low energy, thereby shifting
the distribution. This integration bridges the flexibility of language-based conditioning with targeted
optimization for stability.

2 Related Work

Early work on crystal structure prediction (CSP), the task of generating a crystal structure given a
chemical composition, relies on producing candidate materials using atomistic simulations and high-
throughput quantum-mechanical calculations, followed by high-throughput quantum-mechanical
calculations [10] to estimate their energies and identify stable structures [11—13]. This screening
process can be accelerated using ML interatomic potentials (MLIPs), which are used to relax crystal
structures via potential energy minimization, such as CHGNet [9], M3GNet [14], and UMA [15].

More recent efforts have focused on generative modeling to accelerate the discovery of stable mate-
rials. Trained on large databases of QM-verified stable structures, these models aim to generate new
materials that follow similar distributions. Approaches include combining variational autoencoders
(VAESs) with diffusion decoders [7, 16], using diffusion or flow-matching models that jointly model
lattices and atomic positions [17, 18, 6], and applying classifier-free guidance to enable conditional
generation and improved alignment with target properties [5].

Language models based approaches include work focusing on domain-specific tokenization
schemes [19], supervised finetuned (SFT) LLMs [20, 21], and hybrid methods that combine LLMs
with flow matching [22], predictive models and diffusion [23] or evolutionary search algorithms [24].
Concurrent work includes Cao and Wang [25], which use RL to finetune a transformer-based model
with explicit knowledge of symmetry, using energy or other property values as a reward. Xu et al.
[26] finetune a language model on symmetry-informed textual representations of crystals, and further
apply Direct Preference Optimization (DPO) [27] using stability labels approximated with an MLIP.

Recent work has explored RL as a general framework for enhancing the abilities of LLMs by
providing more reliable training signals. Verifiable rewards, such as correctness of intermediate steps
or final answers, have proven especially effective for guiding models toward consistent reasoning
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Figure 2: Left: Binary phase diagram for the Ca—Pd system. The black line shows the convex
hull, representing the most stable phases. All phases shown have Ey, < 0.4 eV/atom. Stable
and metastable/unstable structures are indicated, with the metastable zone Ey,; < 0.1 eV//atom
highlighted in blue. The blue star highlights our generated material. At this composition, the
stable phase CaPd lies on the hull, while the generated structure sits slightly above it with Ey,; =
0.001 eV/atom, a value considered effectively stable. Right: Comparison of the crystal symmetries
of the two polymorphs (different structural forms of the same composition), including their space
group symbols and numbers, and lattice parameters (lengths and angles).

[28, 29]. In parallel, separate efforts on preference alignment leverage human or proxy feedback to
better match model outputs with user expectations [27, 30].

3 Preliminaries

Crystal Representation A crystal structure can be described mathematically as C(L, A, X), where
L € R?*3 is the lattice parameters a, b, ¢, a, 3, v defining the periodic unit cell through its lengths
and the angles, A; € Z* are the atomic species, and X are their fractional coordinates X; € [0,1)3
within the unit cell. This representation uniquely specifies a periodic arrangement of atoms in three
dimensions. Crystal structures can be stored in CIFs, which encode the lattice parameters, atomic
species, and atomic coordinates in a standardized text format, as shown in Figure 1.

Stability of Materials Stability is commonly evaluated using the convex hull of formation energies,
which defines the phases that are energetically favorable relative to all competing phases. The stability
of a material is quantified by its energy above the hull, Ey,y, defined as

Bt = Fiot — X573 B3,

Where E is the total energy per atom of the material under consideration, x; is the fraction of
the ¢-th competing phase, and FE; is the ground-state energy per atom of that phase. Intuitively,
Ejpy measures how much higher in energy a material is, compared to the most favorable mixture of
competing phases. In this work, we employ the pre-trained UMA model for energy evaluation due to
its close alignment with QM Density Functional Theory (DFT) results, and following [24], use fixed
phase diagrams derived from the Materials Project 2023 DFT calculations for reference [15, 31, 32].

