

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

EMPIRICAL NTK TRACKS TASK COMPLEXITY

Anonymous authors

Paper under double-blind review

ABSTRACT

Mathematical properties of the neural tangent kernel (NTK) have been related—both theoretically and empirically—to convergence of optimization algorithms and the ability of trained models to generalize. However, most existing theoretical results hold only in the infinite width limit and only for standard data distributions. In the present work, we suggest a practical approach to investigating the NTK for finite-width networks, by understanding the parameter space symmetries of the network in the presence of finite data sets. In particular, the NTK Gram matrix associated to any finite data set can naturally be regarded as an empirical version of the NTK. Moreover, its rank agrees with the *functional dimension* of the data set, the number of independent parameter perturbations affecting the model’s outputs on the data set. In this work, we explore the evolution of the functional dimension of deep ReLU networks during training, focusing on the relationship to data set complexity, regularization, and training dynamics. Empirically, we find that functional dimension of deep ReLU networks: (1) tracks data set complexity, (2) increases during training until function stabilization, and (3) decreases with stronger weight decay, suggesting that gradient-based optimization algorithms are biased towards simpler functions for ReLU networks. Moreover, our experiments provide strong evidence that—contrary to conventional wisdom—the empirical NTK for deep finite-width ReLU networks is typically rank-deficient at initialization. We offer a potential theoretical explanation for this empirical phenomenon in terms of certain data-dependent hidden equivalences, emphasizing the connection between these equivalences and the geometry of the loss landscape. We also establish a theoretical upper bound on functional dimension in terms of the number of linear regions sampled by the data set.

1 INTRODUCTION

The neural tangent kernel (NTK) has emerged as a powerful tool for understanding the training dynamics and generalization properties of neural networks, especially in the infinite width limit Jacot et al. (2018); Lee et al. (2019). The spectrum of the NTK, in particular, has been shown to play a key role, and significant theoretical progress has been made in obtaining closed-form expressions for this spectrum Murray et al. (2023); Nguyen & Mondelli (2020); Nguyen et al. (2021). A full-rank NTK ensures a well-conditioned optimization problem, leading to efficient training and convergence Arora et al. (2019); Allen-Zhu et al. (2019). However, we still do not understand the effects of finite-width corrections. Indeed, NTK theory has fallen short in predicting how real-world neural networks evolve when training on concrete data sets Geiger et al. (2019); Lee et al. (2020), and the Gram matrix of the NTK - referred to as the *empirical NTK* in the literature - frequently evolves significantly during training in a way that differs from the infinite-width predictions. Our goals here are:

- (1) Track the evolution of the empirical NTK during training on synthetic and real-world data sets of increasing complexity;
- (2) Relate this evolution to the task complexity; and
- (3) Relate the empirical NTK to a complementary theoretical framework involving *data-dependent parameter space symmetries* and their impact on the optimization dynamics of neural networks.

The starting point of our investigation are the following observations:

054 (1) The *rank* of the empirical NTK on a fixed batch of data agrees with the batch *functional*
 055 *dimension* (cf. Grigsby et al. (2022)), which can be viewed informally as the *effective local*
 056 *parametric dimension* on the batch;
 057 (2) It has been observed empirically that for networks that are deeper than they are wide, the
 058 batch functional dimension is much lower at initialization than predicted by the existing
 059 theory of parameter space symmetries Grigsby et al. (2023).

060
 061 Empirically we find:
 062

063 • *For deep ReLU networks, the empirical NTK has low rank at initialization, rises steadily*
 064 *during the early epochs of training, and then plateaus or gradually decreases.* The rank of
 065 the empirical NTK is precisely the batch functional dimension on the data set. In experiments
 066 the batch functional dimension at initialization is consistently much smaller than the number
 067 of data points for over-parameterized deep ReLU networks. See Figures 2 and 9.
 068 • *The rank of the empirical NTK tracks data set complexity during training.* Training with a
 069 small positive weight decay tends to select a function whose complexity, as measured by
 070 functional dimension, reflects the complexity of the data set. More complex data sets tend
 071 to result in trained functions that have higher functional dimension. See Figures 2 and 3.
 072 • *Weight decay has a damping effect on the rank of the empirical NTK.* That is, higher
 073 (constant) weight decay leads to trained functions with lower functional dimension. See
 074 Figure 4.
 075 • *Number of linear regions sampled by the dataset is strongly correlated with the rank of the*
 076 *empirical NTK.* See Figures 5 and 6.

077 We suggest two theoretical mechanisms encouraging a rank-deficient NTK, and relate these mecha-
 078 nisms to the existence of hidden parameter space symmetries:
 079

080 • *Hidden data-dependent parameter space symmetries encourage a rank-deficient empirical*
 081 *NTK.* Restricted activation patterns cause ReLU networks to behave like smaller networks
 082 with more parameter space symmetries. When hidden neurons in a network are either
 083 always-active or always-inactive on a batch of data, then the network behaves like a mixed
 084 linear-ReLU subnetwork, which enlarges the dimension of the space of symmetries to be
 085 *quadratic* rather than *linear* in the number of hidden neurons (Proposition A.10).
 086 • *Fewer linear regions encourage a rank-deficient empirical NTK.* We prove a theoretical
 087 upper bound (Proposition ??) on the batch functional dimension in terms of the number of
 088 linear regions sampled by the data set. In the case of architectures with input dimension 1,
 089 as in the case of our univariate experiments, the bound asserts that the functional dimension
 090 is bounded above by twice the number of linear regions sampled by the batch. Attaining this
 091 upper bound would require that the data set and parameter satisfy very specific constraints,
 092 so it is unlikely for a typical parameter to attain the bound. In our experiments the number
 093 of intervals sampled is typically greater than the batch functional dimension.

094 **2 RELATED WORK**
 095

096 **Neural Tangent Kernel (NTK) training and generalization at infinite and finite width:** The
 097 NTK was first defined and studied in Jacot et al. (2018), where it was established that in the infinite
 098 width limit gradient flow is entirely determined by the NTK and can be described via kernel gradient
 099 flow. See also Lee et al. (2019). In Canatar et al. (2021) and Liang & Rakhlin (2020), the authors
 100 establish generalization bounds for trained infinitely wide networks from measures that track how
 101 rapidly the NTK spectrum decays. These results are only for networks in the infinite width limit,
 102 since they assume that the NTK does not evolve during training. The questions and approach we take
 103 is closest in philosophy to Baratin et al. (2021), which provides empirical and theoretical evidence
 104 that neural feature alignment as measured by the *effective rank* - a continuous version of matrix rank -
 105 of the empirical NTK is responsible for favorable generalization behavior. In the very recent paper
 106 Grigsby & Lindsey (2024), the authors conjecture that functional dimension (the maximal rank of the
 107 empirical NTK) for finite width networks is equal to a local complexity measure called the persistent
 108 pseudodimension, from which generalization bounds should be extractable.

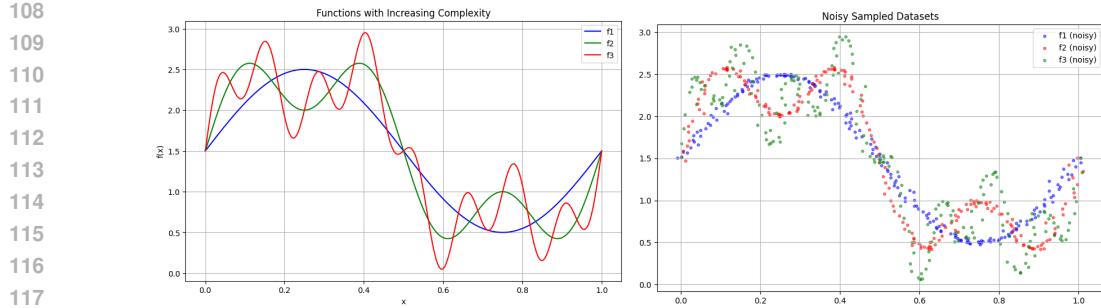


Figure 1: Graphs of three univariate functions of increasing complexity (left); datasets obtained by uniformly sampling 100 points for each function, and then adding Gaussian noise with $\text{std}=0.01$ to both inputs and outputs (right).

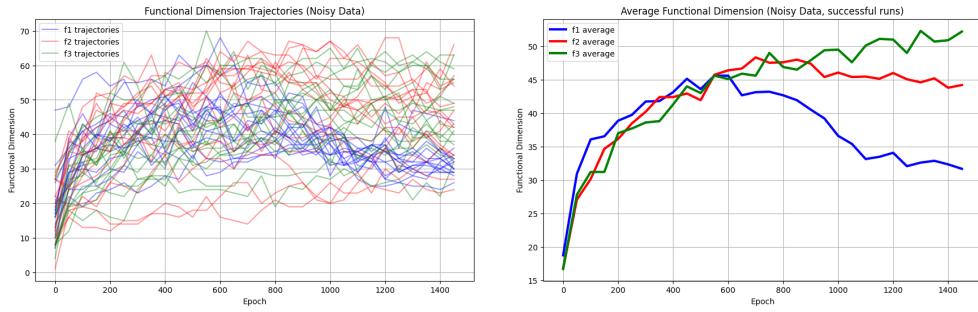


Figure 2: Functional dimension tracks task complexity on the synthetic data. Trajectories tracking functional dimension for 15 randomly initialized training runs per dataset, with functional dimension computed every 50 epochs (left). Averages over the successful (r^2 score > 0.9) trajectories (right).

