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ABSTRACT

Mathematical properties of the neural tangent kernel (NTK) have been related—both
theoretically and empirically—to convergence of optimization algorithms and the
ability of trained models to generalize. However, most existing theoretical results
hold only in the infinite width limit and only for standard data distributions. In
the present work, we suggest a practical approach to investigating the NTK for
finite-width networks, by understanding the parameter space symmetries of the
network in the presence of finite data sets. In particular, the NTK Gram matrix
associated to any finite data set can naturally be regarded as an empirical version
of the NTK. Moreover, its rank agrees with the functional dimension of the data
set, the number of independent parameter perturbations affecting the model’s
outputs on the data set. In this work, we explore the evolution of the functional
dimension of deep ReLU networks during training, focusing on the relationship to
data set complexity, regularization, and training dynamics. Empirically, we find
that functional dimension of deep ReLLU networks: (1) tracks data set complexity,
(2) increases during training until function stabilization, and (3) decreases with
stronger weight decay, suggesting that gradient-based optimization algorithms are
biased towards simpler functions for ReLU networks. Moreover, our experiments
provide strong evidence that—contrary to conventional wisdom—the empirical NTK
for deep finite-width ReLU networks is typically rank-deficient at initialization. We
offer a potential theoretical explanation for this empirical phenomenon in terms of
certain data-dependent hidden equivalences, emphasizing the connection between
these equivalences and the geometry of the loss landscape. We also establish a
theoretical upper bound on functional dimension in terms of the number of linear
regions sampled by the data set.

1 INTRODUCTION

The neural tangent kernel (NTK) has emerged as a powerful tool for understanding the training
dynamics and generalization properties of neural networks, especially in the infinite width limit Jacot
et al.[(2018)); Lee et al.[|(2019). The spectrum of the NTK, in particular, has been shown to play a key
role, and significant theoretical progress has been made in obtaining closed-form expressions for this
spectrum |[Murray et al.| (2023)); Nguyen & Mondelli| (2020); Nguyen et al.|(2021)). A full-rank NTK
ensures a well-conditioned optimization problem, leading to efficient training and convergence |Arora
et al.[(2019); |Allen-Zhu et al.| (2019). However, we still do not understand the effects of finite-width
corrections. Indeed, NTK theory has fallen short in predicting how real-world neural networks evolve
when training on concrete data sets |Geiger et al.|(2019); Lee et al.| (2020), and the Gram matrix of
the NTK - referred to as the empirical NTK in the literature - frequently evolves significantly during
training in a way that differs from the infinite-width predictions. Our goals here are:

(1) Track the evolution of the empirical NTK during training on synthetic and real-world data
sets of increasing complexity;
(2) Relate this evolution to the task complexity; and

(3) Relate the empirical NTK to a complementary theoretical framework involving data-
dependent parameter space symmetries and their impact on the optimization dynamics
of neural networks.

The starting point of our investigation are the following observations:



Under review as a conference paper at ICLR 2026

(1) The rank of the empirical NTK on a fixed batch of data agrees with the batch functional
dimension (cf. |Grigsby et al.|(2022))), which can be viewed informally as the effective local
parametric dimension on the batch;

(2) It has been observed empirically that for networks that are deeper than they are wide, the
batch functional dimension is much lower at initialization than predicted by the existing
theory of parameter space symmetries |Grigsby et al.[(2023)).

Empirically we find:

» For deep ReLU networks, the empirical NTK has low rank at initialization, rises steadily
during the early epochs of training, and then plateaus or gradually decreases. The rank of
the empirical NTK is precisely the batch functional dimension on the data set. In experiments
the batch functional dimension at initialization is consistently much smaller than the number
of data points for over-parameterized deep ReLU networks. See Figures[2]and[9]

* The rank of the empirical NTK tracks data set complexity during training. Training with a
small positive weight decay tends to select a function whose complexity, as measured by
functional dimension, reflects the complexity of the data set. More complex data sets tend
to result in trained functions that have higher functional dimension. See Figures [2]and 3]

» Weight decay has a damping effect on the rank of the empirical NTK. That is, higher
(constant) weight decay leads to trained functions with lower functional dimension. See

Figure ).
e Number of linear regions sampled by the dataset is strongly correlated with the rank of the
empirical NTK. See Figures [5|and [6]

We suggest two theoretical mechanisms encouraging a rank-deficient NTK, and relate these mecha-
nisms to the existence of hidden parameter space symmetries:

* Hidden data-dependent parameter space symmetries encourage a rank-deficient empirical
NTK. Restricted activation patterns cause ReL.U networks to behave like smaller networks
with more parameter space symmetries. When hidden neurons in a network are either
always-active or always-inactive on a batch of data, then the network behaves like a mixed
linear-ReLLU subnetwork, which enlarges the dimension of the space of symmetries to be
quadratic rather than linear in the number of hidden neurons (Proposition|A.10).

» Fewer linear regions encourage a rank-deficient empirical NTK. We prove a theoretical
upper bound (Proposition ??) on the batch functional dimension in terms of the number of
linear regions sampled by the data set. In the case of architectures with input dimension 1,
as in the case of our univariate experiments, the bound asserts that the functional dimension
is bounded above by twice the number of linear regions sampled by the batch. Attaining this
upper bound would require that the data set and parameter satisfy very specific constraints,
so it is unlikely for a typical parameter to attain the bound. In our experiments the number
of intervals sampled is typically greater than the batch functional dimension.