Materials with Fy,; = 0.0 eV/atom lie exactly on the hull and are considered the most stable
phase at a given composition. Small positive values (e.g., < 0.1 eV/atom) indicate metastable
materials, which can be considered experimentally synthesizable under nonequilibrium synthesis
conditions [33]. Larger F},y values indicate a stronger tendency to decompose to the competing,
more energy-favorable phases. Figure 2 illustrates this concept for the Ca—Pd binary system.

Crystal Symmetries The space group G of a crystal is the group of Euclidean transformations that
leave the crystal invariant. Therefore, in crystallography, space groups represent a description of the
crystal’s symmetry. These transformations include translations, rotations, inversions, and reflections.
In three dimensions, space groups are classified into 230 types (when chiral copies are considered



distinct), and are numbered in order of increasing symmetry, starting with the least symmetric groups
(triclinic system) and ending with the most symmetric (cubic system).

Symmetry and stability are closely related, but not in a one-to-one manner. The lowest-energy crystal
structure arises from a complex optimization process that involves multiple factors. Empirically,
symmetry is often correlated with more stable atomic configurations [34-36]. Stability can drive the
emergence of symmetry, as it depends on how atoms arrange to minimize overlap of electron clouds,
and such configurations may exhibit different levels of symmetry depending on the electron density
distributions of the constituent atoms [37, 38].

4 Method

Tokenization. Tokenization of the CIF string is done by byte pair encoding (BPE) as suggested
in [20], a compression method that assigns tokens to common substrings, making overall sequence
lengths shorter [39].

Model. We build on the Qwen family of large language models (LLMs) [40—42], using Qwen2.5-
7B-Instruct as our base model. Qwen2.5 is a general-purpose transformer trained on web-scale
corpora for natural language and programming tasks, with the instruct variant further tuned to follow
natural language prompts via sueprvised finetuning (SFT). In our setup, the model is prompted with a
chemical formula and CIF examples (see A.4) and generates candidate crystal structures in text form.

We study the use of reinforcement learning (RL) finetuning to bias the LLM generation toward
physically stable crystal structures. As a complementary variant, we also consider supervised
finetuning (SFT), in which the model is trained to reproduce ground-truth CIFs conditioned on
the input prompt using a standard maximum-likelihood objective. This stage adapts the model
to crystallographic syntax and structural conventions and can be used as an initialization for RL
finetuning.

Reinforcement Learning Finetuning. To bias the model toward generating stable materials, we
apply RL finetuning using Group Relative Policy Optimization (GRPO) [43], a variant of Proximal
Policy Optimization (PPO) [44]. We define the state (i.e., model inputs) x as the prompt containing
a chemical formula of atom composition, and output ¥, the string formatted in bulk representation
of the crystal structure of that formula. RL learns a policy 7 that takes in = and generates y that
maximizes a given reward R. We finetune the full weight of the model with the reward function
defined below. PPO maximizes a clipped objective:

Lppo = E¢[min(r:(0) As, clip(r:(0),1 — e, 1 + €) Ay)], (1)

where r(6) = WZZE%?IJTQ)C) is the policy ratio that measures how likely the new policy 7y is to take the

same action compared to the old policy 7, and A, is the advantage estimated by a value function.
The clipping ensures r;(6) does not stray far from 1, thereby constraining updates so that the policy
improves steadily without collapsing. GRPO eliminates the need for a value function by defining
relative advantages within a group of candidates sampled from the model at the same input:

@)

where R; is candidate i's reward, 1 = ~ 77| R; is the group mean and o = \/% > (R — p)?
is the group standard deviation. We set the group size to be 8. This formulation is simpler and more
computationally efficient while maintaining stability. In our setting, Qwen2.5-7B-Instruct acts as the
policy, candidate crystal structures are sampled, and CHGNet [9] provides the reward signal based on
predicted potential energies Ei, directly aligning the LLM with the goal of producing low-energy
stable structures. Moreover, we give the model a penalty of —0.1 when it generates an invalid crystal
structure due to a parsing error or exceeding 20 atoms.



5 Experiments

5.1 Setup

Dataset. 'We report results on MP-20), a realistic benchmark comprising all materials in the Materials
Project database (circa July 2021) with at most 20 atoms per unit cell and an energy above the convex
hull of less than 0.08 eV/atom [45]. The dataset contains approximately 45,000 materials.

