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ABSTRACT

Mathematical properties of the neural tangent kernel (NTK) have been related–both
theoretically and empirically–to convergence of optimization algorithms and the
ability of trained models to generalize. However, most existing theoretical results
hold only in the infinite width limit and only for standard data distributions. In
the present work, we suggest a practical approach to investigating the NTK for
finite-width networks, by understanding the parameter space symmetries of the
network in the presence of finite data sets. In particular, the NTK Gram matrix
associated to any finite data set can naturally be regarded as an empirical version
of the NTK. Moreover, its rank agrees with the functional dimension of the data
set, the number of independent parameter perturbations affecting the model’s
outputs on the data set. In this work, we explore the evolution of the functional
dimension of deep ReLU networks during training, focusing on the relationship to
data set complexity, regularization, and training dynamics. Empirically, we find
that functional dimension of deep ReLU networks: (1) tracks data set complexity,
(2) increases during training until function stabilization, and (3) decreases with
stronger weight decay, suggesting that gradient-based optimization algorithms are
biased towards simpler functions for ReLU networks. Moreover, our experiments
provide strong evidence that–contrary to conventional wisdom–the empirical NTK
for deep finite-width ReLU networks is typically rank-deficient at initialization. We
offer a potential theoretical explanation for this empirical phenomenon in terms of
certain data-dependent hidden equivalences, emphasizing the connection between
these equivalences and the geometry of the loss landscape. We also establish a
theoretical upper bound on functional dimension in terms of the number of linear
regions sampled by the data set.

1 INTRODUCTION

The neural tangent kernel (NTK) has emerged as a powerful tool for understanding the training
dynamics and generalization properties of neural networks, especially in the infinite width limit Jacot
et al. (2018); Lee et al. (2019). The spectrum of the NTK, in particular, has been shown to play a key
role, and significant theoretical progress has been made in obtaining closed-form expressions for this
spectrum Murray et al. (2023); Nguyen & Mondelli (2020); Nguyen et al. (2021). A full-rank NTK
ensures a well-conditioned optimization problem, leading to efficient training and convergence Arora
et al. (2019); Allen-Zhu et al. (2019). However, we still do not understand the effects of finite-width
corrections, especially in the presence of nonstandard data distributions. Indeed, NTK theory has
fallen short in predicting how real-world neural networks evolve when training on concrete data sets
Geiger et al. (2019); Lee et al. (2020), and the Gram matrix of the NTK - referred to as the empirical
NTK in the literature - frequently evolves significantly during training on real world data sets in a way
that differs from the infinite-width predictions. Our goals here are:

(1) Track the evolution of the empirical NTK during training on synthetic data sets of increasing
complexity (see Figures 1 and 3 below and Figures 11 in the Appendix);

(2) Relate this evolution to the task complexity (see Figure 2); and
(3) Relate the empirical NTK to a complementary theoretical framework involving data-

dependent parameter space symmetries and their impact on the optimization dynamics
of neural networks.

The starting point of our investigation are the following observations:

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(1) The rank of the empirical NTK on a fixed batch of data agrees with the batch functional
dimension (cf. Grigsby et al. (2022)), which can be viewed informally as the effective local
parametric dimension on the batch;

(2) It has been observed empirically that for networks that are deeper than they are wide, the
batch functional dimension is much lower than predicted by the existing theory of parameter
space symmetries Grigsby et al. (2023).

Empirically we find:

• For deep ReLU networks, the empirical NTK has low rank at initialization and increases
during training until function stabilization. The rank of the empirical NTK is precisely the
batch functional dimension on the data set. In experiments (Figure 8), the batch functional
dimension at initialization is consistently much smaller than the number of data points for
heavily over-parameterized deep ReLU networks. During training, functional dimension on
average increases with epoch until the function roughly “stabilizes.” See Figure 8.

• The rank of the empirical NTK tracks data set complexity during training. Training with a
small positive weight decay tends to select a function whose complexity, as measured by
functional dimension, reflects the complexity of the data set. More complex data sets tend
to result in trained functions that have higher functional dimension. See Figure 2.

• Weight decay causes the rank of the empirical NTK to decrease after approximate function
stabilization, and higher weight decay encourages lower rank. If we continue training
(using a small positive weight decay) past the point of approximate functional stabilization,
functional dimension eventually decreases. (See Figures 7 and 2.) Weight decay has a
damping impact on functional dimension. That is, higher (constant) weight decay leads to
trained functions with lower functional dimension (see Figure 4).

• With only modest weight decay, the functions learned by our heavily overparameterized
function classes tend to underfit the training data. See Figure 3.

• Number of linear regions sampled is strongly correlated with the rank of the empirical NTK.
See Figure 10

We suggest two theoretical mechanisms encouraging a rank-deficient NTK, and relate these mecha-
nisms to the existence of hidden parameter space symmetries:

• Hidden data-dependent parameter space symmetries encourage a rank-deficient empirical
NTK. Restricted activation patterns cause ReLU networks to behave like smaller networks
with more parameter space symmetries. When hidden neurons in a network are either
always-active or always-inactive on a batch of data, then the network behaves like a mixed
linear-ReLU subnetwork, which enlarges the dimension of the space of symmetries to be
quadratic rather than linear in the number of hidden neurons (Proposition A.10).

• Fewer linear regions encourage a rank-deficient empirical NTK. We prove a theoretical
upper bound (Proposition C.3) on the batch functional dimension in terms of the number of
linear regions sampled by the data set. In the case of architectures with input dimension 1,
as in the case of our univariate experiments, the bound asserts that the functional dimension
is bounded above by twice the number of linear regions sampled by the batch. Attaining this
upper bound would require that the data set and parameter satisfy very specific constraints,
so it is unlikely for a typical parameter to attain the bound. In our experiments the number
of intervals sampled is typically greater than the batch functional dimension.