2 RELATED WORK

Neural Tangent Kernel (NTK) training and generalization at infinite and finite width: The
NTK was first defined and studied in|Jacot et al.| (2018)), where it was established that in the infinite
width limit gradient flow is entirely determined by the NTK and can be described via kernel gradient
flow. See also|Lee et al.|(2019). In|Canatar et al.|(2021) and [Liang & Rakhlin|(2020), the authors
establish generalization bounds for trained infinitely wide networks from measures that track how
rapidly the NTK spectrum decays. These results are only for networks in the infinite width limit,
since they assume that the NTK does not evolve during training. The questions and approach we take
is closest in philosophy to Baratin et al.|(2021), which provides empirical and theoretical evidence
that neural feature alignment as measured by the effective rank - a continuous version of matrix rank -
of the empirical NTK is responsible for favorable generalization behavior. In the very recent paper
Grigsby & Lindsey| (2024)), the authors conjecture that functional dimension (the maximal rank of the
empirical NTK) for finite width networks is equal to a local complexity measure called the persistent
pseudodimension, from which generalization bounds should be extractable.
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Figure 1: Graphs of three univariate functions of increasing complexity (left); datasets obtained by
uniformly sampling 100 points for each function, and then adding Gaussian noise with std=0.01 to
both inputs and outputs (right).
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Figure 2: Functional dimension tracks task complexity on the synthetic data. Trajectories tracking
functional dimension for 15 randomly initialized training runs per dataset, with functional dimension
computed every 50 epochs (left). Averages over the successful (r? score > 0.9) trajectories (right).
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Figure 3: Functional dimension tracks task complexity on the UCI Energy Efficiency dataset: cooling
load prediction is widely regarded to be more difficult than heating load prediction (see Section 3).
Trajectories tracking functional dimension over 10 randomly initialized training runs (each with a
shared random seed for heating vs. cooling), with functional dimension computed every 25 epochs
(left); average trajectories (right).

In[Hanin & Nical (2020), the authors study the NTK at finite width and depth, arguing that sufficiently
deep wide networks can learn data-dependent features even in the so-called “lazy training” regime
associated to very wide networks at fixed depth. In|Huang & Yau|(2020), the authors define and study
the dynamics of gradient descent for finite-width networks under a so-called neural tangent hierarchy
of differential equations, for which the NTK gives an approximation.

NTK eigenfunctions and spectrum analysis: In[Xie et al. (2017), the authors study the dyanamics of
the training loss for shallow ReLU neural networks, establishing a connection between the minimum
singular value of the empirical NTK and the decay rates of both the training loss and the kernel
spectrum associated to the arc-cosine kernel defined by |Cho & Saul| (2009). InNguyen & Mondelli|
(2020) and Nguyen et al.| (2021) the authors perform a spectrum analysis for deep ReLU networks
with certain architecture restrictions, and in Murray et al.| (2023)), the authors derive a power series
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Figure 4: Weight decay suppresses functional dimension. We tracked functional dimension for the
synthetic f2 data set during 10 randomly initialized training runs for each of 3 weight decay rates: 0,
le-4, and le-3. Right: averages over the successful trajectories (all except one for weight decay 1e-4).
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Figure 5: Functional dimension is closely correlated with the number of linear regions sampled.
These plots show a single training run for each synthetic dataset, with functional dimension (solid
blue/red/green) and number linear regions (dashed black) computed every 50 epochs.

expansion for the NTK of arbitrarily deep feedforward networks in the infinite width limit that allows
them to extract the eigenvalue spectrum.

Parameter space symmetries and optimization: Two largely-independent approaches to studying
the relationships among parameter space symmetries, the geometry of the loss landscape, and the
so-called neuromanifold (true function space after quotienting by symmetries) have emerged, as
described in the recent survey papers [Zhao et al.| (2025), Marchetti et al.| (2025)), and the many
references therein. The approach we take here is more closely aligned with the first survey article,
although we are interested in connections to the second. We are not aware of any prior work explicitly
discussing a relationship between the NTK spectrum and parameter space symmetries.

3 BACKGROUND AND NOTATION

3.1 FULLY-CONNECTED FEEDFORWARD RELU NETWORKS

We focus on fully connected neural networks with ReLU activation, denoting by (ng, . .., n4—1|n4)
the architecture with input width n, hidden layer widths n1, ..., n4—1, and output width n,.

Formally, let 0 : R™ — R"™ denote the function that applies the activation function ReLU(z) :=
max{0, x} component-wise. For an architecture (ng, . ..,nq4—1|nq), we denote the parameter space
Q := RP where a parameter 0 := (W', b', ... W9 b?) € Q consists of the entries of weight
matrices W and bias vectors b’ for £ = 1, ..., d. Accordingly, D := 39_, ng(ng_1 + 1). From a
parameter 6 we define a neural network function Fy := F? o ... o F! with layer maps given by:

0oy [ oWlz+bf) forl<i<d
Fi@) = { Whr +b¢  forl = d. M

To compactify notation, following [Masden| (2022) we let F(y) := F* o ... o F'. We refer to the
components of Fy) as the neurons in the (th layer. The pre-activation map z,; : R"® — R associated
to the ith neuron in the ¢th layer is given by:

2,4(x) = m (W (Fpoy(2)) +1), 2)
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Figure 6: Functional dimension is closely correlated with the number of linear regions sampled for
the energy efficiency dataset. A single training run tracking functional dimension for heating/cooling
tasks (red/blue) vs number linear regions (dashed black), computed every 50 epochs.

where 7; : R™ — R denotes the projection onto the ith component.

Given a point z € R™ in the input space we can record its activation status with respect to all
N = Zf:_ll n; hidden neurons by computing the N—tuple s(z) = {—1,0, +1}" of pre-activation
signs for neurons in the network. Explicitly, the component of s(z) corresponding to the ith neuron
= ifz#0

F.

in the (th layer is: s, ;(x) := sgn(z¢,;()), where sgn(z) = { 0 ifr—o0

In the present work, we will also be interested in the activation pattern of each neuron in the network
with respect to a finite data set X = {x1,...,2,,}. For neuron 7 in layer ¢ this is the m—tuple
(se,i(x1)s---580i(@m)). If s¢(x;) = +1 (resp., = —1) for all z; € X we say that neuron ¢ in layer
{ is always-active (resp., always-inactive) on the data set X.