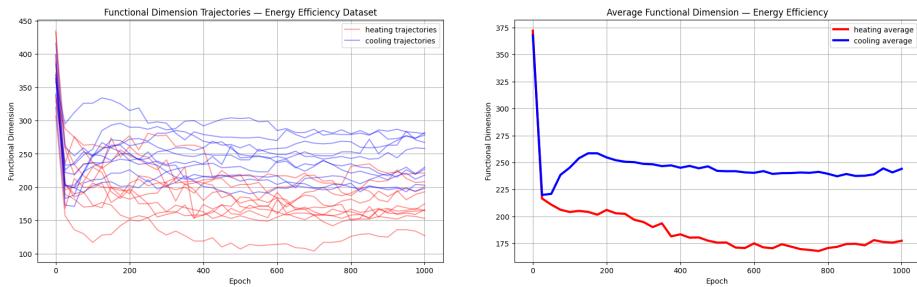


Figure 3: Functional dimension tracks task complexity on the UCI Energy Efficiency dataset: cooling load prediction is widely regarded to be more difficult than heating load prediction (see Section 5). Trajectories tracking functional dimension over 10 randomly initialized training runs (each with a shared random seed for heating vs. cooling), with functional dimension computed every 25 epochs (left); average trajectories (right).

In Hanin & Nica (2020), the authors study the NTK at finite width and depth, arguing that sufficiently deep wide networks can learn data-dependent features even in the so-called “lazy training” regime associated to very wide networks at fixed depth. In Huang & Yau (2020), the authors define and study the dynamics of gradient descent for finite-width networks under a so-called neural tangent hierarchy of differential equations, for which the NTK gives an approximation.

NTK eigenfunctions and spectrum analysis: In Xie et al. (2017), the authors study the dynamics of the training loss for shallow ReLU neural networks, establishing a connection between the minimum singular value of the empirical NTK and the decay rates of both the training loss and the kernel spectrum associated to the arc-cosine kernel defined by Cho & Saul (2009). In Nguyen & Mondelli (2020) and Nguyen et al. (2021) the authors perform a spectrum analysis for deep ReLU networks with certain architecture restrictions, and in Murray et al. (2023), the authors derive a power series

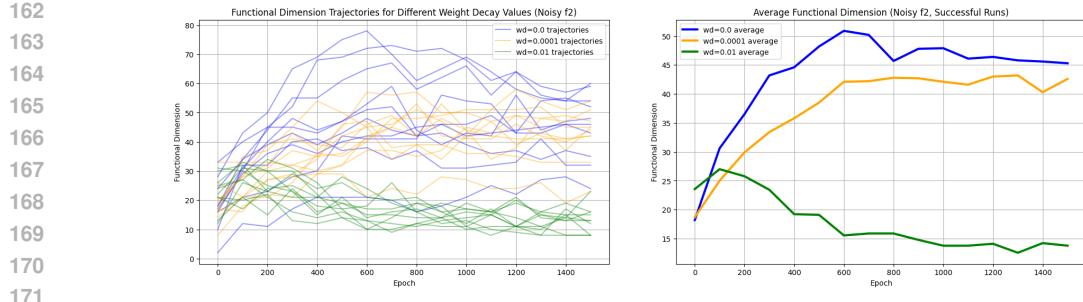


Figure 4: Weight decay suppresses functional dimension. We tracked functional dimension for the synthetic f_2 data set during 10 randomly initialized training runs for each of 3 weight decay rates: 0, $1e-4$, and $1e-3$. Right: averages over the successful trajectories (all except one for weight decay $1e-4$).

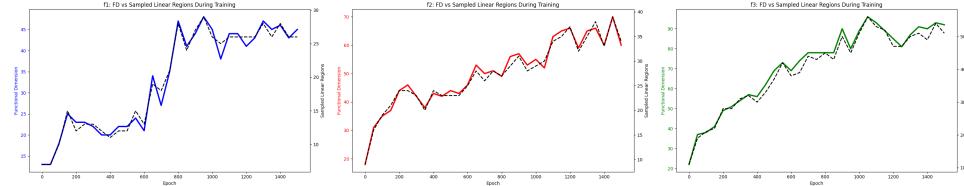


Figure 5: Functional dimension is closely correlated with the number of linear regions sampled. These plots show a single training run for each synthetic dataset, with functional dimension (solid blue/red/green) and number linear regions (dashed black) computed every 50 epochs.

expansion for the NTK of arbitrarily deep feedforward networks in the infinite width limit that allows them to extract the eigenvalue spectrum.

Parameter space symmetries and optimization: Two largely-independent approaches to studying the relationships among parameter space symmetries, the geometry of the loss landscape, and the so-called *neuromanifold* (true function space after quotienting by symmetries) have emerged, as described in the recent survey papers Zhao et al. (2025), Marchetti et al. (2025), and the many references therein. The approach we take here is more closely aligned with the first survey article, although we are interested in connections to the second. We are not aware of any prior work explicitly discussing a relationship between the NTK spectrum and parameter space symmetries.

3 BACKGROUND AND NOTATION

3.1 FULLY-CONNECTED FEEDFORWARD RELU NETWORKS

We focus on fully connected neural networks with ReLU activation, denoting by $(n_0, \dots, n_{d-1} | n_d)$ the architecture with input width n_0 , hidden layer widths n_1, \dots, n_{d-1} , and output width n_d .

Formally, let $\sigma : \mathbb{R}^n \rightarrow \mathbb{R}^n$ denote the function that applies the activation function $\text{ReLU}(x) := \max\{0, x\}$ component-wise. For an architecture $(n_0, \dots, n_{d-1} | n_d)$, we denote the parameter space $\Omega := \mathbb{R}^D$ where a parameter $\theta := (W^1, b^1, \dots, W^d, b^d) \in \Omega$ consists of the entries of weight matrices W^ℓ and bias vectors b^ℓ for $\ell = 1, \dots, d$. Accordingly, $D := \sum_{\ell=1}^d n_\ell(n_{\ell-1} + 1)$. From a parameter θ we define a neural network function $F_\theta := F^d \circ \dots \circ F^1$ with layer maps given by:

$$F^\ell(x) := \begin{cases} \sigma(W^\ell x + b^\ell) & \text{for } 1 \leq \ell < d \\ W^\ell x + b^\ell & \text{for } \ell = d. \end{cases} \quad (1)$$

To compactify notation, following Masden (2022) we let $F_{(\ell)} := F^\ell \circ \dots \circ F^1$. We refer to the components of $F_{(\ell)}$ as the *neurons* in the ℓ th layer. The *pre-activation* map $z_{\ell,i} : \mathbb{R}^{n_0} \rightarrow \mathbb{R}$ associated to the i th neuron in the ℓ th layer is given by:

$$z_{\ell,i}(x) = \pi_i(W^\ell(F_{(\ell-1)}(x)) + b^\ell), \quad (2)$$

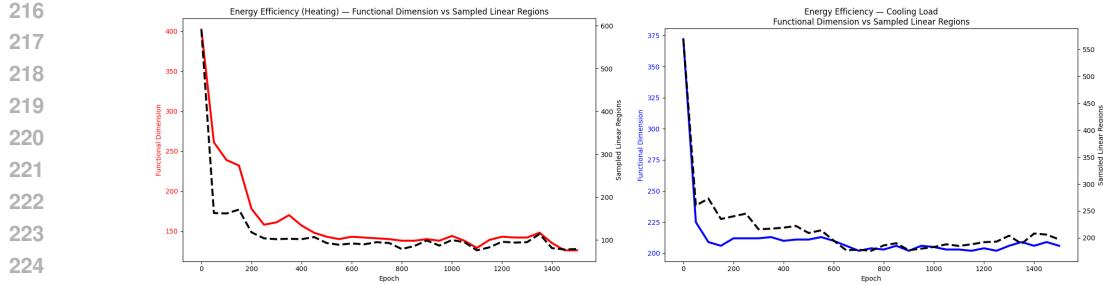


Figure 6: Functional dimension is closely correlated with the number of linear regions sampled for the energy efficiency dataset. A single training run tracking functional dimension for heating/cooling tasks (red/blue) vs number linear regions (dashed black), computed every 50 epochs.

where $\pi_i : \mathbb{R}^{n_\ell} \rightarrow \mathbb{R}$ denotes the projection onto the i th component.

Given a point $x \in \mathbb{R}^{n_0}$ in the input space we can record its activation status with respect to all $N = \sum_{i=1}^{d-1} n_i$ hidden neurons by computing the N -tuple $s(x) = \{-1, 0, +1\}^N$ of pre-activation signs for neurons in the network. Explicitly, the component of $s(x)$ corresponding to the i th neuron in the ℓ th layer is: $s_{\ell,i}(x) := \text{sgn}(z_{\ell,i}(x))$, where $\text{sgn}(z) = \begin{cases} \frac{z}{|z|} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0. \end{cases}$

In the present work, we will also be interested in the activation pattern of each *neuron* in the network with respect to a finite data set $X = \{x_1, \dots, x_m\}$. For neuron i in layer ℓ this is the m -tuple $(s_{\ell,i}(x_1), \dots, s_{\ell,i}(x_m))$. If $s_{\ell,i}(x_j) = +1$ (resp., $= -1$) for all $x_j \in X$ we say that neuron i in layer ℓ is *always-active* (resp., *always-inactive*) on the data set X .

Our main result (Theorem 1) requires an architecture restriction in order to rule out undesirable behavior. Accordingly, we define:

Assumption 3.1. *We say that an architecture $(n_0, \dots, n_{d-1} \mid n_d)$ is roughly monotonic if:*

- (i) *For all $\ell \in \{1, \dots, d\}$, we have $n_\ell - 1 \leq n_{\ell-1}$, or*
- (ii) *For all $\ell \in \{1, \dots, d\}$, we have $n_{\ell-1} - 1 \leq n_\ell$.*

In other words, the dimensions of the layers either grow or shrink (up to a linear error) through the network. See Appendix A for more details. An example of an architecture that is roughly monotonic is $(1, 5, 4, 3, 2 \mid 1)$ and an example of an architecture that is not roughly monotonic is $(1, 5, 5, 5, 5 \mid 1)$.