2 RELATED WORK

Neural Tangent Kernel (NTK) training and generalization at infinite and finite width: The NTK
was first defined and studied in Jacot et al. (2018), where it was established that in the infinite width
limit gradient flow is entirely determined by the NTK and can be described via kernel gradient flow.
See also Lee et al. (2019).
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Figure 1: Graphs of three univariate functions of increasing complexity (left); uniformly sampled
datasets for each function (right).

Figure 2: Functional dimension tracks task complexity. The rank of the empirical NTK after 3000
epochs of training correlates positively with the complexity of the function the model is learning.

Figure 3: Function evolution for a single training run, for functions f2 and f3. Although the networks
are overparameterized (100 data points and 1006 parameters), the learned function underfits. As
indicated in the plot legends, we trained on f3 for more total epochs than on f2.

In Hanin & Nica (2020), the authors study the NTK at finite width and depth, arguing that sufficiently
deep wide networks have interesting training behavior and can learn data-dependent features even in
the so-called “lazy training” regime associated to very wide networks at fixed depth. In Huang &
Yau (2020), the authors define and study the dynamics of gradient descent for finite-width networks
under a so-called neural tangent hierarchy of differential equations, for which the NTK gives an
approximation.

NTK eigenfunctions and spectrum analysis: In Xie et al. (2017), the authors study the dyanamics of
the training loss for shallow ReLU neural networks, establishing a connection between the minimum
singular value of the empirical NTK and the decay rates of both the training loss and the kernel
spectrum associated to the arc-cosine kernel defined by Cho & Saul (2009). In Nguyen & Mondelli
(2020) and Nguyen et al. (2021) the authors perform a spectrum analysis for deep ReLU networks
with certain architecture restrictions, and in Murray et al. (2023), the authors derive a power series
expansion for the NTK of arbitrarily deep feedforward networks in the infinite width limit that allows
them to extract the eigenvalue spectrum.
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Parameter space symmetries and optimization: Two largely-independent approaches to studying
the relationships among parameter space symmetries, the geometry of the loss landscape, and the
so-called neuromanifold (true function space after quotienting by symmetries) have emerged, as
described in the recent survey papers Zhao et al. (2025), Marchetti et al. (2025), and the many
references therein. The approach we take here is more closely aligned with the first survey article,
although we are interested in connections to the second. We are not aware of any prior work explicitly
discussing a relationship between the NTK spectrum and parameter space symmetries.

3 BACKGROUND AND NOTATION

3.1 FULLY-CONNECTED FEEDFORWARD RELU NETWORKS

We focus on fully connected neural networks with ReLU activation, denoting by (n0, . . . , nd−1|nd)1

the architecture with input width n0, hidden layer widths n1, . . . , nd−1, and output width nd.

Formally, let σ : Rn → Rn denote the function that applies the activation function ReLU(x) :=
max{0, x} component-wise. For an architecture (n0, . . . , nd−1|nd), we denote the parameter
space Ω := RD where a parameter θ := (W 1, b1, . . . ,W d, bd) ∈ Ω consists of the entries of
weight matrices W ℓ ∈ Rnℓ×nℓ−1 and bias vectors bℓ ∈ Rnℓ for ℓ = 1, . . . , d. Accordingly,
D :=

∑d
ℓ=1 nℓ(nℓ−1 + 1). From a parameter θ we define a neural network function:

Fθ : Rn0
F 1
// Rn1

F 2
// . . .

Fd
// Rnd , (1)

with layer maps given by:

F ℓ(x) :=

{
σ(W ℓx+ bℓ) for 1 ≤ ℓ < d
W ℓx+ bℓ for ℓ = d.

(2)

For any θ ∈ Ω, Fθ is a finite piecewise-linear function – that is, a continuous function for which the
domain may be decomposed as the union of finitely many closed, convex pieces, on each of which
the function is affine-linear. One also naturally obtains from an input vector x ∈ Rnd an evaluation
map Ex : Ω → Rn0 , where Ex(θ) := Fθ(x).

To compactify notation, following Masden (2022) we let F(ℓ) := F ℓ ◦ . . . ◦ F 1. We refer to the
components of F(ℓ) as the neurons in the ℓth layer. The pre-activation map zℓ,i : Rn0 → R associated
to the ith neuron in the ℓth layer is given by:

zℓ,i(x) = πi
(
W ℓ(F(ℓ−1)(x)) + bℓ

)
, (3)

where πi : Rnℓ → R denotes the projection onto the ith component.

Given a point x ∈ Rn0 in the input space we can record its activation status with respect to all
N =

∑d−1
i=1 ni hidden neurons by computing the N–tuple s(x) = {−1, 0,+1}N of pre-activation

signs for neurons in the network. Explicitly, the component of s(x) corresponding to the ith neuron

in the ℓth layer is: sℓ,i(x) := sgn(zℓ,i(x)), where sgn(z) =
{ z

|z| if z ̸= 0

0 if z = 0.

In the present work, we will also be interested in the activation pattern of each neuron in the network
with respect to a finite data set X = {x1, . . . , xm}. For neuron i in layer ℓ this is the m–tuple
(sℓ,i(x1), . . . , sℓ,i(xm)). If sℓ,i(xj) = +1 (resp., = −1) for all xj ∈ X we say that neuron i in layer
ℓ is always-active (resp., always-inactive) on the data set X .

3.2 SPECTRUM OF THE NTK FOR RELU NETWORKS

Recall that a kernel k : Rn0 × Rn0 → R≥0 is a symmetric, positive semi-definite similarity measure
on the input space of a parameterized function class, most naturally obtained by pulling back an inner
product from a kernel feature map Φ : Rn0 → H into a Hilbert space H: kΦ(x, y) := ⟨Φ(x),Φ(y)⟩.