Our main result (Theorem [I)) requires an architecture restriction in order to rule out undesirable
behavior. Accordingly, we define:

Assumption 3.1. We say that an architecture (ng, . ..,ngq—1 | ng) is roughly monotonic if:

(i) Forallt € {1,...,d}, we have ng — 1 < my_q, or

(ii) Forall ¢ € {1,...,d}, we have ng_; — 1 < ny.

In other words, the dimensions of the layers either grow or shrink (up to a linear error) through the
network. See Appendix [A]for more details. An example of an architecture that is roughly monotonic
is (1, 5,4, 3,2|1) and an example of an architecture that is not roughly monotonic is (1, 5,5, 5, 5|1).

3.2 SPECTRUM OF THE NTK FOR RELU NETWORKS

Recall that a kernel k : R™ x R™ — R is a symmetric, positive semi-definite similarity measure
on the input space of a function class, most naturally obtained by pulling back an inner product from
a kernel feature map ® : R™ — H into a Hilbert space H: k¢ (x,y) := (®(z), P(y)).

In the case of the neural tangent kernel (NTK) associated to a parameter 6 € (2 at initialization, H is
the tangent space Ty (€2) = RP at that parameter, equipped with its standard inner product, and the
feature map @ : R™ — 7 is the assignment of the parameter gradient vector V E. |y of the evaluation
map at each input vector z € R™. Mercer’s Theorem (cf. |Scholkopf & Smolal (2002)) associates
to any kernel k£ on a compact set x C R"™ a natural positive semi-definite integral operator T},
on Ly(x), defined by T f(+) := fx k(-,y) f(y)dy, whose associated eigenfunctions can be viewed

as a preferred orthonormal basis of Ly () associated to the kernel. The relationship between the
eigenbasis and spectrum of the NTK operator, optimization dynamics, and generalization has been
widely studied, cf. Murray et al.|(2023) and the references therein. It is frequently assumed that at
initialization the empirical NTK will have full rank—i.e., will be equal to the number of data points in
the overparameterized setting.
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3.3 BATCH FUNCTIONAL DIMENSION AND THE EMPIRICAL NTK FOR RELU NETWORKS

The (batch) functional dimension of a parameter § € () on a finite data set Z C R"° was defined
(away from a Lebesgue measure 0 set) for ReLU neural network classes in (Grigsby et al.| (2022),
see also |Stock] (2023));  Bona-Pellissier et al.| (20225 [2024). It is the rank of the Jacobian matrix
with respect to the parameters of the evaluation map on the batch Z: tk(JEz|9). When the output
dimension is 1, Z = {z1, ..., z;»}, and the parametric dimension is D, JEz is an m X D matrix
whose rows are VE, |g, the neural tangent kernel feature maps at the m points of Z.

In Section 6 of (Grigsby et al|(2022) it is noted that the Gram matrix of the NTK at # on a batch Z is
(JEZ)(JEZ)T. Moreover, it is a well-known linear algebra fact that for all matrices M over R:

k(M) = rk(MM7T),

so the rank of the Gram matrix, (JEz)(JEz)T, of the NTK at 6 on a batch Z is precisely the batch
functional dimension of 6 on the batch Z.

4 PARAMETER SPACE SYMMETRIES AND FUNCTIONAL DIMENSION

One take-away from the experiments described here is that functional dimension at initialization
is often far below what theory predicts. In this section, we (i) recall the previously-established
connection between functional dimension and parameter space symmetries, (ii) propose activation
sparsity as a mechanism for explaining the gap between theory and experiment, and (iii) provide
novel data-dependent bounds (Theorem [I] and Proposition [4.6) on functional dimension (aka the
rank of the empirical NTK) in this setting. We do not claim that these theoretical results provide
a complete explanation for the empirical phenomena we observe. We merely describe succinctly
existing theoretical frameworks and show how they can be used to give novel bounds that may
partially explain the rank gap.

It is well-known that function representation in neural architectures is highly redundant; many
parameter settings give rise to the same function. This redundancy is governed by the architecture’s
parameter space symmetries, Godfrey et al.|(2022);Zhao et al.. In|Grigsby et al.|(2022;[2023)); (Grigsby
& Lindsey| (2024) it is noted that in favorable situations the local dimension of parameter space
symmetries is complementary to functional dimension. Explicitly (but informally), for a parameter ¢:
if D is the total parametric dimension, dy is the functional dimension at 6 and sy is the dimension of
the space of symmetries near 6, then D = dg + s¢. The picture is that parameter space is decomposed
locally into directions that can change the function (hence contribute to functional dimension) and
directions that preserve the function (hence contribute to the local space of symmetries).

Following |Serra et al.| (2020), we call two neural network function F;:R"™ — R™ for: =1,2
equivalentif F'y(xz) = Fy(x) forallz € R™. If X C R™ is a proper subset, we say F; are equivalent
for ¢ = 1,2 relative to X if Fy(z) = Fy(x) for all x € X. Informally, a global parameter space
symmetry is a map from parameter space to itself that sends all functions to equivalent functions.
A data-dependent parameter space symmetry is a map that induces equivalences only relative to a
proper subset X. In the remainder of this section, we formalize these concepts and show how they
can be used to give a potential theoretical explanation for our empirical observations.

4.1 GROUP ACTIONS, ORBITS, AND HIDDEN EQUIVALENCES

Feedforward ReLLU architectures are well-known to be invariant under positive scaling and permuta-
tion of hidden neurons (cf. (Rolnick & Kording| 2020; Bui Thi Mai & Lampert, 2020; |Grigsby et al.|
2023)). Letting N = Z?;ll ne be the number of hidden neurons in a ReLU network, this typically
results in at least an N—dimensional space of parameter choices for each function representable by
the class. The above well-known fact is an incarnation of a much more general phenomenon that is
central to establishing upper bounds on the rank of the empirical NTK.