Baselines. We evaluate our approach against two classes of baselines. (1) Domain-specific base-
lines. We compare against two established crystal structure generation models: FlowMM, a flow-
matching—based method [6], and DiffCSP, a diffusion-based generative framework [17]. Both
methods are evaluated in the CSP setting, where the chemical formula is provided as input and
strictly enforced throughout the generation process. (2) Language model variants. We additionally
compare against instruction-tuned large language models based on Qwen2.5-7B. These include
the off-the-shelf base model (Qwen2.5), a supervised finetuned variant (Qwen2.5 SFT) trained to
reproduce domain-specific CIF examples, and a model finetuned with reinforcement learning on top
of SFT (Qwen2.5 SFT+RL).

As described in Section 4, the language model is prompted with a chemical formula and example
CIFs. Under the SFT objective, the model is trained to reproduce the provided CIF exactly. In
contrast, during RL finetuning, the objective does not explicitly encourage reproducing the same
stoichiometry. Instead, the model is incentivized to preserve the set of atomic species via a penalty
term, while allowing the relative atomic ratios to vary in order to optimize the energy-based reward.
In both cases, generated structures are not post-filtered to enforce exact agreement with the input
formula. This behavior contrasts with the diffusion- and flow-based baselines, which strictly constrain
the formula during generation and is an important distinction in our experimental setting.
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Figure 3: Ternary phase diagram of the Yb-Cd-Cu system. Phases with DFT Ey,; < 0.4 ¢V/atom
are shown. Stable phases are shown as green circles, and metastable/unstable phases as red squares.
The blue star marks the composition of our generated material, YbsCdCu,. Insets compare the two
polymorphs of YbsCdCus,, including space group (symbol and number), lattice parameters (Ilengths
and angles), and UMA-predicted total energies. The UMA-predicted energy of the generated structure
is lower, suggesting that it could be a novel ground state.

5.2 Stability
Metric. To assess thermodynamic stability, we first relax the generated structures using UMA-s-1pl

[15] (see A.2 for details), a large pretrained MLIP, and obtain their total energies. The energy above
the convex hull, Ey, is then calculated by comparing these energies to reference values from the



Materials Project database [45]. Based on this metric, we define the Metastability Rate as the
fraction of generated (and subsequently relaxed) structures with Ey,; < 0.1 eV/atom. Additionally,
we report the Match Rate, which quantifies how often a generated CIF preserves its structure after
relaxation, and the RMSD, which measures the root-mean-square deviation in atomic positions
between each generated structure and its relaxed counterpart. Both Match rate and RMSD are
calculated using pymatgen StructureMatcher with default settings. Since most current generative
models require post-generation structural relaxation, achieving a high Match Rate and low RMSD is
desirable as it can reduce the associated computational cost. While QM simulations would provide
the most accurate relaxations, they are very expensive; we therefore use UMA as a computationally
efficient proxy.

Results. Table 1 reports the stability of generated materials after structural relaxation across all
methods. DiffCSP achieves the highest metastability rate (30.84%) and the lowest average Fipy.
Qwen2.5 SFT+RL, Qwen2.5 SFT, and FlowMM perform comparably, with Qwen2.5 SFT+RL
attaining a slightly higher metastability rate of 27.29%.

Figure 2 shows a binary metastable phase generated by the SFT+RL finetuned model, while Figures 3
and 4 present representative ternary phases. In Figure 2, the convex hull is drawn from known
ground-state phases, and a newly generated structure is highlighted. At this composition, the known
stable phase CaPd lies on the hull, while our generated structure is predicted by UMA [15] to have
FEran = 0.001 eV/atom relative to quantum-mechanically computed reference energies. This value
is well within the metastability threshold and can therefore be considered metastable. The two
phases are illustrated alongside their structural information, with their distinct crystal symmetries
highlighting that they are separate polymorphs of the same composition. In Figure 3, the generated
material has a UMA-predicted energy lower than that of the known phase, suggesting a potential
novel ground state. Figure 4 shows a generated material with a UMA-predicted energy between two
experimentally observed polymorphs, indicating that it may correspond to a synthesizable metastable
phase.