1We use nonstandard notation for the architecture to emphasize that the activation function for the final layer
is the identity, Id.
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In the case of the neural tangent kernel (NTK) associated to a parameter θ ∈ Ω at initialization,
H is the tangent space Tθ(Ω) ∼= RD at that parameter, equipped with its standard inner product,
and the feature map Φ : Rn0 → H is the assignment of the parameter gradient vector ∇Ez|θ
of the evaluation map at each input vector z ∈ Rn0 . Note that for ReLU network classes, this
assignment is only well-defined away from a Lebesgue measure 0 set, cf. Grigsby & Lindsey
(2022); Grigsby et al. (2022). Mercer’s Theorem (cf. Schölkopf & Smola (2002)) associates to
any kernel k on a compact set χ ⊆ Rn0 a natural positive semi-definite integral operator Tk on
L2(χ), defined by Tkf(·) :=

∫
χ
k(·, y)f(y)dy, whose associated eigenfunctions can be viewed

as a preferred orthonormal basis of L2(χ) associated to the kernel. The relationship between the
eigenbasis and spectrum of the NTK operator, optimization dynamics, and generalization has been
widely studied, cf. Murray et al. (2023) and the references therein. It is frequently assumed that at
initialization the empirical NTK will have full rank–i.e., will be equal to the number of data points in
the overparameterized setting.

3.3 BATCH FUNCTIONAL DIMENSION AND THE EMPIRICAL NTK FOR RELU NETWORKS

The (batch) functional dimension of a parameter θ ∈ Ω on a finite data set Z ⊆ Rn0 was defined
(away from a Lebesgue measure 0 set) for ReLU neural network classes in Grigsby et al. (2022),
see also Stock (2023); Bona-Pellissier et al. (2022; 2024). It is the rank of the Jacobian matrix
with respect to the parameters of the evaluation map on the batch Z: rk(JEZ |θ). When the output
dimension is 1, Z = {z1, . . . , zm}, and the parametric dimension is D, JEZ is an m ×D matrix
whose rows are ∇Ezi |θ, the neural tangent kernel feature maps at the m points of Z.

In Section 6 of Grigsby et al. (2022) it is noted that the Gram matrix of the NTK at θ on a batch Z is
(JEZ)(JEZ)

T . Moreover, it is a well-known linear algebra fact that for all matrices M over R:

rk(M) = rk(MMT ),

so the rank of the Gram matrix, (JEZ)(JEZ)
T , of the NTK at θ on a batch Z is precisely the batch

functional dimension of θ on the batch Z.

4 PARAMETER SPACE SYMMETRIES, FUNCTIONAL DIMENSION, AND THE
GEOMETRY OF THE LOSS LANDSCAPE

Following Serra et al. (2020); Zhao et al.; Godfrey et al. (2022), we call two neural network functions2

Fi : Rn0 → Rnd for i = 1, 2 equivalent if F1(x) = F2(x) for all x ∈ Rn0 . We will also be interested
in data-dependent equivalence for a proper subset X ⊊ Rn0 . In this case, we say Fi are equivalent
for i = 1, 2 if F1(x) = F2(x) for all x ∈ X . In the literature (cf. (Zhao et al.; Godfrey et al.,
2022)), we typically see equivalences arising within a single architecture as a result of parameter
space symmetries.

A loss function,

L : Ω× (Rn0 × Rnd) → R, L(θ, (x, y)) := error(Fθ(x), y)

measures the error of a predicted output, Fθ(x), with respect to y, the given label on x, and the
empirical loss function LZ : Ω → R associated to a finite training set Z is the average loss on the
finite set, as a function of the parameter θ. The goal of a standard training algorithm is to find a
global minimizer of LZ . Moreover, if θmin is a global minimizer, then it is immediate that any Fθ′

equivalent to Fθmin on Z is also a global minimizer for any loss function.3 The dimension of the
space of global minimizers plays a crucial role in the dynamics of optimization algorithms at the end
stage of training (Damian et al., 2021) and (per the preceding discussion) is bounded below by the
dimension of the space of data-dependent function equivalences in the architecture.

In Grigsby et al. (2022; 2023); Zhao et al.; Grigsby & Lindsey (2024) it is noted that in favorable
situations the local dimension of parameter space symmetries is complementary to functional dimen-
sion. Explicitly (but informally), for a parameter θ: if D is the total parametric dimension, dθ is the

2We do not assume that the functions are associated to networks of the same architecture, but they necessarily
have the same input and output dimensions.

3Indeed, this is true for any t–level set L−1
Z (t) := {θ ∈ Ω | LZ(θ) = t} for t ∈ R.
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functional dimension at θ and sθ is the dimension of the space of parameter space symmetries near θ,
then D = dθ + sθ. The picture to have in mind is that parameter space is decomposed locally into
directions that can change the function (hence contribute to functional dimension) and directions that
preserve the function (hence contribute to the local space of symmetries).

In Section 4.1, we recall one rich source of parameter space symmetries, coming from the action of
the hidden symmetry group on parameter space defined in Zhao et al.. In Section 4.2 we describe a
mechanism, first described in Grigsby et al. (2023), whereby many architectures can develop a larger
set of data-dependent parameter space symmetries than expected, leading to higher-dimensional-than-
expected level sets in the loss landscape.

4.1 LIE GROUP ACTIONS, ORBITS, AND HIDDEN EQUIVALENCES

Following Zhao et al., we note that the parameter space of any feedforward network architecture
(n0, . . . , nd−1|nd) (for any choice of activation function) admits a natural action of the hidden
symmetry group, Ghid := GLn1

× . . .×GLnd−1
, of the architecture. Here, GLn denotes the general

linear group of invertible n× n matrices over R, so any g = (g1, . . . , gd−1) ∈ Ghid gives rise to a
map g · − : Ω → Ω defined as follows. If θ = (W 1, b1, . . . ,W d, bd) ∈ Ω, then:

g · (W ℓ, bℓ) := (gℓW
ℓg−1

ℓ−1, gℓb
ℓ), (4)

where we set g0 := Idn0 , gd := Idnd
, the identity matrices of the appropriate dimensions.