It is profitable to view many redundancies as arising directly from the computational structure of the
function class. Following |[Zhao et al., we note that the parameter space of a feedforward network

'We do not assume that the functions are associated to networks of the same architecture, but they necessarily
have the same input and output dimensions.
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architecture (ng, . ..,nqg—1|nq) (for any choice of activation function) admits a natural action of the
hidden symmetry group, Gp;q := GL,, x ... x GL,, ,. Here, GL,, denotes the general linear
group of invertible n x n matrices over R, so any g = (g1, ..., 9d—1) € Gria gives rise to a map
g-—: Q — Qdefined as follows. If § = (W1, b, ... W% bd) € Q, then:

g (W) = (9W gy, g0b"), 3)
where we set go := Id,,,, g4 := 1d,,,, the identity matrices of the appropriate dimensions.

One can and should understand this particular action as arising more naturally by performing a
conjugation (change-of-basis) operation on the ¢th hidden layer and pulling the conjugating matrices
past the activation layers so that they are now being multiplied by the parameters rather than the
hidden vectors themselves. The observant reader will recognize this action as inducing equivalences
for deep linear networks, since the overall function will be invariant under this action as long as there
is no activation function. If an activation function is present, we simply restrict attention to the largest
subgroup of Gp,;4 that commutes with the component-wise application of the activation function, and
we arrive at the same conclusion. Accordingly:

Definition 4.1. We define the hidden equivalence group, Heq C Ghiq for a fixed architecture and
batch X C R™ of input data to be the largest subgroup of the hidden symmetry group that commutes
with the component-wise application of the activation function for all x € X.

In this case, each Heg,—orbit, Hey 0 := {h-0|hc€ Heq}, consists of equivalent parameters; see
Zhao et al.| and Section[A]in the Appendix for more details.

Ghiq and H., are examples of Lie groups, and the assignment of a smooth map on a vector space
associated to every element of a Lie group is an example of a Lie group action. Lie groups - smooth
manifolds with a group structure that interacts cleanly with the smooth structure - are familiar
objects to differential geometers. They have many useful properties that are by now standard in the
mathematics literature but which would be difficult to establish directly in the absence of this history.

In particular, any time a Lie group H acts on a smooth manifold (in this case, on the parameter space
of a neural architecture), the space decomposes into orbits under the action, and the dimensions of
these orbits can vary according to local properties. The powerful classical orbit-stabilizer theorem for
Lie group actions (Corollary[A.6] cf. [Lee| (2013)) tells us that H6 is diffeomorphic to the quotient
space, H/Staby (6), where
Staby () :={h € H | h-6 =0}

is the stabilizer of 6. In particular, the dimension of the orbit H6 is the dimension of the Lie group H
minus the dimension of the stabilizer of any parameter 6 in the orbit:

dim(H0) = dim(H) — dim(Staby; (6)). ()

It is immediate that all functions in any H.4-orbit of any parameter 6 € €) are equivalent on X. In
particular, as long as the stabilizer of a parameter is trivial (i.e., consists only of the identity element
of the Lie group), the dimension of H., will give us a lower bound on the dimension of the group of
parameter space symmetries. It follows that if the hidden equivalence group is larger than expected,
then level sets of the loss function will also be larger than expected (in the trivial stabilizer case),
since equivalent functions yield the same empirical loss for any loss function:

Lemma 4.2. Let C C € be the critical locus for any empirical loss function Lx : 0 — R. If there
exists 0 € C with trivial stabilizer (for which Staby, (0) = {1d}), then dim(C) > dim(H.,).

Remark 4.3. The expected dimension of the hidden equivalence group for a ReLU network of

architecture (ng, ny,...,nqg—1|nq) is N = 22;11 ng, the number of hidden neurons. Indeed, letting
PD. (n) denote the group of n x n matrices representable as a product PD, where P isann X n
permutation matrix and D is an n X n diagonal matrix with strictly positive entries on the diagonal,
the subgroup PD, (n1) X ... X PDy(ngy_1) of the hidden symmetry group commutes with the
component-wise application of ReLU (Zhao et al.f |Godfrey et al., [2022), resulting in the familiar
positive scaling invariance and permutation invariance for ReLU networks mentioned above.

Lemma[4.2] which follows from the orbit-stabilizer theorem and the results in Appendix [A] tells us
that if the hidden equivalence group on a batch of data X includes a subgroup of dimension larger
than N and the stabilizer is known to be trivial in general, then the symmetry group will be larger
than the expected dimension N, decreasing the functional dimension on the batch. In the following
section, we describe one way this can occur.
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4.2 RESTRICTED ACTIVATION PATTERNS INDUCE HIDDEN EQUIVALENCES

If there are neurons for Fj that are either always-active or always-inactive on a data set X C R"°,
then ReLU acts locally as the Identity function at always-active neurons and effectively ignores
always-inactive neurons. This observation motivates the following, cf. Serra et al.| (2020):

Definition 4.4. Let 0(1.,) : R" — R" denote the function that applies the activation function
ReLU(x) (resp., Id(x)) to the first k components (resp., to the last n— k components). A mixed ReLU-
linear neural network of architecture (ng, (nf,nt),....(n% |, nk )|ng) is a neural network of
architecture (ng, nf+nl, ... .n%  +n¥ | ng) whose tth layer map is F*(z) := (1] (Whz+b").

The following results, whose formal statements and proofs appear in Appendix together tell us
that the dimension of the hidden equivalence group is quadratic, rather than linear in the number of
neurons with fixed activation status with respect to the data set X.

Proposition 4.5. The hidden equivalence group of a mixed ReLU-linear neural network of architec-
ture (ng,nf +ni,....nft | +nk | | ng) has dimension at least d = Zz;é nyt + Z?;ll(nf)Q.