3.2 SPECTRUM OF THE NTK FOR RELU NETWORKS

Recall that a *kernel* $k : \mathbb{R}^{n_0} \times \mathbb{R}^{n_0} \rightarrow \mathbb{R}_{\geq 0}$ is a symmetric, positive semi-definite similarity measure on the input space of a function class, most naturally obtained by pulling back an inner product from a *kernel feature map* $\Phi : \mathbb{R}^{n_0} \rightarrow \mathcal{H}$ into a Hilbert space \mathcal{H} : $k_\Phi(x, y) := \langle \Phi(x), \Phi(y) \rangle$.

In the case of the neural tangent kernel (NTK) associated to a parameter $\theta \in \Omega$ at initialization, \mathcal{H} is the tangent space $T_\theta(\Omega) \cong \mathbb{R}^D$ at that parameter, equipped with its standard inner product, and the feature map $\Phi : \mathbb{R}^{n_0} \rightarrow \mathcal{H}$ is the assignment of the parameter gradient vector $\nabla E_z|_\theta$ of the evaluation map at each input vector $z \in \mathbb{R}^{n_0}$. Mercer's Theorem (cf. Schölkopf & Smola (2002)) associates to any kernel k on a compact set $\chi \subseteq \mathbb{R}^{n_0}$ a natural positive semi-definite integral operator T_k on $L_2(\chi)$, defined by $T_k f(\cdot) := \int_\chi k(\cdot, y) f(y) dy$, whose associated eigenfunctions can be viewed as a preferred orthonormal basis of $L_2(\chi)$ associated to the kernel. The relationship between the eigenbasis and spectrum of the NTK operator, optimization dynamics, and generalization has been widely studied, cf. Murray et al. (2023) and the references therein. It is frequently assumed that at initialization the empirical NTK will have full rank—i.e., will be equal to the number of data points in the overparameterized setting.

270 3.3 BATCH FUNCTIONAL DIMENSION AND THE EMPIRICAL NTK FOR RELU NETWORKS
271

272 The (batch) functional dimension of a parameter $\theta \in \Omega$ on a finite data set $Z \subseteq \mathbb{R}^{n_0}$ was defined
273 (away from a Lebesgue measure 0 set) for ReLU neural network classes in Grigsby et al. (2022),
274 see also Stock (2023); Bona-Pellissier et al. (2022; 2024). It is the rank of the Jacobian matrix
275 with respect to the parameters of the evaluation map on the batch Z : $\text{rk}(\mathbf{J}E_Z|_\theta)$. When the output
276 dimension is 1, $Z = \{z_1, \dots, z_m\}$, and the parametric dimension is D , $\mathbf{J}E_Z$ is an $m \times D$ matrix
277 whose rows are $\nabla E_{z_i}|_\theta$, the neural tangent kernel feature maps at the m points of Z .

278 In Section 6 of Grigsby et al. (2022) it is noted that the Gram matrix of the NTK at θ on a batch Z is
279 $(\mathbf{J}E_Z)(\mathbf{J}E_Z)^T$. Moreover, it is a well-known linear algebra fact that for all matrices M over \mathbb{R} :

$$280 \quad 281 \quad \text{rk}(M) = \text{rk}(MM^T),$$

282 so the rank of the Gram matrix, $(\mathbf{J}E_Z)(\mathbf{J}E_Z)^T$, of the NTK at θ on a batch Z is precisely the batch
283 functional dimension of θ on the batch Z .

284
285 4 PARAMETER SPACE SYMMETRIES AND FUNCTIONAL DIMENSION
286

287 One take-away from the experiments described here is that functional dimension at initialization
288 is often far below what theory predicts. In this section, we (i) recall the previously-established
289 connection between functional dimension and *parameter space symmetries*, (ii) propose activation
290 sparsity as a mechanism for explaining the gap between theory and experiment, and (iii) provide
291 novel data-dependent bounds (Theorem 1 and Proposition 4.6) on functional dimension (aka the
292 rank of the empirical NTK) in this setting. We do not claim that these theoretical results provide
293 a complete explanation for the empirical phenomena we observe. We merely describe succinctly
294 existing theoretical frameworks and show how they can be used to give novel bounds that may
295 partially explain the rank gap.

296 It is well-known that function representation in neural architectures is highly redundant; many
297 parameter settings give rise to the same function. This redundancy is governed by the architecture's
298 *parameter space symmetries*, Godfrey et al. (2022); Zhao et al.. In Grigsby et al. (2022; 2023); Grigsby
299 & Lindsey (2024) it is noted that in favorable situations the local dimension of parameter space
300 symmetries is complementary to functional dimension. Explicitly (but informally), for a parameter θ :
301 if D is the total parametric dimension, d_θ is the functional dimension at θ and s_θ is the dimension of
302 the space of symmetries near θ , then $D = d_\theta + s_\theta$. The picture is that parameter space is decomposed
303 locally into directions that can change the function (hence contribute to functional dimension) and
304 directions that preserve the function (hence contribute to the local space of symmetries).

305 Following Serra et al. (2020), we call two neural network functions¹ $F_i : \mathbb{R}^{n_0} \rightarrow \mathbb{R}^{n_d}$ for $i = 1, 2$
306 *equivalent* if $F_1(x) = F_2(x)$ for all $x \in \mathbb{R}^{n_0}$. If $X \subsetneq \mathbb{R}^{n_0}$ is a proper subset, we say F_i are equivalent
307 for $i = 1, 2$ *relative to* X if $F_1(x) = F_2(x)$ for all $x \in X$. Informally, a *global parameter space*
308 *symmetry* is a map from parameter space to itself that sends all functions to equivalent functions.
309 A *data-dependent parameter space symmetry* is a map that induces equivalences only relative to a
310 proper subset X . In the remainder of this section, we formalize these concepts and show how they
311 can be used to give a potential theoretical explanation for our empirical observations.

312 4.1 GROUP ACTIONS, ORBITS, AND HIDDEN EQUIVALENCES
313

314 Feedforward ReLU architectures are well-known to be invariant under *positive scaling* and *permutation*
315 of hidden neurons (cf. (Rolnick & Kording, 2020; Bui Thi Mai & Lampert, 2020; Grigsby et al.,
316 2023)). Letting $N = \sum_{\ell=1}^{d-1} n_\ell$ be the number of hidden neurons in a ReLU network, this typically
317 results in *at least* an N -dimensional space of parameter choices for each function representable by
318 the class. The above well-known fact is an incarnation of a much more general phenomenon that is
319 central to establishing upper bounds on the rank of the empirical NTK.

320 It is profitable to view many redundancies as arising directly from the computational structure of the
321 function class. Following Zhao et al., we note that the parameter space of a feedforward network

322 323 ¹We do *not* assume that the functions are associated to networks of the same architecture, but they necessarily
have the same input and output dimensions.

324 architecture $(n_0, \dots, n_{d-1} | n_d)$ (for any choice of activation function) admits a natural action of the
 325 *hidden symmetry group*, $G_{hid} := GL_{n_1} \times \dots \times GL_{n_{d-1}}$. Here, GL_n denotes the general linear
 326 group of invertible $n \times n$ matrices over \mathbb{R} , so any $g = (g_1, \dots, g_{d-1}) \in G_{hid}$ gives rise to a map
 327 $g \cdot - : \Omega \rightarrow \Omega$ defined as follows. If $\theta = (W^1, b^1, \dots, W^d, b^d) \in \Omega$, then:

$$328 \quad g \cdot (W^\ell, b^\ell) := (g_\ell W^\ell g_{\ell-1}^{-1}, g_\ell b^\ell), \quad (3)$$

330 where we set $g_0 := \text{Id}_{n_0}$, $g_d := \text{Id}_{n_d}$, the identity matrices of the appropriate dimensions.

331 One can and should understand this particular action as arising more naturally by performing a
 332 conjugation (change-of-basis) operation on the ℓ th hidden layer and pulling the conjugating matrices
 333 past the activation layers so that they are now being multiplied by the *parameters* rather than the
 334 hidden vectors themselves. The observant reader will recognize this action as inducing equivalences
 335 for deep *linear* networks, since the overall function will be invariant under this action as long as there
 336 is no activation function. If an activation function is present, we simply restrict attention to the largest
 337 subgroup of G_{hid} that commutes with the component-wise application of the activation function, and
 338 we arrive at the same conclusion. Accordingly:

339 **Definition 4.1.** *We define the hidden equivalence group, $H_{eq} \subseteq G_{hid}$ for a fixed architecture and*
 340 *batch $X \subseteq \mathbb{R}^{n_0}$ of input data to be the largest subgroup of the hidden symmetry group that commutes*
 341 *with the component-wise application of the activation function for all $x \in X$.*

342 In this case, each H_{eq} -orbit, $H_{eq} \theta := \{h \cdot \theta \mid h \in H_{eq}\}$, consists of equivalent parameters; see
 343 Zhao et al. and Section A in the Appendix for more details.

344 G_{hid} and H_{eq} are examples of *Lie groups*, and the assignment of a smooth map on a vector space
 345 associated to every element of a Lie group is an example of a *Lie group action*. Lie groups - smooth
 346 manifolds with a group structure that interacts cleanly with the smooth structure - are familiar
 347 objects to differential geometers. They have many useful properties that are by now standard in the
 348 mathematics literature but which would be difficult to establish directly in the absence of this history.