Ghid is an example of a Lie group, and the assignment of a smooth map on a vector space associated
to every element of a Lie group is an example of a Lie group action. One can and should understand
this particular action as induced by a much more natural action of the Lie group Ghid on the product
of the hidden layers, Rn1 × . . .× Rnd−1 , by layer-wise conjugation (change-of-basis).

In particular, ifH is a subgroup ofGhid whose action commutes with the component-wise application
of the activation function, then we can decompose parameter space into orbits under the action of H ,
and each H–orbit, Hθ := {h · θ | h ∈ H}, will consist of equivalent parameters; see Zhao et al. and
Section A in the Appendix for more details. Moreover, the classical orbit-stabilizer theorem for Lie
group actions (Corollary A.6, cf. Lee (2013)) then tells us that Hθ is diffeomorphic to the quotient
space, H/StabH(θ), where

StabH(θ) := {h ∈ H | h · θ = θ}
is the stabilizer of θ. In particular, the dimension of the orbit Hθ is the dimension of the Lie group H
minus the dimension of the stabilizer of any parameter θ in the orbit:

dim(Hθ) = dim(H)− dim(StabH(θ)). (5)

The picture and framework that emerges, described beautifully in ? (see also for an algebro-
geometric view on this framework), is that parameter space decomposes into orbits under the action
of a high-dimensional data-dependent symmetry group. Understanding the details of this parameter
symmetry group action - in particular, how the orbits interact in parameter space - will illuminate the
optimization dynamics of neural network models.
Definition 4.1. We define the hidden equivalence group, Heq ⊆ Ghid for a fixed architecture and
batch X ⊆ Rn0 of input data to be the largest subgroup of the hidden symmetry group that commutes
with the component-wise application of the activation function for all x ∈ X .

It is immediate that all functions in any Heq-orbit of any parameter θ ∈ Ω are equivalent on X . In
particular, the dimension of Heq will give us a lower bound on the dimension of the level sets of the
empirical loss function (as long as the stabilizer is trivial on parameters in the orbit). It follows that if
the hidden equivalence group is larger than expected, then the the critical locus will also be larger
than expected (in the trivial stabilizer case):
Lemma 4.2. Let C ⊆ Ω be the critical locus for any empirical loss function LX : Ω → R. If there
exists θ ∈ C with trivial stabilizer (for which StabHeq

(θ) = {Id}), then dim(C) ≥ dim(Heq).
Remark 4.3. The expected dimension of the hidden equivalence group for a ReLU network of
architecture (n0, n1, . . . , nd−1|nd) is N =

∑d−1
ℓ=1 nℓ, the number of hidden neurons. Indeed, letting

PD+(n) denote the group of n× n matrices representable as a product PD, where P is an n× n
permutation matrix and D is an n× n diagonal matrix with strictly positive entries on the diagonal,
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it is well-known that the subgroup PD+(n1)× . . .× PD+(nd−1) of the hidden symmetry group
commutes with the component-wise application of ReLU (Zhao et al.; Godfrey et al., 2022), resulting
in the familiar positive scaling invariance and permutation invariance for hidden neurons in ReLU
networks (Rolnick & Kording, 2020; Bui Thi Mai & Lampert, 2020; Grigsby et al., 2023).

Lemma 4.2, which follows from the orbit-stabilizer theorem and the results in Appendix A, tells us
that if the hidden equivalence group on a batch of data X includes a subgroup of dimension larger
than N , then level sets of the loss will be larger than the expected dimension N , decreasing the
functional dimension on the batch. In the following section, we describe one way this can occur.

4.2 RESTRICTED ACTIVATION PATTERNS INDUCE HIDDEN EQUIVALENCES

If there are neurons for Fθ that are either always-active or always-inactive on a data set X ⊆ Rn0 ,
then ReLU acts locally as the Identity function at always-active neurons and effectively ignores
always-inactive neurons. This observation motivates the following, cf. Serra et al. (2020):

Definition 4.4. Let σ[1:k] : Rn → Rn denote the function that applies the activation function
ReLU(x) (resp., Id(x)) to the first k components (resp., to the last n−k components). A mixed ReLU-
linear neural network of architecture (n0, (n

R
1 , n

L
1 ), . . . , (n

R
d−1, n

L
d−1)|nd) is a neural network of

architecture (n0, nR1 +nI1, . . . , n
R
d−1+n

L
1 | nd) whose ℓth layer map is F ℓ(x) := σ[1:nR

ℓ ](W
ℓx+bℓ).

The following results, whose formal statements and proofs appear in Appendix 4.1, together tell us
that the dimension of the hidden equivalence group is quadratic, rather than linear in the number of
neurons with fixed activation status with respect to the data set X .

Proposition 4.5. The hidden equivalence group of a mixed ReLU-linear neural network of architec-
ture (n0, n

R
1 + nI1, . . . , n

R
d−1 + nLd−1 | nd) has dimension at least d =

∑d−1
ℓ=0 n

R
ℓ +

∑d−1
ℓ=1 (n

L
ℓ )

2.

Theorem 1. Let θ ∈ Ω be almost any parameter4 in a feedforward ReLU network architec-
ture, (n0, . . . , nd−1|nd), with parametric dimension D, and let X ⊆ Rn0 be a subset of the
domain for which nfixedℓ of the hidden neurons from layer ℓ are either always-active or always-
inactive on all of X . Then the batch functional dimension of θ on X is at most D − d, where

d =
∑d−1

ℓ=1

(
nℓ − nfixedℓ

)
+
∑d−1

ℓ=1

(
nfixedℓ

)2

.

The idea of the proof of Theorem 1 is that near θ, the space of data-dependent parameter space
symmetries on X looks locally like the hidden equivalence group of a mixed ReLU-linear network
with nRℓ = n− nfixedℓ and nLℓ = nfixedℓ .