Theorem 1. Let 6 € ) be almost any parameterE] in a roughly monotonic feedforward ReLU

network architecture, (ng, . ..,n4—1|nq), with parametric dimension D, and let X C R™ be a
subset of the domain for which nlf iwed of the hidden neurons from layer { are either always-active or

always-inactive on all of X. Then the batch functional dimension of 0 on X is at most D — d, where
) ) 2
d = 22;11 (n( _ ngzred) + Zzl;ll (ngzred) )

The idea of the proof of Theorem [1}is that near 6, the space of data-dependent parameter space

symmetries on X looks locally like the hidden equivalence group of a mixed ReLLU-linear network

with nf = n—nf"** and nl = nf™*. The roughly monotonic condition on the architecture insures

that the stabilizer of the action is trivial, so the dimension of the orbit is the dimension of this group.

4.3 NUMBER OF LINEAR REGIONS SAMPLED CONSTRAINS BATCH FUNCTIONAL DIMENSION
The number of linear regions of a piecewise-linear function fy sampled by a batch of inputs Z is the
number of distinct affine pieces of fy that are actually encountered on the set Z.

Proposition 4.6. For any batch of inputs Z, for a full measure set of parameters 6, the batch
Sfunctional dimension at 0 is at most (input dimension + 1) times the number of linear regions of fy
sampled by Z.

The proof of Proposition[4.6]is in Appendix

5 EXPERIMENTAL SETUP

Functions and data sets:

Synthetic univariate data with noise: We use univariate (input dimension 1) functions so we can
easily plot their evolution during training.

The univariate functions f1, f2, f3 : [0, 1] — R are defined as follows:

fi(x) = 1.5 + sin(27z)
fa(x) = 1.5 + sin(27ax) + 0.5 sin(4wx)
fa(x) = 1.5 + sin(27x) + 0.5sin(4dnwx) + 0.4sin(167z).

For each function f;, we create a data set D; = {x;,y,};2) C R x R by sampling the domain at 100
equally spaced points, and then adding Gaussian noise (with std= 0.01, mean= 0) to both the inputs
and outputs. The purpose of the vertical shift 1.5 in the functions is to make all functions strictly
positive. Figure[I|shows the graphs and datasets for the functions f;.

20 is in the complement of a Lebesgue measure 0 set defined in the proof of Proposition in the Appendix.
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We also tracked functional dimension for bivariate synthetic data sets of increasing complexity. See

Appendix

UCI Energy Efficiency data: In addition to the synthetic datasets above, we include a real-world
benchmark drawn from the UCI Energy Efficiency Dataset (Tsanas & Xifara, [2012ajb)). This dataset
consists of 768 building-design observations, each described by eight geometric and thermophysical
features (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing
area, and glazing-area distribution). The dataset provides two regression targets, the heating and
cooling load requirements associated with each design.

A consistent finding in the literature is that Heating Load (HL) is easier to model than Cooling Load
(CL). In the original study associated with this dataset (Tsanas & Xifara, [2012a}b)), the authors report
systematically smaller prediction errors for HL across multiple regression techniques, including
linear models and nonlinear ensemble methods. Later surveys of data-driven building-load prediction
document the same pattern across a broad range of linear and nonlinear ML algorithms, cf. Figure 9
in|Salami et al.[(2023)). Heating Load is uniformly approximated more accurately, and the accuracy
gap between linear and nonlinear models is wider for CL than for HL.

We chose to use the energy efficiency dataset because it is small enough that full-batch functional
dimension can be computed exactly, includes enough diverse input configurations to meaningfully
probe the network’s behavior across the input space, and offers two regression tasks.

Training setup: For all experiments, we used the fixed architecture
(input dimension, 10, 10,10,10,1) of fully-connected, feedforward ReLU neural networks.
For the univariate experiments, the associated number of trainable parameters is D = 361, for the
bivariate experiments, the parametric dimension is D = 371, and for the Energy Efficiency data set
D = 431. We compute functional dimension periodically throughout the training as indicated in the
figure captions. We train all networks networks using the Adam optimizer with MSELoss, learning
rate 0.01, weight decay 1e-4, and shuffled minibatches of batchsize 16 (unless specified otherwise).
We initialize each training run using a variant of the He (also called Kaiming) initialization — all
weights and all biases for a given layer are selected randomly from a normal distribution with mean 0

2

and standard deviation Fn®

where fan_in is the number of input features for that layer.

Function Evolution During Training, f2 Function Evolution During Training

Figure 7: Function evolution for a single training run, for functions f; and f3. Although the networks
are overparameterized (100 data points and 361 parameters), the learned functions do not overfit.

Batch functional dimension computation: At specified epochs during training, we compute the
batch functional dimension using the inputs for the entire data set D; as the batch. To do this, we first
compute the matrix
Vo f(21; 93
Vo f(x2;0
JEp,(0) = .

Vo (@m; )

where each x; is one of the inputs of a point (z,,y;) € D; and f(-, §) is the function determined by
the parameter §. We then compute the batch functional dimension as

dimpg fyn (0) = torch.linalg.matrix_rank(JEp, (9)).
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Note that the command torch.linalg.matrix_rank computes the number of “non-zero” singular values,
where a singular value is considered non-zero if it is greater than the default error tolerance for
floating point calculations. This default threshold is defined for a n x m matrix A as

threshold(A) := max(n,m) - Omaz - €

where 0,4, is the largest singular value of A and € represents machine precision, which is roughly
1.19 % 10~ 7 for dtype float32. Thus, our computation of batch functional dimension will set to 0 any
singular values sufficiently small with respect to the maximum possible rank of the Jacobian matrix
(100 for our 1D experiments and 400 for our 2D experiments), and the largest singular value, which
empirically were ~ 102 for our 1D experiments and ~ 10* for our 2D experiments. The calculation
of the rank is therefore setting to 0 singular values below (roughly) 0.01 for our 1D experiments and
0.1 for our 2D experiments (both typically 1075 times 0,,,q4).