349 In particular, any time a Lie group H acts on a smooth manifold (in this case, on the parameter space
 350 of a neural architecture), the space decomposes into *orbits* under the action, and the dimensions of
 351 these orbits can vary according to local properties. The powerful classical *orbit-stabilizer theorem* for
 352 Lie group actions (Corollary A.6, cf. Lee (2013)) tells us that $H\theta$ is diffeomorphic to the quotient
 353 space, $H/\text{Stab}_H(\theta)$, where

$$354 \quad \text{Stab}_H(\theta) := \{h \in H \mid h \cdot \theta = \theta\}$$

355 is the *stabilizer* of θ . In particular, the dimension of the orbit $H\theta$ is the dimension of the Lie group H
 356 minus the dimension of the stabilizer of any parameter θ in the orbit:

$$357 \quad \dim(H\theta) = \dim(H) - \dim(\text{Stab}_H(\theta)). \quad (4)$$

359 It is immediate that all functions in any H_{eq} -orbit of any parameter $\theta \in \Omega$ are equivalent on X . In
 360 particular, as long as the stabilizer of a parameter is trivial (i.e., consists only of the identity element
 361 of the Lie group), the dimension of H_{eq} will give us a lower bound on the dimension of the group of
 362 parameter space symmetries. It follows that if the hidden equivalence group is larger than expected,
 363 then level sets of the loss function will also be larger than expected (in the trivial stabilizer case),
 364 since equivalent functions yield the same empirical loss for any loss function:

365 **Lemma 4.2.** *Let $\mathcal{C} \subseteq \Omega$ be the critical locus for any empirical loss function $\mathcal{L}_X : \Omega \rightarrow \mathbb{R}$. If there*
 366 *exists $\theta \in \mathcal{C}$ with trivial stabilizer (for which $\text{Stab}_{H_{eq}}(\theta) = \{\text{Id}\}$), then $\dim(\mathcal{C}) \geq \dim(H_{eq})$.*

367 **Remark 4.3.** The *expected* dimension of the hidden equivalence group for a ReLU network of
 368 architecture $(n_0, n_1, \dots, n_{d-1} | n_d)$ is $N = \sum_{\ell=1}^{d-1} n_\ell$, the number of hidden neurons. Indeed, letting
 369 $PD_+(n)$ denote the group of $n \times n$ matrices representable as a product PD , where P is an $n \times n$
 370 permutation matrix and D is an $n \times n$ diagonal matrix with strictly positive entries on the diagonal,
 371 the subgroup $PD_+(n_1) \times \dots \times PD_+(n_{d-1})$ of the hidden symmetry group commutes with the
 372 component-wise application of ReLU (Zhao et al.; Godfrey et al., 2022), resulting in the familiar
 373 *positive scaling invariance* and *permutation invariance* for ReLU networks mentioned above.

374 Lemma 4.2, which follows from the orbit-stabilizer theorem and the results in Appendix A, tells us
 375 that if the hidden equivalence group *on a batch of data X* includes a subgroup of dimension larger
 376 than N and the stabilizer is known to be trivial in general, then the symmetry group will be larger
 377 than the expected dimension N , decreasing the functional dimension on the batch. In the following
 section, we describe one way this can occur.

378 4.2 RESTRICTED ACTIVATION PATTERNS INDUCE HIDDEN EQUIVALENCES
379380 If there are neurons for F_θ that are either always-active or always-inactive on a data set $X \subseteq \mathbb{R}^{n_0}$,
381 then ReLU acts locally as the Identity function at always-active neurons and effectively ignores
382 always-inactive neurons. This observation motivates the following, cf. Serra et al. (2020):383 **Definition 4.4.** Let $\sigma_{[1:k]} : \mathbb{R}^n \rightarrow \mathbb{R}^n$ denote the function that applies the activation function
384 $\text{ReLU}(x)$ (resp., $\text{Id}(x)$) to the first k components (resp., to the last $n-k$ components). A mixed ReLU-
385 linear neural network of architecture $(n_0, (n_1^R, n_1^L), \dots, (n_{d-1}^R, n_{d-1}^L) | n_d)$ is a neural network of
386 architecture $(n_0, n_1^R + n_1^L, \dots, n_{d-1}^R + n_{d-1}^L | n_d)$ whose ℓ th layer map is $F^\ell(x) := \sigma_{[1:n_\ell^R]}(W^\ell x + b^\ell)$.
387388 The following results, whose formal statements and proofs appear in Appendix 4.1, together tell us
389 that the dimension of the hidden equivalence group is *quadratic*, rather than *linear* in the number of
390 neurons with fixed activation status with respect to the data set X .391 **Proposition 4.5.** The hidden equivalence group of a mixed ReLU-linear neural network of architecture
392 $(n_0, n_1^R + n_1^L, \dots, n_{d-1}^R + n_{d-1}^L | n_d)$ has dimension at least $d = \sum_{\ell=0}^{d-1} n_\ell^R + \sum_{\ell=1}^{d-1} (n_\ell^L)^2$.
393394 **Theorem 1.** Let $\theta \in \Omega$ be almost any parameter² in a roughly monotonic feedforward ReLU
395 network architecture, $(n_0, \dots, n_{d-1} | n_d)$, with parametric dimension D , and let $X \subseteq \mathbb{R}^{n_0}$ be a
396 subset of the domain for which n_ℓ^{fixed} of the hidden neurons from layer ℓ are either always-active or
397 always-inactive on all of X . Then the batch functional dimension of θ on X is at most $D - d$, where
398 $d = \sum_{\ell=1}^{d-1} (n_\ell - n_\ell^{\text{fixed}}) + \sum_{\ell=1}^{d-1} (n_\ell^{\text{fixed}})^2$.
399400 The idea of the proof of Theorem 1 is that near θ , the space of data-dependent parameter space
401 symmetries on X looks locally like the hidden equivalence group of a mixed ReLU-linear network
402 with $n_\ell^R = n - n_\ell^{\text{fixed}}$ and $n_\ell^L = n_\ell^{\text{fixed}}$. The *roughly monotonic* condition on the architecture insures
403 that the stabilizer of the action is trivial, so the dimension of the orbit is the dimension of this group.
404405 4.3 NUMBER OF LINEAR REGIONS SAMPLED CONSTRAINS BATCH FUNCTIONAL DIMENSION
406407 The number of linear regions of a piecewise-linear function f_θ sampled by a batch of inputs Z is the
408 number of distinct affine pieces of f_θ that are actually encountered on the set Z .
409410 **Proposition 4.6.** For any batch of inputs Z , for a full measure set of parameters θ , the batch
411 functional dimension at θ is at most (input dimension + 1) times the number of linear regions of f_θ
412 sampled by Z .
413414 The proof of Proposition 4.6 is in Appendix C.
415416 5 EXPERIMENTAL SETUP
417418 **Functions and data sets:**419 *Synthetic univariate data with noise:* We use univariate (input dimension 1) functions so we can
420 easily plot their evolution during training.
421422 The univariate functions $f_1, f_2, f_3 : [0, 1] \rightarrow \mathbb{R}$ are defined as follows:
423

424
$$f_1(x) = 1.5 + \sin(2\pi x)$$

425
$$f_2(x) = 1.5 + \sin(2\pi x) + 0.5 \sin(4\pi x)$$

426
$$f_3(x) = 1.5 + \sin(2\pi x) + 0.5 \sin(4\pi x) + 0.4 \sin(16\pi x).$$

427 For each function f_i , we create a data set $\mathcal{D}_i = \{x_j, y_j\}_{j=1}^{100} \subset \mathbb{R} \times \mathbb{R}$ by sampling the domain at 100
428 equally spaced points, and then adding Gaussian noise (with std= 0.01, mean= 0) to both the inputs
429 and outputs. The purpose of the vertical shift 1.5 in the functions is to make all functions strictly
430 positive. Figure 1 shows the graphs and datasets for the functions f_i .
4312 θ is in the complement of a Lebesgue measure 0 set defined in the proof of Proposition A.8 in the Appendix.

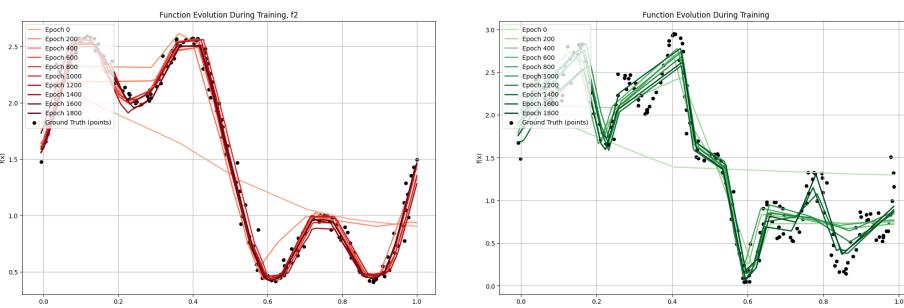
432 We also tracked functional dimension for bivariate synthetic data sets of increasing complexity. See
 433 Appendix B.1.

434 **UCI Energy Efficiency data:** In addition to the synthetic datasets above, we include a real-world
 435 benchmark drawn from the UCI Energy Efficiency Dataset (Tsanas & Xifara, 2012a;b). This dataset
 436 consists of 768 building-design observations, each described by eight geometric and thermophysical
 437 features (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing
 438 area, and glazing-area distribution). The dataset provides two regression targets, the heating and
 439 cooling load requirements associated with each design.

440 A consistent finding in the literature is that Heating Load (HL) is easier to model than Cooling Load
 441 (CL). In the original study associated with this dataset (Tsanas & Xifara, 2012a;b), the authors report
 442 systematically smaller prediction errors for HL across multiple regression techniques, including
 443 linear models and nonlinear ensemble methods. Later surveys of data-driven building-load prediction
 444 document the same pattern across a broad range of linear and nonlinear ML algorithms, cf. Figure 9
 445 in Salami et al. (2023). Heating Load is uniformly approximated more accurately, and the accuracy
 446 gap between linear and nonlinear models is wider for CL than for HL.

447 We chose to use the energy efficiency dataset because it is small enough that full-batch functional
 448 dimension can be computed exactly, includes enough diverse input configurations to meaningfully
 449 probe the network’s behavior across the input space, and offers two regression tasks.