5 EXPERIMENTAL SETUP

To empirically investigate how the rank of the empirical NTK evolves during training, we define
functions of varying complexity, use those functions to construct toy datasets, and train feedforward
ReLU neural networks on those datasets. This section describes the details of this setup.

Functions and data sets: For our toy datasets, we choose univariate (input dimension 1) and bivariate
(input dimension 2) functions so we can easily plot their evolution during training.

Univariate: The univariate functions f1, f2, f3 : [0, 1] → R are defined as follows:

f1(x) = 1.5 + sin(2πx)

f2(x) = 1.5 + sin(2πx) + 0.5 sin(4πx)

f3(x) = 1.5 + sin(2πx) + 0.5 sin(4πx) + 0.4 sin(16πx).

For each function fi, we create a data set Di = {xj , yj}100j=1 ⊂ R × R by sampling the domain at
100 equally spaced points. Figure 1 shows the graphs and datasets for the functions fi.

4θ is in the complement of a Lebesgue measure 0 set defined in the proof of Proposition A.8 in the Appendix.
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Bivariate: The bivariate functions g1, g2, g3 : [0, 1]2 → R, defined by

g1(x, y) = 1.5 + sin(2πx) + sin(2πy)

g2(x, y) = 1.5 + sin(2πx) + sin(2πy) + 0.5 sin(4πx)

g3(x, y) = 1.5 + sin(2πx) + sin(2πy) + 0.5 sin(4πx) + 0.4 sin(4πy).

For each bivariate function gi, we create a dataset Dgi = {xj , yj}400j=1 ⊂ R2 × R by sampling the
domain at 400 equally spaced points (a 20× 20 grid). Figure 11 in the Appendix shows the graphs
and datasets for the bivariate functions gi.

The purpose of the vertical shift 1.5 in the functions is to make all functions strictly positive. We do
not add noise to our data sets.

Training setup: For all experiments, we used the fixed architecture
(input dimension, 15, 15, 15, 15, 1) of fully-connected, feedforward ReLU neural networks.
For the univariate experiments, the associated number of trainable parameters is D = 1006, and for
the bivariate experiments, the parametric dimension is D = 1021. We train the networks using the
Adam optimizer with MSELoss, learning rate 0.01, weight decay 1e-4 (unless otherwise specified in
text), and shuffled minibatches of batchsize 16. We initialize each training run by randomly selecting
all weights and biases using the He initialization (also called Kaiming initialization), i.e. all weights
and all biases for a given layer are selected randomly from a normal distribution with mean 0 and

standard deviation
√

2
fan in , where fan in is the number of input features for that layer.

Batch functional dimension computation: At specified epochs during training, we compute the
batch functional dimension using the inputs for the entire data set Di as the batch. To do this, we first
compute the matrix

JEDi(θ) :=


∇θf(x1; θ)
∇θf(x2; θ)

...
∇θf(xm; θ)


where each xj is one of the inputs of a point (xj , yj) ∈ Di and f(·, θ) is the function determined by
the parameter θ. We then compute the batch functional dimension as

dimba.fun(θ) = torch.linalg.matrix rank(JEDi
(θ)).

Note that the command torch.linalg.matrix rank computes the number of “non-zero” singular values,
where a singular value is considered non-zero if it is greater than the default error tolerance for
floating point calculations. This default threshold is defined for a n×m matrix A as

threshold(A) := max(n,m) · σmax · ϵ

where σmax is the largest singular value of A and ϵ represents machine precision, which is roughly
1.19 ∗ 10−7 for dtype float32. Thus, our computation of batch functional dimension will set to 0 any
singular values sufficiently small with respect to the maximum possible rank of the Jacobian matrix
(100 for our 1D experiments and 400 for our 2D experiments), and the largest singular value, which
empirically were ≈ 103 for our 1D experiments and ≈ 104 for our 2D experiments. The calculation
of the rank is therefore setting to 0 singular values below (roughly) 0.01 for our 1D experiments and
0.1 for our 2D experiments (both typically 10−5 times σmax).

6 EXPERIMENTAL RESULTS

The empirical NTK is typically rank deficient at initialization. This observation is supported by
Figures 4, 8, 5, 7, 9, 10, 12, 13, 14.

Weight decay suppresses batch functional dimension of trained networks. See Figure 4.

Evolution of functional dimension before and after approximate function stabilization. Figures
3 and 6 show, for each univariate dataset Di, the functions found during a training run. Visual investi-
gation of these and similar plots for other random initializations suggests that, in our experimental
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Figure 4: Comparing the impact of the weight decay rate on functional dimension evolution. Left:
We track functional dimension (trained on D1) during 20 randomly initialized training runs for each
of 3 weight decay rates: 0, 1e-4, and 1e-2. Right: Averages at each epoch over the 20 training runs
per group. (Functional dimension was computed every 100 epochs.)

setup, the functions found by training on D1 typically appear to be approximately stable by epoch
100, on D2 by epoch 1000-1500, and on D3 by epoch 2000-4000. Continuing to train beyond the
point when the function approximately stabilizes does not appear to lead to overfitting (Figure 6 in
the Appendix visualizes function evolution over 3000 epochs for f1.)

Figure 8 depicts trajectories of functional dimension evolution across training epochs until approxi-
mate functional stabilization for multiple random initializations. The trend shown in each of the plots
in Figure 8 is that, on average, functional dimension increases until the epoch at which we stopped
training (chosen to correspond to roughly when the functions tend to stabilize).

Batch functional dimension tracks dataset complexity. Figure 2 supports the conclusion that for
the univariate datasets, on average, training tends to select a function whose complexity, as measured
by functional dimension, reflects the complexity of the data set. That is, the rank of the empirical
NTK after 3000 epochs of training correlates positively with the complexity of the function the model
is learning. Figure 5 demonstrates same trend holds for the bivariate datasets.

Figure 5: Left: Trajectories of batch functional dimension over 10 randomly initialized training runs
for each bivariate dataset (using weight decay 0, functional dimension computed every 100 epochs).
Right: Averages. (All trained functions had r2 scores ≥ 0.95.)