Number of linear regions sampled: The number of linear regions sampled by the dataset is
computed by counting the distinct ReLU activation patterns across all inputs: for each sample, we
record a binary vector indicating which neurons in each layer are active, and each unique pattern
corresponds to a unique linear region of the piecewise-linear function implemented by the network.

6 EXPERIMENTAL RESULTS

The empirical NTK is typically rank deficient at initialization. This observation is supported
by Figures[2] 3] and[9] For the univariate experiments (Figure2)), there are 100 data points and the
parametric dimension is D = 361, so the functional dimension is the rank of a 100 x 361 matrix,
yet at initialization the functional dimension is on average below 20. Similarly, for the Energy
Efficiency experiments (Figure[3), the functional dimension is the rank of a 768 x 431 matrix, while
the functional dimension at initialization is on average below 400. For the bivariate experiments
(Figure0), the functional dimension at initialization is on average less than 60 for a 100 x 371 matrix.

Weight decay suppresses batch functional dimension of trained networks. See Figure

Evolution of functional dimension during training. In all experiments, the functional dimension
begins well below the number of data points and rises steadily during early training. In later epochs,
however, the trend changes: the growth rate diminishes, and the functional dimension frequently
decreases gradually as weight decay exerts a regularizing influence.

Batch functional dimension tracks dataset complexity. Figures 2] supports the conclusion that for
the univariate datasets, on average, training tends to select a function whose complexity, as measured
by functional dimension, reflects the complexity of the data set. That is, the rank of the empirical
NTK correlates positively at the end of training with the complexity of the function the model is
learning. Figures [3] and [0 demonstrate the same trend for the Energy Efficiency data set and the
synthetic bivariate data set.

Batch functional dimension is correlated with number of regions sampled. Proposition ?? proves
that, except for a measure 0 situation, the functional dimension is bounded by the number of linear
regions sampled by the dataset times (ng + 1), where ng is the input dimension. This result is
confirmed empirically in Figures[5]and 6]

7 CONCLUSIONS

We have performed both a theoretical and empirical investigation of the behavior of the empirical
NTK during training of deep ReLU networks on synthetic and real-world datasets, assembling
empirical evidence that the rank of the empirical NTK in this setting is (i) lower-than-expected at
initialization, and (ii) tracks task complexity. We provide a possible theoretical explanation for this
phenomenon by relating the rank of the empirical NTK to the functional dimension, whose behavior
for ReLU networks has been related to a growing body of literature on parameter space symmetries.

10
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A LIE GROUP ACTIONS, HOMOGENEOUS SPACES, ORBITS, AND STABILIZERS

We recall some classical results about Lie group actions on smooth manifolds, following the treatment
in|Lee} (2013)).

Definition A.1. A Lie group is a smooth manifold G that is also a group, for which the group
operations are all smooth maps. That is, G is endowed with a multiplication map

m:GxG—G m(g,h) = gh
and an inversion map
1:G—>G i(g) =g ",

and both m and i are smooth (derivatives of all orders are well-defined).
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Definition A.2. If G is a Lie group with identity element Id, and 2 is a smooth manifold, a smooth
left action of G on () is a map

P:GEx 00— 0 (9,0)—~g-0
satisfying:
* ) is a smooth map.

* g1-(92-0) = (9192) - O forall g,g2 € G,0 € Q,

e Id-0=20foralld € Q.
Definition A.3. Let G be a Lie group acting smoothly on a smooth manifold §.

* The action of G on Q is said to be transitive if for all 6,0’ € Q there exists g € G such that
g-0=20"

» For 0 € €, the orbit of 0 under the action of G is the set of points in () obtainable by
applying an element g € G to 0:

Go:={g-0|geG}

o For 0 € (), the stabilizer of 0 is the set
Stabg(0) :={g€ G| g-0=0}.

Definition A.4. A homogeneous G—space is a smooth manifold M equipped with a transitive action
of a Lie group G.

It is immediate from the definitions that if a Lie group G acts smoothly on a smooth manifold £2, then
for every 0 € Q, every G—orbit G0 is a homogeneous space |

Proofs of the following results can be found in the section on Homogeneous spaces in Chapter 9 of
Lee|(2013), which mostly rely on the equivariant rank theorem for Lie groups (Theorem 9.7 in|Lee
(2013)).

Lemma A.5. (Lemma 9.23 of|Lee|(2013)) If G is a Lie group acting smoothly on Q, Stabg (9) is a
closed Lie subgroup of G for every 6 € Q.

Theorem 2. (Theorem 9.22 of Lee|(2013) Let G be a Lie group, and let H C G be a closed Lie
subgroup of G. The left coset space G/H has a unique smooth manifold structure such that the
quotient map © : G — G/H is a smooth submersion. Moreover, G/H is also a homogeneous
G—-space with respect to the natural G—action on the quotient group.

Theorem 3. (Theorem 9.24 of |Lee|(2013) Let G be a Lie group and M a homogeneous G—space.
Then the coset space (quotient space) G /Stab(0) is diffeomorphic to M.

Corollary A.6. (Orbit-stabilizer theorem) Let G be a Lie group acting smoothly on a manifold (),
and let GO be the G—orbit of 0 € Q). Then G /Stab(0) is diffeomorphic to GO. In particular,

dim(G0) = dim(G) — dim(Stabg (6).

The following lemma is immediate from the definitions.

Lemma A.7. Let X be a smooth manifold, G a Lie group acting on X, and H C G a Lie subgroup
of G. For 0 € X, if Stabi(0) is trivial, then so is Staby ().

Proof. Staby () is by definition a subgroup of Stabg (), so if Stabg (6) is the trivial subgroup, then
so is Staby (6). O

We will sometimes need the following architecture restriction in order to deduce properties of the
functional dimension from our knowledge of a particular Lie group action:

3Beware that this does nor imply that every G—orbit is a smoothly imbedded submanifold of Q. See the
examples in the section on Proper Actions in Chapter 9 of |Lee[(2013)).
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Assumption A.1. We say that an architecture (ng, ... ,ng_1 | ng) is roughly monotonic if:
(i) Forallt € {1,...,d}, we have ny — 1 < ny_q, or
(ii) Forall ¢ € {1,...,d}, we have ng_1 — 1 < ny.