450 **Training setup:** For all experiments, we used the fixed architecture
 451 (input dimension, 10, 10, 10, 10, 10, 1) of fully-connected, feedforward ReLU neural networks.
 452 For the univariate experiments, the associated number of trainable parameters is $D = 361$, for the
 453 bivariate experiments, the parametric dimension is $D = 371$, and for the Energy Efficiency data set
 454 $D = 431$. We compute functional dimension periodically throughout the training as indicated in the
 455 figure captions. We train all networks networks using the Adam optimizer with MSELoss, learning
 456 rate 0.01, weight decay 1e-4, and shuffled minibatches of batchsize 16 (unless specified otherwise).
 457 We initialize each training run using a variant of the He (also called Kaiming) initialization – all
 458 weights and all biases for a given layer are selected randomly from a normal distribution with mean 0
 459 and standard deviation $\sqrt{\frac{2}{\text{fan.in}}}$, where fan.in is the number of input features for that layer.



472 Figure 7: Function evolution for a single training run, for functions f_2 and f_3 . Although the networks
 473 are overparameterized (100 data points and 361 parameters), the learned functions do not overfit.

474
 475 **Batch functional dimension computation:** At specified epochs during training, we compute the
 476 batch functional dimension using the inputs for the entire data set \mathcal{D}_i as the batch. To do this, we first
 477 compute the matrix

$$478 \quad \mathbf{J}E_{\mathcal{D}_i}(\theta) := \begin{bmatrix} \nabla_{\theta} f(x_1; \theta) \\ \nabla_{\theta} f(x_2; \theta) \\ \vdots \\ \nabla_{\theta} f(x_m; \theta) \end{bmatrix}$$

479 where each x_j is one of the inputs of a point $(x_j, y_j) \in \mathcal{D}_i$ and $f(\cdot, \theta)$ is the function determined by
 480 the parameter θ . We then compute the batch functional dimension as

$$481 \quad \text{dim}_{\text{ba.fun}}(\theta) = \text{torch.linalg.matrix_rank}(\mathbf{J}E_{\mathcal{D}_i}(\theta)).$$

486 Note that the command `torch.linalg.matrix_rank` computes the number of “non-zero” singular values,
 487 where a singular value is considered non-zero if it is greater than the default error tolerance for
 488 floating point calculations. This default threshold is defined for a $n \times m$ matrix A as
 489

$$490 \quad \text{threshold}(A) := \max(n, m) \cdot \sigma_{\max} \cdot \epsilon$$

491 where σ_{\max} is the largest singular value of A and ϵ represents machine precision, which is roughly
 492 $1.19 * 10^{-7}$ for dtype `float32`. Thus, our computation of batch functional dimension will set to 0 any
 493 singular values sufficiently small with respect to the maximum possible rank of the Jacobian matrix
 494 (100 for our 1D experiments and 400 for our 2D experiments), and the largest singular value, which
 495 empirically were $\approx 10^3$ for our 1D experiments and $\approx 10^4$ for our 2D experiments. The calculation
 496 of the rank is therefore setting to 0 singular values below (roughly) 0.01 for our 1D experiments and
 497 0.1 for our 2D experiments (both typically 10^{-5} times σ_{\max}).
 498

499 **Number of linear regions sampled:** The number of linear regions sampled by the dataset is
 500 computed by counting the distinct ReLU activation patterns across all inputs: for each sample, we
 501 record a binary vector indicating which neurons in each layer are active, and each unique pattern
 502 corresponds to a unique linear region of the piecewise-linear function implemented by the network.
 503

504 6 EXPERIMENTAL RESULTS

505 **The empirical NTK is typically rank deficient at initialization.** This observation is supported
 506 by Figures 2, 3, and 9. For the univariate experiments (Figure 2), there are 100 data points and the
 507 parametric dimension is $D = 361$, so the functional dimension is the rank of a 100×361 matrix,
 508 yet at initialization the functional dimension is on average below 20. Similarly, for the Energy
 509 Efficiency experiments (Figure 3), the functional dimension is the rank of a 768×431 matrix, while
 510 the functional dimension at initialization is on average below 400. For the bivariate experiments
 511 (Figure 9), the functional dimension at initialization is on average less than 60 for a 100×371 matrix.
 512

513 **Weight decay suppresses batch functional dimension of trained networks.** See Figure 4.

514 **Evolution of functional dimension during training.** In all experiments, the functional dimension
 515 begins well below the number of data points and rises steadily during early training. In later epochs,
 516 however, the trend changes: the growth rate diminishes, and the functional dimension frequently
 517 decreases gradually as weight decay exerts a regularizing influence.
 518

519 **Batch functional dimension tracks dataset complexity.** Figures 2 supports the conclusion that for
 520 the univariate datasets, on average, training tends to select a function whose complexity, as measured
 521 by functional dimension, reflects the complexity of the data set. That is, the rank of the empirical
 522 NTK correlates positively at the end of training with the complexity of the function the model is
 523 learning. Figures 3 and 9 demonstrate the same trend for the Energy Efficiency data set and the
 524 synthetic bivariate data set.
 525

526 **Batch functional dimension is correlated with number of regions sampled.** Proposition ?? proves
 527 that, except for a measure 0 situation, the functional dimension is bounded by the number of linear
 528 regions sampled by the dataset times $(n_0 + 1)$, where n_0 is the input dimension. This result is
 529 confirmed empirically in Figures 5 and 6.
 530

531 7 CONCLUSIONS

532 We have performed both a theoretical and empirical investigation of the behavior of the empirical
 533 NTK during training of deep ReLU networks on synthetic and real-world datasets, assembling
 534 empirical evidence that the rank of the empirical NTK in this setting is (i) lower-than-expected at
 535 initialization, and (ii) tracks task complexity. We provide a possible theoretical explanation for this
 536 phenomenon by relating the rank of the empirical NTK to the functional dimension, whose behavior
 537 for ReLU networks has been related to a growing body of literature on parameter space symmetries.
 538

540 REFERENCES
541

542 Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
543 parameterization. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the*
544 *36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,*
545 *California, USA*, volume 97 of *Proceedings of Machine Learning Research*, pp. 242–252. PMLR,
546 2019. URL <http://proceedings.mlr.press/v97/allen-zhu19a.html>.

547 Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
548 optimization and generalization for overparameterized two-layer neural networks. In Kamalika
549 Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference*
550 *on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA*, volume 97
551 of *Proceedings of Machine Learning Research*, pp. 322–332. PMLR, 2019. URL <http://proceedings.mlr.press/v97/arora19a.html>.

552 Aristide Baratin, Thomas George, César Laurent, R. Devon Hjelm, Guillaume Lajoie, Pascal Vincent,
553 and Simon Lacoste-Julien. Implicit regularization via neural feature alignment. In Arindam
554 Banerjee and Kenji Fukumizu (eds.), *The 24th International Conference on Artificial Intelligence*
555 *and Statistics, AISTATS 2021, April 13-15, 2021, Virtual Event*, volume 130 of *Proceedings of*
556 *Machine Learning Research*, pp. 2269–2277. PMLR, 2021. URL <http://proceedings.mlr.press/v130/baratin21a.html>.

557 Joachim Bona-Pellissier, Francois Malgouyres, and Francois Bachoc. Local identifiability of deep
558 ReLU neural networks: The theory. In *Advances in Neural Information Processing Systems*
559 (*NeurIPS*), 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/hash/b0ae046e198a5e43141519868a959c74-Abstract-Conference.html.

560 Joachim Bona-Pellissier, Fran cois Malgouyres, and Fran cois Bachoc. Geometry-induced implicit
561 regularization in deep ReLU neural networks. *Preprint arXiv:2402.08269*, 2024.

562 Phuong Bui Thi Mai and Christoph Lampert. Functional vs. parametric equivalence of ReLU
563 networks. In *International Conference on Learning Representations (ICLR)*, 2020.

564 Abdulkadir Canatar, Blake Bordelon, and Cengiz Pehlevan. Spectral bias and task-model alignment
565 explain generalization in kernel regression and infinitely wide neural networks. *Nature*
566 *Communications*, 12(1), May 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-23103-1. URL
567 <http://dx.doi.org/10.1038/s41467-021-23103-1>.

568 Youngmin Cho and Lawrence K. Saul. Kernel methods for deep learning. In Yoshua
569 Bengio, Dale Schuurmans, John D. Lafferty, Christopher K. I. Williams, and Aron Culotta
570 (eds.), *Advances in Neural Information Processing Systems 22: 23rd Annual Conference*
571 *on Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada*, pp. 342–350. Curran
572 Associates, Inc., 2009. URL <https://proceedings.neurips.cc/paper/2009/hash/5751ec3e9a4feab575962e78e006250d-Abstract.html>.

573 Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stéphane d’Ascoli,
574 Giulio Biroli, Matthieu Wyart, and Clément Hongler. Disentangling feature and lazy training in
575 deep neural networks. *arXiv preprint arXiv:1906.08034*, 2019.

576 Charles Godfrey, Davis Brown, Tegan Emerson, and Henry Kvinge. On the symmetries of deep
577 learning models and their internal representations. In Sanmi Koyejo, S. Mohamed, A. Agarwal,
578 Danielle Belgrave, K. Cho, and A. Oh (eds.), *NeurIPS 2022, New Orleans, LA*, 2022.

579 J. Elisenda Grigsby and Kathryn Lindsey. On functional dimension and persistent pseudodimension.
580 *Preprint arXiv:2410.17191*, 2024.

581 J. Elisenda Grigsby, Kathryn Lindsey, Robert Meyerhoff, and Chenxi Wu. Functional dimension of
582 feedforward ReLU neural networks. *Preprint arXiv:2209.04036*, 2022.

594 J. Elisenda Grigsby, Kathryn Lindsey, and David Rolnick. Hidden symmetries of ReLU net-
 595 works. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
 596 Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML*
 597 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of *Proceedings of Machine Learning*
 598 *Research*, pp. 11734–11760. PMLR, 2023. URL <https://proceedings.mlr.press/v202/grigsby23a.html>.

600 Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. In
 601 *8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,*
 602 *April 26-30, 2020*. OpenReview.net, 2020. URL <https://openreview.net/forum?id=SJgndT4KwB>.