RL finetuning alone does not substantially improve the metastability rate, increasing it only from
5.03% (Qwen2.5) to 7.6% (Qwen2.5 RL). One likely explanation is that the model exploits the total
energy reward Ey by favoring compositions with heavier elements, which can lower the absolute total
energy without improving thermodynamic stability. As defined in Section 3, stability is determined
by the energy above the convex hull, Ey,;, which measures stability relative to competing phases.
Minimizing Ei, alone therefore does not guarantee a reduction in Ey,y, as the reference energies
of competing phases can similarly decrease. In contrast, when RL is applied on top of supervised
finetuning (SFT+RL), metastability slightly improves relative to SFT alone (from 26.5% to 27.29%),
suggesting that supervised pre-alignment helps constrain the RL optimization toward physically
meaningful solutions.

SFT finetuning yields generated structures with a match rate of 56.92% to their relaxed states. In
contrast, RL finetuning leads to a high match rate of 84.40%, meaning structures are generated closer
to relaxed geometries. Examples in Figures 5 and 6 illustrate this contrast, as the RL-finetuned
model produces highly symmetric structures that change little upon relaxation, while SFT-generated
structures deform significantly in order to reach an energy minimum.

Table 1: Stability Evaluation

Model Ehan [eV/atom] | Metastability Rate (%)" 1 Match Rate (%) T RMSD (A) |
FlowMM [6] 0.25 + 0.94 25.66 46.78 0.053
DiffCSP [17] 0.22 + 0.54 30.84 84.31 0.028
Qwen2.5 3.43 4+ 10.96 5.03 31.02 0.052
Qwen2.5 SFT 0.37 £ 1.79 26.5 56.92 0.044
Eiot Reward

Qwen2.5 RL 0.63 £ 0.49 7.6 84.40 0.025
Qwen2.5 SFT+RL  0.35+1.26 27.29 77.59 0.037

T Fhn < 0.1 (eV/atom), predicted by UMA [15]



5.3 Validity, diversity and Novelty

Metric. We evaluate generated crystal structures using complementary metrics. Validity is assessed
along two dimensions: structural validity, which requires that no two atoms overlap in positions
(atoms must be farther apart than half the sum of their covalent radii), and compositional validity,
which requires zero net charge. Diversity measures variability across the generated set by computing
pairwise distances in the Matminer feature space [46]. Novelty quantifies how distinct a generated
structure is from the training data, defined by the distance to its nearest neighbor in the training set
Matminer feature space. All metrics are calculated directly on raw model outputs, without relaxation
or post-processing.

Results. Table 2 summarizes the basic evaluation of generated structures. All methods achieve
near-perfect structural validity, while compositional validity varies more widely: SFT ensures 100%
validity, whereas RL tends to reduce compositional validity, which strengthens the possibility for
reward hacking as mentioned. RL, however, improves diversity, both in composition and structural
spaces. Novelty shows a trade-off, where RL seems to reduce structural novelty but increase
compositional novelty.

Table 2: Validity, Diversity and Novelty Evaluation

Method Validity (%) 1 | Diversity 1 | Novelty
Structure  Composition \ Structure  Composition \ Structure  Composition

FlowMM [6] 0.99 0.90 0.78 15.64 071 0.54
DiffCSP [17] 0.99 0.82 0.89 15.64 0.81 0.52
Qwen2.5 [41] 0.99 0.85 0.92 15.66 0.73 0.49
Qwen2.5 SFT 1.00 1.00 0912 15.64 0.56 0.33
Etot Reward

Qwen2.5 RL 1.00 0.74 1.2 16.25 0.40 0.61
Qwen2.5 SFT+RL 1.00 0.75 0.97 16.68 0.57 0.67

6 Future Work

A promising direction is to redefine the reward function. Instead of optimizing only for total potential
energy, incorporating the energy above hull directly would better align training with thermodynamic
stability. To avoid reduced novelty, future work would also explore mechanisms that encourage
structural diversity during finetuning, balancing stability with exploration and thereby enhancing the
likelihood of discovering novel stable materials.

