
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EMPIRICAL NTK TRACKS TASK COMPLEXITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Mathematical properties of the neural tangent kernel (NTK) have been related–both
theoretically and empirically–to convergence of optimization algorithms and the
ability of trained models to generalize. However, most existing theoretical results
hold only in the infinite width limit and only for standard data distributions. In
the present work, we suggest a practical approach to investigating the NTK for
finite-width networks, by understanding the parameter space symmetries of the
network in the presence of finite data sets. In particular, the NTK Gram matrix
associated to any finite data set can naturally be regarded as an empirical version
of the NTK. Moreover, its rank agrees with the functional dimension of the data
set, the number of independent parameter perturbations affecting the model’s
outputs on the data set. In this work, we explore the evolution of the functional
dimension of deep ReLU networks during training, focusing on the relationship to
data set complexity, regularization, and training dynamics. Empirically, we find
that functional dimension of deep ReLU networks: (1) tracks data set complexity,
(2) increases during training until function stabilization, and (3) decreases with
stronger weight decay, suggesting that gradient-based optimization algorithms are
biased towards simpler functions for ReLU networks. Moreover, our experiments
provide strong evidence that–contrary to conventional wisdom–the empirical NTK
for deep finite-width ReLU networks is typically rank-deficient at initialization. We
offer a potential theoretical explanation for this empirical phenomenon in terms of
certain data-dependent hidden equivalences, emphasizing the connection between
these equivalences and the geometry of the loss landscape. We also establish a
theoretical upper bound on functional dimension in terms of the number of linear
regions sampled by the data set.

1 INTRODUCTION

The neural tangent kernel (NTK) has emerged as a powerful tool for understanding the training
dynamics and generalization properties of neural networks, especially in the infinite width limit Jacot
et al. (2018); Lee et al. (2019). The spectrum of the NTK, in particular, has been shown to play a key
role, and significant theoretical progress has been made in obtaining closed-form expressions for this
spectrum Murray et al. (2023); Nguyen & Mondelli (2020); Nguyen et al. (2021). A full-rank NTK
ensures a well-conditioned optimization problem, leading to efficient training and convergence Arora
et al. (2019); Allen-Zhu et al. (2019). However, we still do not understand the effects of finite-width
corrections, especially in the presence of nonstandard data distributions. Indeed, NTK theory has
fallen short in predicting how real-world neural networks evolve when training on concrete data sets
Geiger et al. (2019); Lee et al. (2020), and the Gram matrix of the NTK - referred to as the empirical
NTK in the literature - frequently evolves significantly during training on real world data sets in a way
that differs from the infinite-width predictions. Our goals here are:

(1) Track the evolution of the empirical NTK during training on synthetic data sets of increasing
complexity (see Figures 1 and 3 below and Figures 11 in the Appendix);

(2) Relate this evolution to the task complexity (see Figure 2); and
(3) Relate the empirical NTK to a complementary theoretical framework involving data-

dependent parameter space symmetries and their impact on the optimization dynamics
of neural networks.

The starting point of our investigation are the following observations:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(1) The rank of the empirical NTK on a fixed batch of data agrees with the batch functional
dimension (cf. Grigsby et al. (2022)), which can be viewed informally as the effective local
parametric dimension on the batch;

(2) It has been observed empirically that for networks that are deeper than they are wide, the
batch functional dimension is much lower than predicted by the existing theory of parameter
space symmetries Grigsby et al. (2023).

Empirically we find:

• For deep ReLU networks, the empirical NTK has low rank at initialization and increases
during training until function stabilization. The rank of the empirical NTK is precisely the
batch functional dimension on the data set. In experiments (Figure 8), the batch functional
dimension at initialization is consistently much smaller than the number of data points for
heavily over-parameterized deep ReLU networks. During training, functional dimension on
average increases with epoch until the function roughly “stabilizes.” See Figure 8.

• The rank of the empirical NTK tracks data set complexity during training. Training with a
small positive weight decay tends to select a function whose complexity, as measured by
functional dimension, reflects the complexity of the data set. More complex data sets tend
to result in trained functions that have higher functional dimension. See Figure 2.

• Weight decay causes the rank of the empirical NTK to decrease after approximate function
stabilization, and higher weight decay encourages lower rank. If we continue training
(using a small positive weight decay) past the point of approximate functional stabilization,
functional dimension eventually decreases. (See Figures 7 and 2.) Weight decay has a
damping impact on functional dimension. That is, higher (constant) weight decay leads to
trained functions with lower functional dimension (see Figure 4).

• With only modest weight decay, the functions learned by our heavily overparameterized
function classes tend to underfit the training data. See Figure 3.