604 Boris Hanin and David Rolnick. Deep ReLU networks have surprisingly few activation patterns. In
 605 *Advances in Neural Information Processing Systems (NeurIPS)*, 2019.

607 Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent hierarchy.
 608 In *Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July*
 609 *2020, Virtual Event*, volume 119 of *Proceedings of Machine Learning Research*, pp. 4542–4551.
 610 PMLR, 2020. URL <http://proceedings.mlr.press/v119/huang201.html>.

612 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
 613 generalization in neural networks. 2018.

614 Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha
 615 Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as lin-
 616 ear models under gradient descent. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
 617 imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), *Advances in Neu-
 618 ral Information Processing Systems 32: Annual Conference on Neural Information Pro-
 619 cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada*, pp.
 620 8570–8581, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/0d1a9651497a38d8b1c3871c84528bd4-Abstract.html>.

622 Jaehoon Lee, Samuel S. Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman
 623 Novak, and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical
 624 study. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
 625 Hsuan-Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual Con-
 626 ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
 627 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/ad086f59924ffffe0773f8d0ca22ea712-Abstract.html>.

629 John M. Lee. *Introduction to smooth manifolds*, volume 218 of *Graduate Texts in Mathematics*.
 630 Springer, New York, second edition, 2013. ISBN 978-1-4419-9981-8.

631 Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel “ridgeless” regression can generalize.
 632 *The Annals of Statistics*, 48(3), June 2020. ISSN 0090-5364. doi: 10.1214/19-aos1849. URL
 633 <http://dx.doi.org/10.1214/19-AOS1849>.

635 Giovanni Luca Marchetti, Vahid Shahverdi, Stefano Mereta, Matthew Trager, and Kathlén Kohn. An
 636 invitation to neuroalgebraic geometry. *CoRR*, abs/2501.18915, 2025. doi: 10.48550/ARXIV.2501.
 637 18915. URL <https://doi.org/10.48550/arXiv.2501.18915>.

639 Marissa Masden. Algorithmic determination of the combinatorial structure of the linear regions of
 640 ReLU neural networks. *Preprint arXiv:2207.07696*, 2022.

641 Michael Murray, Hui Jin, Benjamin Bowman, and Guido Montúfar. Characterizing the spectrum of
 642 the NTK via a power series expansion. In *The Eleventh International Conference on Learning*
 643 *Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL
 644 <https://openreview.net/forum?id=Tvms8xrZHyR>.

646 Quynh Nguyen and Marco Mondelli. Global convergence of deep networks with one wide layer
 647 followed by pyramidal topology. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
 Florina Balcan, and Hsuan-Tien Lin (eds.), *Advances in Neural Information Processing Systems*

648 33: *Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December*
649 *6-12, 2020, virtual, 2020.* URL <https://proceedings.neurips.cc/paper/2020/hash/8abfe8ac9ec214d68541fcb888c0b4c3-Abstract.html>.

650

651 Quynh Nguyen, Marco Mondelli, and Guido F. Montúfar. Tight bounds on the smallest eigenvalue
652 of the neural tangent kernel for deep relu networks. In Marina Meila and Tong Zhang (eds.),
653 *Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July*
654 *2021, Virtual Event*, volume 139 of *Proceedings of Machine Learning Research*, pp. 8119–8129.
655 PMLR, 2021. URL <http://proceedings.mlr.press/v139/nguyen21g.html>.

656

657 David Rolnick and Konrad P. Kording. Reverse-engineering deep ReLU networks. In *International*
658 *Conference on Machine Learning (ICML)*, 2020.

659 Babatunde Abiodun Salami, Sani I. Abba, Adeshina A. Adewumi, Usman Alhaji Dodo, Ganiyu K.
660 Otukogbe, and Lukumon O. Oyedele. Building energy loads prediction using bayesian-based
661 metaheuristic optimized-explainable tree-based model. *Case Studies in Construction Materials*,
662 19:e02676, 2023. ISSN 2214-5095. doi: 10.1016/j.cscm.2023.e02676.

663 Bernhard Schölkopf and Alexander J. Smola. *Learning with Kernels: Support Vector Machines,*
664 *Regularization, Optimization, and Beyond.* MIT Press, Cambridge, MA, 2002.

665

666 Thiago Serra, Abhinav Kumar, and Sri Kumar Ramalingam. Lossless compression of deep neural
667 networks. In Emmanuel Hebrard and Nysret Musliu (eds.), *Integration of Constraint Programming,*
668 *Artificial Intelligence, and Operations Research - 17th International Conference, CPAIOR 2020,*
669 *Vienna, Austria, September 21-24, 2020, Proceedings*, volume 12296 of *Lecture Notes in Computer*
670 *Science*, pp. 417–430. Springer, 2020. doi: 10.1007/978-3-030-58942-4_27. URL https://doi.org/10.1007/978-3-030-58942-4_27.

671

672 Gribonval Rémi Stock, Pierre. An embedding of ReLU networks and an analysis of their identifiability.
673 *Constructive Approximation*, 57:853–899, 2023.

674 Athanasios Tsanas and Angeliki Xifara. Energy Efficiency. UCI Machine Learning Repository,
675 2012a. DOI: <https://doi.org/10.24432/C51307>.

676

677 Athanasios Tsanas and Angeliki Xifara. Accurate quantitative estimation of energy performance of
678 residential buildings using statistical machine learning tools. *Energy and Buildings*, 49:560–567,
679 2012b.

680 Bo Xie, Yingyu Liang, and Le Song. Diverse neural network learns true target functions. In
681 Aarti Singh and Xiaojin (Jerry) Zhu (eds.), *Proceedings of the 20th International Conference on*
682 *Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA*,
683 volume 54 of *Proceedings of Machine Learning Research*, pp. 1216–1224. PMLR, 2017. URL
684 <http://proceedings.mlr.press/v54/xie17a.html>.

685 Bo Zhao, Iordan Ganev, Robin Walters, Rose Yu, and Nima Dehmamy. Symmetries, flat minima, and
686 the conserved quantities of gradient flow. In *ICLR 2023, Kigali, Rwanda*. OpenReview.net.

687

688 Bo Zhao, Robin Walters, and Rose Yu. Symmetry in neural network parameter spaces. *CoRR*,
689 abs/2506.13018, 2025. doi: 10.48550/ARXIV.2506.13018. URL <https://doi.org/10.48550/arXiv.2506.13018>.

690

691 A LIE GROUP ACTIONS, HOMOGENEOUS SPACES, ORBITS, AND STABILIZERS

692 We recall some classical results about Lie group actions on smooth manifolds, following the treatment
693 in Lee (2013).

694 **Definition A.1.** A Lie group is a smooth manifold G that is also a group, for which the group
695 operations are all smooth maps. That is, G is endowed with a multiplication map

$$696 m : G \times G \rightarrow G \quad m(g, h) = gh$$

697 and an inversion map

$$698 i : G \rightarrow G \quad i(g) = g^{-1},$$

699 and both m and i are smooth (derivatives of all orders are well-defined).

702 **Definition A.2.** If G is a Lie group with identity element Id , and Ω is a smooth manifold, a smooth
703 left action of G on Ω is a map
704

$$705 \quad \psi : G \times \Omega \rightarrow \Omega \quad (g, \theta) \mapsto g \cdot \theta$$

706 satisfying:

708

- 709 • ψ is a smooth map.
- 710 • $g_1 \cdot (g_2 \cdot \theta) = (g_1 g_2) \cdot \theta$ for all $g_1, g_2 \in G, \theta \in \Omega$,
- 711 • $Id \cdot \theta = \theta$ for all $\theta \in \Omega$.

712 **Definition A.3.** Let G be a Lie group acting smoothly on a smooth manifold Ω .

714

- 715 • The action of G on Ω is said to be transitive if for all $\theta, \theta' \in \Omega$ there exists $g \in G$ such that
 $g \cdot \theta = \theta'$.
- 717 • For $\theta \in \Omega$, the orbit of θ under the action of G is the set of points in Ω obtainable by
718 applying an element $g \in G$ to θ :

$$719 \quad G\theta := \{g \cdot \theta \mid g \in G\}.$$

721

- 722 • For $\theta \in \Omega$, the stabilizer of θ is the set

$$723 \quad Stab_G(\theta) := \{g \in G \mid g \cdot \theta = \theta\}.$$

724 **Definition A.4.** A homogeneous G -space is a smooth manifold M equipped with a transitive action
725 of a Lie group G .

727 It is immediate from the definitions that if a Lie group G acts smoothly on a smooth manifold Ω , then
728 for every $\theta \in \Omega$, every G -orbit $G\theta$ is a homogeneous space.³

729 Proofs of the following results can be found in the section on *Homogeneous spaces* in Chapter 9 of
730 Lee (2013), which mostly rely on the equivariant rank theorem for Lie groups (Theorem 9.7 in Lee
731 (2013)).

732 **Lemma A.5.** (Lemma 9.23 of Lee (2013)) If G is a Lie group acting smoothly on Ω , $Stab_G(\theta)$ is a
733 closed Lie subgroup of G for every $\theta \in \Omega$.

735 **Theorem 2.** (Theorem 9.22 of Lee (2013)) Let G be a Lie group, and let $H \subseteq G$ be a closed Lie
736 subgroup of G . The left coset space G/H has a unique smooth manifold structure such that the
737 quotient map $\pi : G \rightarrow G/H$ is a smooth submersion. Moreover, G/H is also a homogeneous
738 G -space with respect to the natural G -action on the quotient group.

739 **Theorem 3.** (Theorem 9.24 of Lee (2013)) Let G be a Lie group and M a homogeneous G -space.
740 Then the coset space (quotient space) $G/Stab_G(\theta)$ is diffeomorphic to M .