Batch functional dimension is correlated with number of regions sampled. See Figures 9, 10.
Proposition C.3 in Appendix C proves that, except for a measure 0 situation, the functional dimension
is bounded by the number of linear regions sampled by the dataset times (n0 + 1), where n0 is the
input dimension.

7 CONCLUSIONS

We have performed both a theoretical and empirical investigation of the behavior of the empirical
NTK during training of deep ReLU networks on toy datasets, assembling empirical evidence that the
rank of the empirical NTK in this setting is (i) lower-than-expected at initialization, and (ii) tracks
task complexity. We provide a possible theoretical explanation for this phenomenon by relating the
rank of the empirical NTK to the functional dimension, whose behavior for ReLU networks has been
related to a growing body of literature on parameter space symmetries.

9
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A LIE GROUP ACTIONS, HOMOGENEOUS SPACES, ORBITS, AND STABILIZERS

We recall some classical results about Lie group actions on smooth manifolds, following the treatment
in Lee (2013).
Definition A.1. A Lie group is a smooth manifold G that is also a group, for which the group
operations are all smooth maps. That is, G is endowed with a multiplication map

m : G×G→ G m(g, h) = gh

and an inversion map

i : G→ G i(g) = g−1,

and both m and i are smooth (derivatives of all orders are well-defined).
Definition A.2. If G is a Lie group with identity element Id, and Ω is a smooth manifold, a smooth
left action of G on Ω is a map

ψ : G× Ω → Ω (g, θ) 7→ g · θ
satisfying:

• ψ is a smooth map.

• g1 · (g2 · θ) = (g1g2) · θ for all g1, g2 ∈ G, θ ∈ Ω,

• Id · θ = θ for all θ ∈ Ω.
Definition A.3. Let G be a Lie group acting smoothly on a smooth manifold Ω.

• The action of G on Ω is said to be transitive if for all θ, θ′ ∈ Ω there exists g ∈ G such that
g · θ = θ′.

• For θ ∈ Ω, the orbit of θ under the action of G is the set of points in Ω obtainable by
applying an element g ∈ G to θ:

Gθ := {g · θ | g ∈ G}.
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• For θ ∈ Ω, the stabilizer of θ is the set

StabG(θ) := {g ∈ G | g · θ = θ}.
Definition A.4. A homogeneous G–space is a smooth manifold M equipped with a transitive action
of a Lie group G.

It is immediate from the definitions that if a Lie group G acts smoothly on a smooth manifold Ω, then
for every θ ∈ Ω, every G–orbit Gθ is a homogeneous space.5

Proofs of the following results can be found in the section on Homogeneous spaces in Chapter 9 of
Lee (2013), which mostly rely on the equivariant rank theorem for Lie groups (Theorem 9.7 in Lee
(2013)).
Lemma A.5. (Lemma 9.23 of Lee (2013)) If G is a Lie group acting smoothly on Ω, StabG(θ) is a
closed Lie subgroup of G for every θ ∈ Ω.
Theorem 2. (Theorem 9.22 of Lee (2013) Let G be a Lie group, and let H ⊆ G be a closed Lie
subgroup of G. The left coset space G/H has a unique smooth manifold structure such that the
quotient map π : G → G/H is a smooth submersion. Moreover, G/H is also a homogeneous
G–space with respect to the natural G–action on the quotient group.
Theorem 3. (Theorem 9.24 of Lee (2013) Let G be a Lie group and M a homogeneous G–space.
Then the coset space (quotient space) G/StabG(θ) is diffeomorphic to M .
Corollary A.6. (Orbit-stabilizer theorem) Let G be a Lie group acting smoothly on a manifold Ω,
and let Gθ be the G–orbit of θ ∈ Ω. Then G/StabG(θ) is diffeomorphic to Gθ. In particular,

dim(Gθ) = dim(G)− dim(StabG(θ).

The following lemma is immediate from the definitions.
Lemma A.7. Let X be a smooth manifold, G a Lie group acting on X , and H ⊆ G a Lie subgroup
of G. For θ ∈ X , if StabG(θ) is trivial, then so is StabH(θ).

Proof. StabH(θ) is by definition a subgroup of StabG(θ), so if StabG(θ) is the trivial subgroup, then
so is StabH(θ).

We will sometimes need the following architecture restriction in order to deduce properties of the
functional dimension from our knowledge of a particular Lie group action:
Assumption A.1. We say that an architecture (n0, . . . , nd−1 |nd) is roughly monotonic if:

(i) For all ℓ ∈ {1, . . . , d}, we have nℓ − 1 ≤ nℓ−1, or

(ii) For all ℓ ∈ {1, . . . , d}, we have nℓ−1 − 1 ≤ nℓ.

In other words, the dimensions of the layers either grow or shrink (up to a linear error) through the
network. In practice, architectures are typically roughly rectangular, so this restriction is mild.
Proposition A.8. Let Ω be the parameter space for a ReLU neural network of architecture
(n0, n1, . . . , nd−1 | nd). If Assumption A.1 holds, then for almost all θ ∈ Ω, StabGhid

(θ) is trivial.

In other words, as long as the dimensions of the layers don’t shrink too fast (condition (i)) or grow
too fast (condition (ii)) as you move through the network, every parameter away from a Lebesgue
measure 0 set in parameter space has trivial stabilizer under the action of the hidden symmetry group.