In other words, the dimensions of the layers either grow or shrink (up to a linear error) through the
network. In practice, architectures are typically roughly rectangular, so this restriction is mild.

Proposition A.8. Let ) be the parameter space for a ReLU neural network of architecture
(no,n1,...,n4—1 | na). If Assumption[A.1|holds, then for almost all § € ), Stabg,,,(0) is trivial.

In other words, as long as the dimensions of the layers don’t grow too fast (condition (i)) or shrink
too fast (condition (ii)) as you move through the network, every parameter away from a Lebesgue
measure 0 set in parameter space has trivial stabilizer under the action of the hidden symmetry group.

Proof. Recall (Equation[3)) that
9= 1(91,---+9d) € Ghia == GLp, X ... X GLy,_,
actson § = (WL bt ... W9 bd) € Qby:
(WEB) = (9eW g2 geb),

so if g is in the stabilizer of 6, then (recalling that for convenience we set gy = g4 = Id) we have:

ngl _ Wl glbl _ bl
W2t = W? gab® = b
gaaW gty = WL g b =0T
deg_ll = Wd

Now note that by the first line of equations above, 1 must be an eigenvalue of g;, and the dimension
of the eigenspace of 1 must be at least the the rank of the matrix, (W1 b!), whose columns are all in
the in the eigenspace of 1 for ¢g;. But if we assume that g; # Id, then by the fact that each square
matrix has a unique Jordan canonical form (up to reordering the blocks), and the number of Jordan
blocks associated to each eigenvalue is equal to the dimension of the eigenspace for that eigenvalue,
the dimension of the eigenspace of 1 is bounded above by n; — 1. Since generically (away from a
Lebesgue measure 0 set) (W1 b') has rank = min{n,ng + 1}, we conclude that ng +1 < nqy — 1.
But if the dimensions of the layers satisfy condition (i), then we have ng > n; — 1, so g = Id.
Applying this logic to each equation in turn, working from the top to the bottom in the list of equations
above and using condition (i), we conclude that g, = Id for all £ and hence the stabilizer of a generic
0 is trivial.

We arrive at the same conclusion by applying the same reasoning to the transpose of gy, working
from the final equation to the first. In this case, we will need to restrict to symmetric matrices gy
in order for it to be possible for the rows of a generic W* to be in the 1-eigenspace of (g¢)” and
simultaneously have a generic b be in the 1-eigenspace of g*. But if we restrict to symmetric g,
(thatis, g¢ = g/ ) and use assumption (ii), then the same argument as in the previous paragraph tells
us that for generic 6, g, = Id for all /.

Definition A.9. For 0 < k < n let op1.1) : R" — R" denote the function that applies the activation
Sfunction ReLU(zx) (resp., Id(x)) to the first k components (resp., to the last n — k components).

A mixed ReLU-linear neural network of architecture (no, (nf,nt), ..., (nf | ,nk )|ng) is a neural
network of architecture (no,nf +ni, ... n% | +nl | ng) whose lth layer map is

(W + B <
F(z) ::{ a[lzn[](W x40 forl<tl<d )

Wt +b* for{ =d.
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Proposition A.10. Given any parameter 0 € <) in a mixed ReLU-linear neural network of architecture
(no,nf* +nl ... 0l 0k | na),
all parameters in the H-orbit of 0 for the hidden symmetry subgroup
H = {D(n") x GL(n{)} x ... x {D1(ng_y) x GL(ng_y)}
are equivalent to 0. That is:
th(a:) = F@(x) Ve Rno’h € H.

Moreover, if the architecture is roughly monotonic (Definition|A.1)), then for almost all parameters 6,
d—1 d—1
dim(HO) = dim(H) = Z nit + Z(WL)Q
£=0 =1

Proof. Let D4 (nl)x GL(nk) C GL(ny) be the subgroup of G L(n,) consisting of 2-block matrices
with an nf X nf upper-left block of diagonal matrices with positive entries on the diagonal, and an

nk x nL lower-right block of invertible matrices. The subgroup
H = {Dy(n{') x GL(n{)} x ... x {Dy(ng_y) x GL(nf_,)}

actson f € Q asin Equation dand since D (nf) commutes with component-wise application
of ReLU on the first nf neurons, and GL (ngL) commutes with the component-wise application of
the Id activation function on the last neL neurons, the action of H on () leaves the overall function

invariant. Since the architecture is roughly monotonic, for almost all parameters 6 € 2, the stabilizer
of the H action is trivial by Lemma[A.7]and Proposition so the orbit-stabilizer theorem tells us:

d—1 d—1
dim(H0) = dim(H) — 0= nf+ > (nf)>.
/=1 =1
O

The following theorem says that if there are any neurons for a parameter 6 that have fixed activation
status (always-active or always-inactive) on an entire batch X of data, then the dimension of the
space of local data-dependent parameter space symmetries matches the dimension of the hidden
equivalence group for a mixed ReLLU-linear network where all of the fixed-status neurons are treated
as linear.