741 **Corollary A.6.** (Orbit-stabilizer theorem) Let G be a Lie group acting smoothly on a manifold Ω ,
742 and let $G\theta$ be the G -orbit of $\theta \in \Omega$. Then $G/Stab_G(\theta)$ is diffeomorphic to $G\theta$. In particular,

$$743 \quad \dim(G\theta) = \dim(G) - \dim(Stab_G(\theta)).$$

745 The following lemma is immediate from the definitions.

746 **Lemma A.7.** Let X be a smooth manifold, G a Lie group acting on X , and $H \subseteq G$ a Lie subgroup
747 of G . For $\theta \in X$, if $Stab_G(\theta)$ is trivial, then so is $Stab_H(\theta)$.

749 *Proof.* $Stab_H(\theta)$ is by definition a subgroup of $Stab_G(\theta)$, so if $Stab_G(\theta)$ is the trivial subgroup, then
750 so is $Stab_H(\theta)$. \square

752 We will sometimes need the following architecture restriction in order to deduce properties of the
753 functional dimension from our knowledge of a particular Lie group action:

755 ³Beware that this does *not* imply that every G -orbit is a smoothly imbedded submanifold of Ω . See the
examples in the section on Proper Actions in Chapter 9 of Lee (2013).

756 **Assumption A.1.** We say that an architecture $(n_0, \dots, n_{d-1} \mid n_d)$ is roughly monotonic if:

757 (i) For all $\ell \in \{1, \dots, d\}$, we have $n_\ell - 1 \leq n_{\ell-1}$, or
 759 (ii) For all $\ell \in \{1, \dots, d\}$, we have $n_{\ell-1} - 1 \leq n_\ell$.

761 In other words, the dimensions of the layers either grow or shrink (up to a linear error) through the
 762 network. In practice, architectures are typically roughly rectangular, so this restriction is mild.

764 **Proposition A.8.** Let Ω be the parameter space for a ReLU neural network of architecture
 765 $(n_0, n_1, \dots, n_{d-1} \mid n_d)$. If Assumption A.1 holds, then for almost all $\theta \in \Omega$, $\text{Stab}_{G_{hid}}(\theta)$ is trivial.

766 In other words, as long as the dimensions of the layers don't grow too fast (condition (i)) or shrink
 767 too fast (condition (ii)) as you move through the network, every parameter away from a Lebesgue
 768 measure 0 set in parameter space has trivial stabilizer under the action of the hidden symmetry group.

770 *Proof.* Recall (Equation 3) that

$$772 g = (g_1, \dots, g_d) \in G_{hid} := GL_{n_1} \times \dots \times GL_{n_{d-1}}$$

773 acts on $\theta = (W^1, b^1, \dots, W^d, b^d) \in \Omega$ by:

$$775 (W^\ell, b^\ell) \rightarrow (g_\ell W^\ell g_{\ell-1}^{-1}, g_\ell b^\ell),$$

777 so if g is in the stabilizer of θ , then (recalling that for convenience we set $g_0 = g_d = \text{Id}$) we have:

$$\begin{aligned} 779 g_1 W^1 &= W^1 & g_1 b^1 &= b^1 \\ 780 g_2 W^2 g_1^{-1} &= W^2 & g_2 b^2 &= b^2 \\ 781 &\dots & &\dots \\ 782 g_{d-1} W^{d-1} g_{d-2}^{-1} &= W^{d-1} & g_{d-1} b^{d-1} &= b^{d-1} \\ 783 W^d g_{d-1}^{-1} &= W^d & & \end{aligned}$$

786 Now note that by the first line of equations above, 1 must be an eigenvalue of g_1 , and the dimension
 787 of the eigenspace of 1 must be at least the rank of the matrix, $(W^1 \ b^1)$, whose columns are all in
 788 the eigenspace of 1 for g_1 . But if we assume that $g_1 \neq \text{Id}$, then by the fact that each square
 789 matrix has a unique Jordan canonical form (up to reordering the blocks), and the number of Jordan
 790 blocks associated to each eigenvalue is equal to the dimension of the eigenspace for that eigenvalue,
 791 the dimension of the eigenspace of 1 is bounded above by $n_1 - 1$. Since generically (away from a
 792 Lebesgue measure 0 set) $(W^1 \ b^1)$ has rank $= \min\{n_1, n_0 + 1\}$, we conclude that $n_0 + 1 \leq n_1 - 1$.
 793 But if the dimensions of the layers satisfy condition (i), then we have $n_0 \geq n_1 - 1$, so $g_1 = \text{Id}$.
 794 Applying this logic to each equation in turn, working from the top to the bottom in the list of equations
 795 above and using condition (i), we conclude that $g_\ell = \text{Id}$ for all ℓ and hence the stabilizer of a generic
 796 θ is trivial.

797 We arrive at the same conclusion by applying the same reasoning to the transpose of g_ℓ , working
 798 from the final equation to the first. In this case, we will need to restrict to symmetric matrices g_ℓ
 799 in order for it to be possible for the rows of a generic W^ℓ to be in the 1-eigenspace of $(g_\ell)^T$ and
 800 simultaneously have a generic b^ℓ be in the 1-eigenspace of g^ℓ . But if we restrict to symmetric g_ℓ
 801 (that is, $g_\ell = g_\ell^T$) and use assumption (ii), then the same argument as in the previous paragraph tells
 802 us that for generic θ , $g_\ell = \text{Id}$ for all ℓ . \square

803 **Definition A.9.** For $0 \leq k \leq n$ let $\sigma_{[1:k]} : \mathbb{R}^n \rightarrow \mathbb{R}^n$ denote the function that applies the activation
 804 function $\text{ReLU}(x)$ (resp., $\text{Id}(x)$) to the first k components (resp., to the last $n - k$ components).

806 A mixed ReLU-linear neural network of architecture $(n_0, (n_1^R, n_1^L), \dots, (n_{d-1}^R, n_{d-1}^L) \mid n_d)$ is a neural
 807 network of architecture $(n_0, n_1^R + n_1^I, \dots, n_{d-1}^R + n_1^I \mid n_d)$ whose ℓ th layer map is

$$809 F^\ell(x) := \begin{cases} \sigma_{[1:n_\ell^R]}(W^\ell x + b^\ell) & \text{for } 1 \leq \ell < d \\ W^\ell x + b^\ell & \text{for } \ell = d. \end{cases} \quad (5)$$

810 **Proposition A.10.** *Given any parameter $\theta \in \Omega$ in a mixed ReLU-linear neural network of architecture*

$$811 \quad (n_0, n_1^R + n_1^I, \dots, n_{d-1}^R + n_{d-1}^L \mid n_d),$$

813 *all parameters in the H -orbit of θ for the hidden symmetry subgroup*

$$815 \quad H := \{D_+(n_1^R) \times GL(n_1^L)\} \times \dots \times \{D_+(n_{d-1}^R) \times GL(n_{d-1}^L)\}$$

816 *are equivalent to θ . That is:*

$$818 \quad F_{h\theta}(x) = F_\theta(x) \quad \forall x \in \mathbb{R}^{n_0}, h \in H.$$

819 *Moreover, if the architecture is roughly monotonic (Definition A.1), then for almost all parameters θ ,*

$$821 \quad \dim(H\theta) = \dim(H) = \sum_{\ell=0}^{d-1} n_\ell^R + \sum_{\ell=1}^{d-1} (n_\ell^L)^2.$$

824 *Proof.* Let $D_+(n_\ell^R) \times GL(n_\ell^L) \subseteq GL(n_\ell)$ be the subgroup of $GL(n_\ell)$ consisting of 2-block matrices
825 with an $n_\ell^R \times n_\ell^R$ upper-left block of diagonal matrices with positive entries on the diagonal, and an
826 $n_\ell^L \times n_\ell^L$ lower-right block of invertible matrices. The subgroup
827

$$828 \quad H = \{D_+(n_1^R) \times GL(n_1^L)\} \times \dots \times \{D_+(n_{d-1}^R) \times GL(n_{d-1}^L)\}$$

830 acts on $\theta \in \Omega$ as in Equation 3. and since $D_+(n_\ell^R)$ commutes with component-wise application
831 of ReLU on the first n_ℓ^R neurons, and $GL(n_\ell^L)$ commutes with the component-wise application of
832 the Id activation function on the last n_ℓ^L neurons, the action of H on Ω leaves the overall function
833 invariant. Since the architecture is roughly monotonic, for almost all parameters $\theta \in \Omega$, the stabilizer
834 of the H action is trivial by Lemma A.7 and Proposition A.8, so the orbit-stabilizer theorem tells us:

$$835 \quad \dim(H\theta) = \dim(H) - 0 = \sum_{\ell=1}^{d-1} n_\ell^R + \sum_{\ell=1}^{d-1} (n_\ell^L)^2.$$

□

840 The following theorem says that if there are any neurons for a parameter θ that have fixed activation
841 status (always-active or always-inactive) on an entire batch X of data, then the dimension of the
842 space of local data-dependent parameter space symmetries matches the dimension of the hidden
843 equivalence group for a mixed ReLU-linear network where all of the fixed-status neurons are treated
844 as linear.