Proof. Recall (Equation 4) that

g = (g1, . . . , gd) ∈ Ghid := GLn1
× . . .×GLnd−1

acts on θ = (W 1, b1, . . . ,W d, bd) ∈ Ω by:

(W ℓ, bℓ) → (gℓW
ℓg−1

ℓ−1, gℓb
ℓ),

5Beware that this does not imply that every G–orbit is a smoothly imbedded submanifold of Ω. See the
examples in the section on Proper Actions in Chapter 9 of Lee (2013).
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so if g is in the stabilizer of θ, then (recalling that for convenience we set g0 = gd = Id) we have:

g1W
1 = W 1 g1b

1 = b1

g2W
2g−1

1 = W 2 g2b
2 = b2

· · · · · ·
gd−1W

d−1g−1
d−2 = W d−1 gd−1b

d−1 = bd−1

W dg−1
d−1 = W d

Now note that by the first line of equations above, 1 must be an eigenvalue of g1, and the dimension
of the eigenspace of 1 must be at least the the rank of the matrix, (W 1 b1), whose columns are all in
the in the eigenspace of 1 for g1. But if we assume that g1 ̸= Id, then by the fact that each square
matrix has a unique Jordan canonical form (up to reordering the blocks), and the number of Jordan
blocks associated to each eigenvalue is equal to the dimension of the eigenspace for that eigenvalue,
the dimension of the eigenspace of 1 is bounded above by n1 − 1. Since generically (away from a
Lebesgue measure 0 set) (W 1 b1) has rank = min{n1, n0 + 1}, we conclude that n0 + 1 ≤ n1 − 1.
But if the dimensions of the layers satisfy condition (i), then we have n0 ≥ n1 − 1, so g1 = Id.
Applying this logic to each equation in turn, working from the top to the bottom in the list of equations
above and using condition (i), we conclude that gℓ = Id for all ℓ and hence the stabilizer of a generic
θ is trivial.

We arrive at the same conclusion by applying the same reasoning to the transpose of gℓ, working
from the final equation to the first. In this case, we will need to restrict to symmetric matrices gℓ
in order for it to be possible for the rows of a generic W ℓ to be in the 1-eigenspace of (gℓ)T and
simultaneously have a generic bℓ be in the 1–eigenspace of gℓ. But if we restrict to symmetric gℓ
(that is, gℓ = gTℓ ) and use assumption (ii), then the same argument as in the previous paragraph tells
us that for generic θ, gℓ = Id for all ℓ.

Definition A.9. For 0 ≤ k ≤ n let σ[1:k] : Rn → Rn denote the function that applies the activation
function ReLU(x) (resp., Id(x)) to the first k components (resp., to the last n− k components).

A mixed ReLU-linear neural network of architecture (n0, (nR1 , n
L
1 ), . . . , (n

R
d−1, n

L
d−1)|nd) is a neural

network of architecture (n0, n
R
1 + nI1, . . . , n

R
d−1 + nL1 | nd) whose ℓth layer map is

F ℓ(x) :=

{
σ[1:nR

ℓ ](W
ℓx+ bℓ) for 1 ≤ ℓ < d

W ℓx+ bℓ for ℓ = d.
(6)

Proposition A.10. Given any parameter θ ∈ Ω in a mixed ReLU-linear neural network of architecture

(n0, n
R
1 + nI1, . . . , n

R
d−1 + nLd−1 | nd),

all parameters in the H-orbit of θ for the hidden symmetry subgroup

H := {D+(n
R
1 )×GL(nL1 )} × . . .× {D+(n

R
d−1)×GL(nLd−1)}

are equivalent to θ. That is:

Fhθ(x) = Fθ(x) ∀ x ∈ Rn0 , h ∈ H.

Moreover, if the architecture is roughly monotonic (Definition A.1), then for almost all parameters θ,

dim(Hθ) = dim(H) =

d−1∑
ℓ=0

nRℓ +

d−1∑
ℓ=1

(nLℓ )
2.

Proof. LetD+(n
R
ℓ )×GL(nLℓ ) ⊆ GL(nℓ) be the subgroup ofGL(nℓ) consisting of 2-block matrices

with an nRℓ × nRℓ upper-left block of diagonal matrices with positive entries on the diagonal, and an
nLℓ × nLℓ lower-right block of invertible matrices. The subgroup

H = {D+(n
R
1 )×GL(nL1 )} × . . .× {D+(n

R
d−1)×GL(nLd−1)}

acts on θ ∈ Ω as in Equation 4. dand since D+(n
R
ℓ ) commutes with component-wise application

of ReLU on the first nRℓ neurons, and GL(nLℓ ) commutes with the component-wise application of
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the Id activation function on the last nLℓ neurons, the action of H on Ω leaves the overall function
invariant. Since the architecture is roughly monotonic, for almost all parameters θ ∈ Ω, the stabilizer
of the H action is trivial by Lemma A.7 and Proposition A.8, so the orbit-stabilizer theorem tells us:

dim(Hθ) = dim(H)− 0 =

d−1∑
ℓ=1

nRℓ +

d−1∑
ℓ=1

(nLℓ )
2.

The following theorem says that if there are any neurons for a parameter θ that have fixed activation
status (always-active or always-inactive) on an entire batch X of data, then the dimension of the
space of local data-dependent parameter space symmetries matches the dimension of the hidden
equivalence group for a mixed ReLU-linear network where all of the fixed-status neurons are treated
as linear.
Theorem 1. Let θ ∈ Ω be almost any parameter6 in a feedforward ReLU network architec-
ture, (n0, . . . , nd−1|nd), with parametric dimension D, and let X ⊆ Rn0 be a subset of the
domain for which nfixedℓ of the hidden neurons from layer ℓ are either always-active or always-
inactive on all of X . Then the batch functional dimension of θ on X is at most D − d, where

d =
∑d−1

ℓ=1

(
nℓ − nfixedℓ

)
+
∑d−1

ℓ=1

(
nfixedℓ

)2

.