Furthermore, rigorous evaluation of generated structures requires ground-truth assessments of for-
mation energies, motivating the use of DFT calculations on a subset of generated candidates. Such
evaluations would provide reliable validation beyond MLIPs.
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A Supplementary Material

A.1 Implementation details of RL

We used GRPO implemented in ver1?. The training batch size was 1024, with maximum prompt
and response lengths of 1024 tokens each; overlong prompts were filtered and truncation errors
were enforced to ensure data consistency. The model was initialized from Qwen2.5-7B-Instruct
and optimized with a learning rate of (10-%). PPO optimization used mini-batches of 256 and
micro-batches of 8 per GPU. A KL regularization loss was applied during optimization (low-variance
KL) with coefficient 0.001, while the KL term was not included directly in the reward; entropy
regularization was disabled. Gradient checkpointing was enabled for memory efficiency. Rollouts
were generated using vLLM with tensor model parallelism of 2, a GPU memory utilization cap of 0.8,
and 5 sampled responses per prompt. Log-probability computation for actor and reference models
used micro-batches of 8 per GPU. FSDP was used without parameter or optimizer offloading for the
actor, while parameter offloading was enabled for the reference model.

A.2 Post Generation Relaxation Details

We perform a post-generation relaxation step using the UMA model as an ASE calculator [47]. Given
a CIF string, we reconstruct the structure and evaluate its initial potential energy. We then run an
LBFGS optimizer (wrapped with a Frechet cell filter) for up to 100 steps or until the forces fall below
a convergence threshold of 0.02. The procedure outputs the initial (for the unprocessed generated
structure) and relaxed energies, along with the fully relaxed structure.

A.3 Baselines

We compare with domain-specific baselines: FlowMM [6], DiffCSP [17]. Additionally, we run
several variants of our LLM and RL method as an ablation.

For DiffCSP, we use the provided checkpoints in the DiffCSP repository of the conditional and
non-conditional models and run evaluations. For FlowMM, we train ourselves the conditional and
non-conditional versions, and run evaluations.

“https://github.com/volcengine/verl
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A.4 Text Prompt

In all our experiments (both RL and SFT finetuning), LLM prompts are in the following form:

Generation Prompt

You are a material scientist expert in crystal structure prediction. Your task is to predict the
stable structure of a given chemical formula {formula}. Generate a description of the lengths
and angles of the lattice vectors and then the element type and coordinates for each atom
within the lattice. Format your answer as lattice lengths, lattice angles, then element symbols
with coordinates:

Example 1:

10.3 6.0 4.7
90 90 90

Li

0.25 0.50 0.75
Fe

0.75 0.50 0.25
P

0.50 0.00 0.50
0

0.10 0.60 0.40
0

0.90 0.40 0.60
0

0.40 0.90 0.10
0

0.60 0.10 0.90

Example 2:

5.2 5.2 11.8
90 90 120

Mg

0.33 0.67 0.25
Al

0.00 0.00 0.00
0

0.31 0.69 0.38
0

0.69 0.31 0.62

Provide ONLY the bulk representation like the example with no additional text.

A.5 Additional Generation results
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. 2.8 2.8 12 ?2
Lattice: 09° 90° 120° &0
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Figure 4: Ternary phase diagram of the Co-Pt-O system. Stable phases are shown as green circles
and metastable/unstable phases as red squares, with only those satisfying Ep,; < —0.4 eV/atom
displayed. The blue star marks the composition of our generated material, CoPtO,. Insets compare
the three polymorphs of CoPtO,, showing space group (symbol and number), lattice parameters
(Iengths and angles), and UMA-predicted total energies. The two known polymorphs have been
experimentally observed. The UMA-predicted energy of the generated structure lies between those
of the known polymorphs, suggesting it may also be a synthesizable metastable phase.

(a) SFT finetuned (Generated CIF) (b) SFT finetuned (After relaxation)

(¢) RL finetuned (Generated CIF) (d) RL finetuned (After relaxation)

Figure 5: Comparison of generated CIF structures with the elements Zn, N (left) and their UMA
relaxed counterparts (right) for SFT and RL finetuned models.
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(a) SFT finetuned (Generated CIF)

(c) RL finetuned (Generated CIF) (d) RL finetuned (After relaxation)

Figure 6: Comparison of generated CIF structures with the elements Ho, W, Cl, O (left) and their
UMA relaxed counterparts (right) for the models finetuned via SFT and via RL.
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