Theorem 1. Let 6 € () be almost any parameterﬂ in a roughly monotonic feedforward ReLU

network architecture, (ng, . ..,nq—1|nq), with parametric dimension D, and let X C R™ be a
subset of the domain for which n{ iwed of the hidden neurons from layer ¢ are either always-active or

always-inactive on all of X. Then the batch functional dimension of 0 on X is at most D — d, where
2
d—1 ixed d—1 ixed
a=5202 (ne = nf™") + 202} (nf)

Proof of Theorem([I} By the well-known description of the piecewise polynomial structure of ReLU
network functions (cf. the appendices of [Hanin & Rolnick|(2019),Grigsby et al.[(2023)) and Section
2.6 of |Grigsby & Lindsey| (2024)), on a neighborhood of each point of X = {z1,..., 2}, Fpisa
polynomial function in the parameters 6, realized as a sum of monomials determined by the open
paths at x; in the computational graph for the architecture. It follows that if we delete the stably
inactive neurons and replace the ReLU activation function with the Id function on the stably active
neurons of the computational graph, the parameterized ReLU neural network class looks locally on X
like a mixed ReLU-linear network whose ReLU neurons in layer ¢ are precisely those neurons whose
activation status is not fixed on X . The neurons in layer £ whose activation status on X is active on all
of X look locally like linear neurons (i.e., we can replace ReLU with the Id activation function) and
the neurons in layer ¢ whose activation status is inactive on all of X can be deleted from the network.
Explicitly, if we list the k; := k¢ 4 + k¢, — stably active and inactive neurons on X last in the /th

*0 is in the complement of a Lebesgue measure 0 set defined in the proof of Proposition in the Appendix.
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layer, then we can replace the component-wise application of ReLU on the last k, neurons with the
component-wise application of Id without impacting the overall function Fy. Accordingly, the action
of the subgroup, H := {(D4+(n1 — k1) x GL(k1)} x ... x {D4+(ng—1) x GL(k4—1)}, commutes
with this mixed activation function. So H., contains H, and dim(H) = Z‘Z;ll (ng—ke) + Z?;ll kZ.
The statement about the functional dimension is then an immediate consequence of Corollary 4.3 of
|Grigsby & Lindsey|(2024) and the orbit-stabilizer theorem, once we note that there exists a non-empty
open ball around # on which an open subset of H acts with trivial stabilizer. O

B ADDITIONAL PLOTS AND EXPERIMENTAL RESULTS

B.1 BIVARIATE DATASETS

Bivariate synthetic data: The bivariate functions g1, g2, g3 : [0,1]?> — R, defined by

g1(z,y) = 1.5 + sin(27z) + sin(27y)
g2(z,y) = 1.5 + sin(27zx) + sin(27y) + 0.5 sin(47z)
g3(z,y) = 1.5 + sin(27z) + sin(27y) + 0.5 sin(4nz) + 0.4 sin(47y).

For each bivariate function g;, we create a dataset D, = {x;,y;}72) C R* x R by sampling the

domain at 400 equally spaced points (a 20 x 20 grid). Figure[§]in the Appendix shows the graphs
and datasets for the bivariate functions g;.

gl(x,y) g2(x.y) g3(x.y)

dataset for g2

Figure 8: Graphs and datasets for the bivariate functions g1, g» and g3. Each datasets consists of 400
points whose inputs are uniformly distributed in the square [0, 1]2.
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2D Functional Dimension Trajectories 2D Average Functional Dimension (successful runs)

100

Functional Dimension
Functional Dimension

Figure 9: Evolution of functional dimension on the bivariate datasets g1, g2, g3. Trajectories tracking
the evolution of functional dimension for 20 randomly initialized training runs per dataset, with
functional dimension computed every 25 epochs (left). Averages (right) .

C NUMBER OF LINEAR REGIONS SAMPLED BY THE DATA SET INPUTS

Definition C.1. Fix a finite set Z € R™. Let 0 be a parameter such that every point z; € Z is in the
interior of a top-dimensional cell of the canonical polyhedral complex C(0). Then we will say that
the number of linear regions of fp sampled by Z is the number of ny-dimensional cells of C(0) that
have nonempty intersection with Z.

Remark C.2. The reason for requiring that every point z; is in the interior of a top-dimensional
cell is to avoid ambiguity in counting caused by a point z; being on the boundary of two or more
top-dimensional cells.

Proposition[C.3|is a more technical version of (and in particular implies) the statement of Proposition
(.6l By|Grigsby & Lindsey| (2024), for any finite batch Z, a full measure set of parameters 6 satisfies
the assumptions of Proposition|C.3].

Proposition C.3. Fix an architecture (ng,...,1) of fully-connected feedforward ReLU neural
networks with one-dimensional output. Fix a finite set Z C R™. Let 0 be a generic, transversal,
combinatorially stable parameter such that every point z; is in the interior of a no-dimensional cell of
the canonical polyhedral complex C(0). Then dimyq,_ fun (0, Z) is at most (ng + 1) times the number
of linear regions of fg sampled by Z.

In particular, for an architecture with one-dimensional input and output, dimy, f,, (0, Z) is at most
twice the number of linear regions sampled by Z.

Proof. Suppose z1,. ..,z are all in the interior of the same cell C € C(6). The assumptions
on # guarantee (from results in (Grigsby et al.| (2022)) that there is an open neighborhood U of
6 on which the function {z;} x U — R given by (z,u) — f(6)(z) is affine-linear (in every
coordinate). Consequently, if the point 241 can be expressed as a linear combination of the points
21,..., 2k, then the row vector JE,, () can be expressed as a linear combination of the row vectors
JE,. (0),...,JE,,(0). Since a top-dimensional geometric simplex in R™ has ng + 1 points, and
batch functional dimension is the number of linearly independent rows of the corresponding matrix,
the result follows. O

Figures [5|and [6] demonstrate that there is a strong correlation between the number of linear regions
sampled and the batch functional dimension. However, the batch functional dimension is well below
the upper bound imposed by the number of linear regions as in Proposition [C.3]

Remark C.4. Definition[C.I]and Proposition[C.3]are closely related to notion of decisive sets defined in
Grigsby et al.| (2022). A decisive set for a parameter 6 is a set Z C R™ consisting of precisely ng + 1
points in the interior of each top-dimensional polyhedron C' € C(#) that form an ny-dimensional
simplex. |Grigsby et al.|(2022) proves that for a generic, transversal, combinatorially stable parameter,
functional dimension is attained on any decisive set.
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