845 **Theorem 1.** *Let $\theta \in \Omega$ be almost any parameter⁴ in a roughly monotonic feedforward ReLU
846 network architecture, $(n_0, \dots, n_{d-1} \mid n_d)$, with parametric dimension D , and let $X \subseteq \mathbb{R}^{n_0}$ be a
847 subset of the domain for which n_ℓ^{fixed} of the hidden neurons from layer ℓ are either always-active or
848 always-inactive on all of X . Then the batch functional dimension of θ on X is at most $D - d$, where
849 $d = \sum_{\ell=1}^{d-1} (n_\ell - n_\ell^{fixed}) + \sum_{\ell=1}^{d-1} (n_\ell^{fixed})^2$.*

852 *Proof of Theorem 1.* By the well-known description of the piecewise polynomial structure of ReLU
853 network functions (cf. the appendices of Hanin & Rolnick (2019), Grigsby et al. (2023) and Section
854 2.6 of Grigsby & Lindsey (2024)), on a neighborhood of each point of $X = \{x_1, \dots, x_m\}$, F_θ is a
855 polynomial function in the parameters θ , realized as a sum of monomials determined by the open
856 paths at x_i in the computational graph for the architecture. It follows that if we delete the stably
857 inactive neurons and replace the ReLU activation function with the Id function on the stably active
858 neurons of the computational graph, the parameterized ReLU neural network class looks locally on X
859 like a mixed ReLU-linear network whose ReLU neurons in layer ℓ are precisely those neurons whose
860 activation status is *not* fixed on X . The neurons in layer ℓ whose activation status on X is *active on all*
861 of X look locally like linear neurons (i.e., we can replace ReLU with the Id activation function) and
862 the neurons in layer ℓ whose activation status is *inactive on all of X* can be deleted from the network.
863 Explicitly, if we list the $k_\ell := k_{\ell,+} + k_{\ell,-}$ stably active and inactive neurons on X last in the ℓ th

864 ⁴ θ is in the complement of a Lebesgue measure 0 set defined in the proof of Proposition A.8 in the Appendix.

layer, then we can replace the component-wise application of ReLU on the last k_ℓ neurons with the component-wise application of Id without impacting the overall function F_θ . Accordingly, the action of the subgroup, $H := \{(D_+(n_1 - k_1) \times GL(k_1)\} \times \dots \times \{D_+(n_{d-1}) \times GL(k_{d-1})\}$, commutes with this mixed activation function. So H_{eq} contains H , and $\dim(H) = \sum_{\ell=1}^{d-1} (n_\ell - k_\ell) + \sum_{\ell=1}^{d-1} k_\ell^2$. The statement about the functional dimension is then an immediate consequence of Corollary 4.3 of Grigsby & Lindsey (2024) and the orbit-stabilizer theorem, once we note that there exists a non-empty open ball around θ on which an open subset of H acts with trivial stabilizer. \square

B ADDITIONAL PLOTS AND EXPERIMENTAL RESULTS

B.1 BIVARIATE DATASETS

Bivariate synthetic data: The bivariate functions $g_1, g_2, g_3 : [0, 1]^2 \rightarrow \mathbb{R}$, defined by

$$\begin{aligned} g_1(x, y) &= 1.5 + \sin(2\pi x) + \sin(2\pi y) \\ g_2(x, y) &= 1.5 + \sin(2\pi x) + \sin(2\pi y) + 0.5 \sin(4\pi x) \\ g_3(x, y) &= 1.5 + \sin(2\pi x) + \sin(2\pi y) + 0.5 \sin(4\pi x) + 0.4 \sin(4\pi y). \end{aligned}$$

For each bivariate function g_i , we create a dataset $\mathcal{D}_{g_i} = \{x_j, y_j\}_{j=1}^{400} \subset \mathbb{R}^2 \times \mathbb{R}$ by sampling the domain at 400 equally spaced points (a 20×20 grid). Figure 8 in the Appendix shows the graphs and datasets for the bivariate functions g_i .

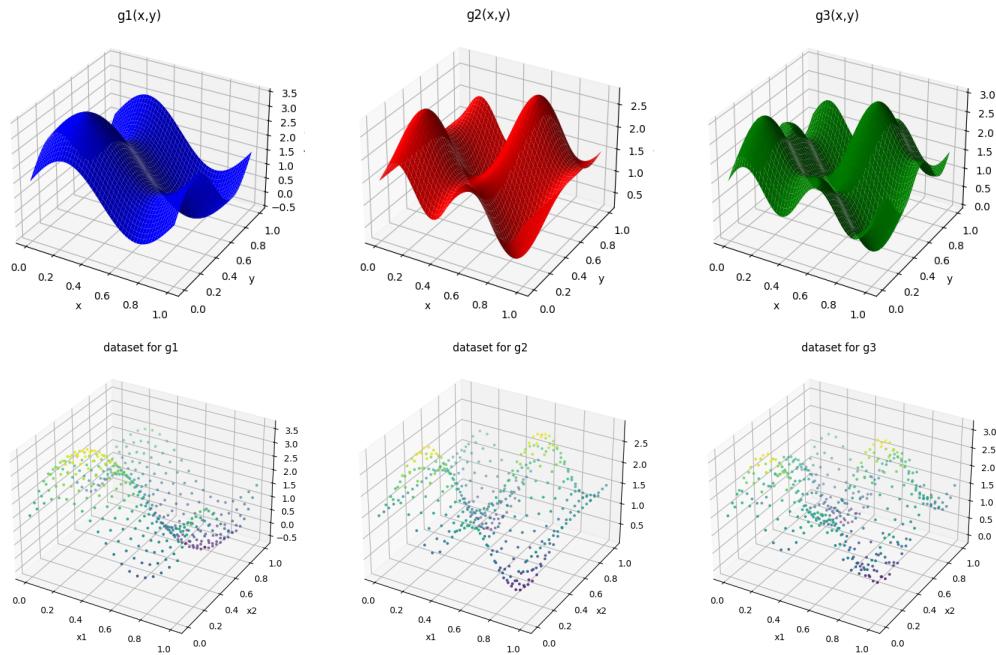


Figure 8: Graphs and datasets for the bivariate functions g_1, g_2 and g_3 . Each datasets consists of 400 points whose inputs are uniformly distributed in the square $[0, 1]^2$.

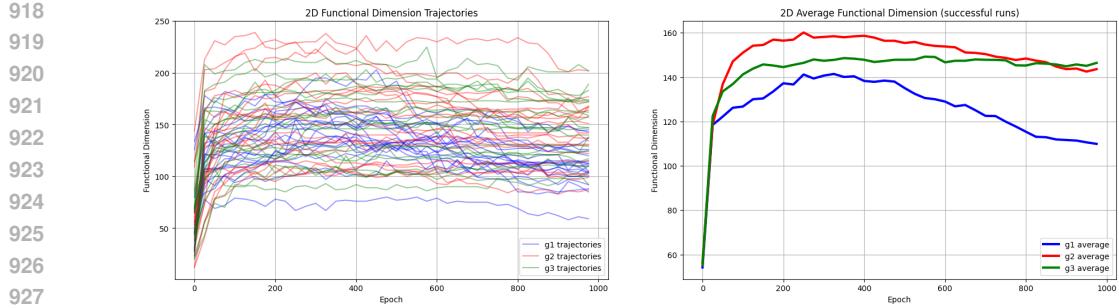


Figure 9: Evolution of functional dimension on the bivariate datasets g_1, g_2, g_3 . Trajectories tracking the evolution of functional dimension for 20 randomly initialized training runs per dataset, with functional dimension computed every 25 epochs (left). Averages (right).

C NUMBER OF LINEAR REGIONS SAMPLED BY THE DATA SET INPUTS

Definition C.1. Fix a finite set $Z \in \mathbb{R}^{n_0}$. Let θ be a parameter such that every point $z_i \in Z$ is in the interior of a top-dimensional cell of the canonical polyhedral complex $\mathcal{C}(\theta)$. Then we will say that the number of linear regions of f_θ sampled by Z is the number of n_0 -dimensional cells of $\mathcal{C}(\theta)$ that have nonempty intersection with Z .

Remark C.2. The reason for requiring that every point z_i is in the interior of a top-dimensional cell is to avoid ambiguity in counting caused by a point z_i being on the boundary of two or more top-dimensional cells.

Proposition C.3 is a more technical version of (and in particular implies) the statement of Proposition 4.6. By Grigsby & Lindsey (2024), for any finite batch Z , a full measure set of parameters θ satisfies the assumptions of Proposition C.3.

Proposition C.3. Fix an architecture $(n_0, \dots, 1)$ of fully-connected feedforward ReLU neural networks with one-dimensional output. Fix a finite set $Z \subset \mathbb{R}^{n_0}$. Let θ be a generic, transversal, combinatorially stable parameter such that every point z_i is in the interior of a n_0 -dimensional cell of the canonical polyhedral complex $\mathcal{C}(\theta)$. Then $\dim_{\text{ba.fun}}(\theta, Z)$ is at most $(n_0 + 1)$ times the number of linear regions of f_θ sampled by Z .

In particular, for an architecture with one-dimensional input and output, $\dim_{\text{ba.fun}}(\theta, Z)$ is at most twice the number of linear regions sampled by Z .

Proof. Suppose z_1, \dots, z_k are all in the interior of the same cell $C \in \mathcal{C}(\theta)$. The assumptions on θ guarantee (from results in Grigsby et al. (2022)) that there is an open neighborhood U of θ on which the function $\{z_i\} \times U \rightarrow \mathbb{R}$ given by $(z, u) \mapsto f(\theta)(z)$ is affine-linear (in every coordinate). Consequently, if the point z_{k+1} can be expressed as a linear combination of the points z_1, \dots, z_k , then the row vector $\mathbf{J}E_{z_{k+1}}(\theta)$ can be expressed as a linear combination of the row vectors $\mathbf{J}E_{z_1}(\theta), \dots, \mathbf{J}E_{z_k}(\theta)$. Since a top-dimensional geometric simplex in \mathbb{R}^{n_0} has $n_0 + 1$ points, and batch functional dimension is the number of linearly independent rows of the corresponding matrix, the result follows. \square

Figures 5 and 6 demonstrate that there is a strong correlation between the number of linear regions sampled and the batch functional dimension. However, the batch functional dimension is well below the upper bound imposed by the number of linear regions as in Proposition C.3.

Remark C.4. Definition C.1 and Proposition C.3 are closely related to notion of decisive sets defined in Grigsby et al. (2022). A *decisive* set for a parameter θ is a set $Z \subset \mathbb{R}^{n_0}$ consisting of precisely $n_0 + 1$ points in the interior of each top-dimensional polyhedron $C \in \mathcal{C}(\theta)$ that form an n_0 -dimensional simplex. Grigsby et al. (2022) proves that for a generic, transversal, combinatorially stable parameter, functional dimension is attained on any decisive set.