Proof of Theorem 1. By the well-known description of the piecewise polynomial structure of ReLU
network functions (cf. the appendices of Hanin & Rolnick (2019),Grigsby et al. (2023) and Section
2.6 of Grigsby & Lindsey (2024)), on a neighborhood of each point of X = {x1, . . . , xm}, Fθ is a
polynomial function in the parameters θ, realized as a sum of monomials determined by the open
paths at xi in the computational graph for the architecture. It follows that if we delete the stably
inactive neurons and replace the ReLU activation function with the Id function on the stably active
neurons of the computational graph, the parameterized ReLU neural network class looks locally on X
like a mixed ReLU-linear network whose ReLU neurons in layer ℓ are precisely those neurons whose
activation status is not fixed onX . The neurons in layer ℓ whose activation status onX is active on all
of X look locally like linear neurons (i.e., we can replace ReLU with the Id activation function) and
the neurons in layer ℓ whose activation status is inactive on all of X can be deleted from the network.
Explicitly, if we list the kℓ := kℓ,+ + kℓ,− stably active and inactive neurons on X last in the ℓth
layer, then we can replace the component-wise application of ReLU on the last kℓ neurons with the
component-wise application of Id without impacting the overall function Fθ. Accordingly, the action
of the subgroup, H := {(D+(n1 − k1)×GL(k1)} × . . .× {D+(nd−1)×GL(kd−1)}, commutes
with this mixed activation function. So Heq contains H , and dim(H) =

∑d−1
ℓ=1 (nℓ−kℓ)+

∑d−1
ℓ=1 k

2
ℓ .

The statement about the functional dimension is then an immediate consequence of Corollary 4.3 of
Grigsby & Lindsey (2024) and the orbit-stabilizer theorem, once we note that there exists a non-empty
open ball around θ on which an open subset of H acts with nontrivial stabilizer.

B ADDITIONAL PLOTS AND EXPERIMENTAL RESULTS

B.1 UNIVARIATE DATASETS

6θ is in the complement of a Lebesgue measure 0 set defined in the proof of Proposition A.8 in the Appendix.
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Figure 6: Training after approximate stabilization of the function does not show evidence of overfitting.
This plot shows the evolution of functions found in a single training run for f1 over 3000 epochs.

Figure 7: Functional dimension trajectories for 25 randomly initialized training runs over 3000
epochs using the f1 dataset.
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Figure 8: Evolution of functional dimension for multiple, randomly-initialized training runs until
approximate stabilization. The black dotted lines indicate the average over the “successful” training
runs – which we define as those with coefficient of correlation r2 ≥ 0.9 at the end of training. (The r2
score is recorded to the right of each trajectory.) For f1 we computed the trajectory for 100 randomly
initialized training runs; for each of f2 and f3 we computed 20 training run trajectories.)

Figure 9: Tracking functional dimension and number of linear regions sampled every 100 epochs
during a single training run for f1.

Figure 10: Averages over 20 randomly initialized training runs for f1 of number of linear regions
sampled and functional dimension.
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B.2 BIVARIATE DATASETS

Figure 11: Graphs and datasets for the bivariate functions g1, g2 and g3.
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Figure 12: Functional dimension and contour maps of a single training run (with weight decay = 0)
for g1 every 100 epochs.
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Figure 13: Functional dimension and contour maps of a single training run (with weight decay 0) for
g2 every 100 epochs.
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Figure 14: Functional dimension and contour maps of a single training run (with weight decay 0) for
g3 every 100 epochs.
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C NUMBER OF LINEAR REGIONS SAMPLED BY THE DATA SET INPUTS

Definition C.1. Fix a finite set Z ∈ Rn0 . Let θ be a parameter such that every point zi ∈ Z is in the
interior of a top-dimensional cell of the canonical polyhedral complex C(θ). Then we will say that
the number of linear regions of fθ sampled by Z is the number of n0-dimensional cells of C(θ) that
have nonempty intersection with Z.

Remark C.2. The reason for requiring that every point zi is in the interior of a top-dimensional
cell is to avoid ambiguity in counting caused by a point zi being on the boundary of two or more
top-dimensional cells.
Proposition C.3. Fix an architecture (n0, . . . , 1) of fully-connected feedforward ReLU neural
networks with one-dimensional output. Fix a finite set Z ⊂ Rn0 . Let θ be a generic, transversal,
combinatorially stable parameter such that every point zi is in the interior of a n0-dimensional cell of
the canonical polyhedral complex C(θ). Then dimba.fun(θ, Z) is at most (n0 + 1) times the number
of linear regions of fθ sampled by Z.

In particular, for an architecture with one-dimensional input and output, dimba.fun(θ, Z) is at most
twice the number of linear regions sampled by Z.

Proof. Suppose z1, . . . , zk are all in the interior of the same cell C ∈ C(θ). The assumptions
on θ guarantee (from results in Grigsby et al. (2022)) that there is an open neighborhood U of
θ on which the function {zi} × U → R given by (z, u) 7→ f(θ)(z) is affine-linear (in every
coordinate). Consequently, if the point zk+1 can be expressed as a linear combination of the points
z1, . . . , zk, then the row vector JEzk+1

(θ) can be expressed as a linear combination of the row vectors
JEz1(θ), . . . ,JEzk(θ). Since a top-dimensional geometric simplex in Rn0 has n0 + 1 points, and
batch functional dimension is the number of linearly independent rows of the corresponding matrix,
the result follows.

Figure 9 tracks the batch functional dimension and number of linear regions sampled by D1 over a
single training run. Figure 10 computes averages per epoch over 20 randomly initialized training
runs.

The plots demonstrate that there is a strong correlation between the number of linear regions sampled
by D1 and the batch functional dimension. However, the batch functional dimension is well below
the upper bound imposed by the number of linear regions as in Proposition C.3.
Remark C.4. Definition C.1 and Proposition C.3 are closely related to notion of decisive sets defined in
Grigsby et al. (2022). A decisive set for a parameter θ is a set Z ⊂ Rn0 consisting of precisely n0 +1
points in the interior of each top-dimensional polyhedron C ∈ C(θ) that form an n0-dimensional
simplex. Grigsby et al. (2022) proves that for a generic, transversal, combinatorially stable parameter,
functional dimension is attained on any decisive set.
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