• Number of linear regions sampled is strongly correlated with the rank of the empirical NTK.
See Figure 10

We suggest two theoretical mechanisms encouraging a rank-deficient NTK, and relate these mecha-
nisms to the existence of hidden parameter space symmetries:

• Hidden data-dependent parameter space symmetries encourage a rank-deficient empirical
NTK. Restricted activation patterns cause ReLU networks to behave like smaller networks
with more parameter space symmetries. When hidden neurons in a network are either
always-active or always-inactive on a batch of data, then the network behaves like a mixed
linear-ReLU subnetwork, which enlarges the dimension of the space of symmetries to be
quadratic rather than linear in the number of hidden neurons (Proposition A.10).

• Fewer linear regions encourage a rank-deficient empirical NTK. We prove a theoretical
upper bound (Proposition C.3) on the batch functional dimension in terms of the number of
linear regions sampled by the data set. In the case of architectures with input dimension 1,
as in the case of our univariate experiments, the bound asserts that the functional dimension
is bounded above by twice the number of linear regions sampled by the batch. Attaining this
upper bound would require that the data set and parameter satisfy very specific constraints,
so it is unlikely for a typical parameter to attain the bound. In our experiments the number
of intervals sampled is typically greater than the batch functional dimension.

2 RELATED WORK

Neural Tangent Kernel (NTK) training and generalization at infinite and finite width: The NTK
was first defined and studied in Jacot et al. (2018), where it was established that in the infinite width
limit gradient flow is entirely determined by the NTK and can be described via kernel gradient flow.
See also Lee et al. (2019).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Graphs of three univariate functions of increasing complexity (left); uniformly sampled
datasets for each function (right).

Figure 2: Functional dimension tracks task complexity. The rank of the empirical NTK after 3000
epochs of training correlates positively with the complexity of the function the model is learning.

Figure 3: Function evolution for a single training run, for functions f2 and f3. Although the networks
are overparameterized (100 data points and 1006 parameters), the learned function underfits. As
indicated in the plot legends, we trained on f3 for more total epochs than on f2.

In Hanin & Nica (2020), the authors study the NTK at finite width and depth, arguing that sufficiently
deep wide networks have interesting training behavior and can learn data-dependent features even in
the so-called “lazy training” regime associated to very wide networks at fixed depth. In Huang &
Yau (2020), the authors define and study the dynamics of gradient descent for finite-width networks
under a so-called neural tangent hierarchy of differential equations, for which the NTK gives an
approximation.

NTK eigenfunctions and spectrum analysis: In Xie et al. (2017), the authors study the dyanamics of
the training loss for shallow ReLU neural networks, establishing a connection between the minimum
singular value of the empirical NTK and the decay rates of both the training loss and the kernel
spectrum associated to the arc-cosine kernel defined by Cho & Saul (2009). In Nguyen & Mondelli
(2020) and Nguyen et al. (2021) the authors perform a spectrum analysis for deep ReLU networks
with certain architecture restrictions, and in Murray et al. (2023), the authors derive a power series
expansion for the NTK of arbitrarily deep feedforward networks in the infinite width limit that allows
them to extract the eigenvalue spectrum.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Parameter space symmetries and optimization: Two largely-independent approaches to studying
the relationships among parameter space symmetries, the geometry of the loss landscape, and the
so-called neuromanifold (true function space after quotienting by symmetries) have emerged, as
described in the recent survey papers Zhao et al. (2025), Marchetti et al. (2025), and the many
references therein. The approach we take here is more closely aligned with the first survey article,
although we are interested in connections to the second. We are not aware of any prior work explicitly
discussing a relationship between the NTK spectrum and parameter space symmetries.

3 BACKGROUND AND NOTATION

3.1 FULLY-CONNECTED FEEDFORWARD RELU NETWORKS

We focus on fully connected neural networks with ReLU activation, denoting by (n0, . . . , nd−1|nd)1

the architecture with input width n0, hidden layer widths n1, . . . , nd−1, and output width nd.

Formally, let σ : Rn → Rn denote the function that applies the activation function ReLU(x) :=
max{0, x} component-wise. For an architecture (n0, . . . , nd−1|nd), we denote the parameter
space Ω := RD where a parameter θ := (W 1, b1, . . . ,W d, bd) ∈ Ω consists of the entries of
weight matrices W ℓ ∈ Rnℓ×nℓ−1 and bias vectors bℓ ∈ Rnℓ for ℓ = 1, . . . , d. Accordingly,
D :=

∑d
ℓ=1 nℓ(nℓ−1 + 1). From a parameter θ we define a neural network function:

Fθ : Rn0
F 1
// Rn1

F 2
// . . .

Fd
// Rnd , (1)

with layer maps given by:

F ℓ(x) :=

{
σ(W ℓx+ bℓ) for 1 ≤ ℓ < d
W ℓx+ bℓ for ℓ = d.

(2)

For any θ ∈ Ω, Fθ is a finite piecewise-linear function – that is, a continuous function for which the
domain may be decomposed as the union of finitely many closed, convex pieces, on each of which
the function is affine-linear. One also naturally obtains from an input vector x ∈ Rnd an evaluation
map Ex : Ω → Rn0 , where Ex(θ) := Fθ(x).

To compactify notation, following Masden (2022) we let F(ℓ) := F ℓ ◦ . . . ◦ F 1. We refer to the
components of F(ℓ) as the neurons in the ℓth layer. The pre-activation map zℓ,i : Rn0 → R associated
to the ith neuron in the ℓth layer is given by:

zℓ,i(x) = πi
(
W ℓ(F(ℓ−1)(x)) + bℓ

)
, (3)

where πi : Rnℓ → R denotes the projection onto the ith component.

Given a point x ∈ Rn0 in the input space we can record its activation status with respect to all
N =

∑d−1
i=1 ni hidden neurons by computing the N–tuple s(x) = {−1, 0,+1}N of pre-activation

signs for neurons in the network. Explicitly, the component of s(x) corresponding to the ith neuron

in the ℓth layer is: sℓ,i(x) := sgn(zℓ,i(x)), where sgn(z) =
{ z

|z| if z ̸= 0

0 if z = 0.

In the present work, we will also be interested in the activation pattern of each neuron in the network
with respect to a finite data set X = {x1, . . . , xm}. For neuron i in layer ℓ this is the m–tuple
(sℓ,i(x1), . . . , sℓ,i(xm)). If sℓ,i(xj) = +1 (resp., = −1) for all xj ∈ X we say that neuron i in layer
ℓ is always-active (resp., always-inactive) on the data set X .

3.2 SPECTRUM OF THE NTK FOR RELU NETWORKS

Recall that a kernel k : Rn0 × Rn0 → R≥0 is a symmetric, positive semi-definite similarity measure
on the input space of a parameterized function class, most naturally obtained by pulling back an inner
product from a kernel feature map Φ : Rn0 → H into a Hilbert space H: kΦ(x, y) := ⟨Φ(x),Φ(y)⟩.

1We use nonstandard notation for the architecture to emphasize that the activation function for the final layer
is the identity, Id.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In the case of the neural tangent kernel (NTK) associated to a parameter θ ∈ Ω at initialization,
H is the tangent space Tθ(Ω) ∼= RD at that parameter, equipped with its standard inner product,
and the feature map Φ : Rn0 → H is the assignment of the parameter gradient vector ∇Ez|θ
of the evaluation map at each input vector z ∈ Rn0 . Note that for ReLU network classes, this
assignment is only well-defined away from a Lebesgue measure 0 set, cf. Grigsby & Lindsey
(2022); Grigsby et al. (2022). Mercer’s Theorem (cf. Schölkopf & Smola (2002)) associates to
any kernel k on a compact set χ ⊆ Rn0 a natural positive semi-definite integral operator Tk on
L2(χ), defined by Tkf(·) :=

∫
χ
k(·, y)f(y)dy, whose associated eigenfunctions can be viewed

as a preferred orthonormal basis of L2(χ) associated to the kernel. The relationship between the
eigenbasis and spectrum of the NTK operator, optimization dynamics, and generalization has been
widely studied, cf. Murray et al. (2023) and the references therein. It is frequently assumed that at
initialization the empirical NTK will have full rank–i.e., will be equal to the number of data points in
the overparameterized setting.

3.3 BATCH FUNCTIONAL DIMENSION AND THE EMPIRICAL NTK FOR RELU NETWORKS

The (batch) functional dimension of a parameter θ ∈ Ω on a finite data set Z ⊆ Rn0 was defined
(away from a Lebesgue measure 0 set) for ReLU neural network classes in Grigsby et al. (2022),
see also Stock (2023); Bona-Pellissier et al. (2022; 2024). It is the rank of the Jacobian matrix
with respect to the parameters of the evaluation map on the batch Z: rk(JEZ |θ). When the output
dimension is 1, Z = {z1, . . . , zm}, and the parametric dimension is D, JEZ is an m ×D matrix
whose rows are ∇Ezi |θ, the neural tangent kernel feature maps at the m points of Z.

In Section 6 of Grigsby et al. (2022) it is noted that the Gram matrix of the NTK at θ on a batch Z is
(JEZ)(JEZ)

T . Moreover, it is a well-known linear algebra fact that for all matrices M over R:

rk(M) = rk(MMT),

so the rank of the Gram matrix, (JEZ)(JEZ)
T , of the NTK at θ on a batch Z is precisely the batch

functional dimension of θ on the batch Z.

4 PARAMETER SPACE SYMMETRIES, FUNCTIONAL DIMENSION, AND THE
GEOMETRY OF THE LOSS LANDSCAPE

Following Serra et al. (2020); Zhao et al.; Godfrey et al. (2022), we call two neural network functions2

Fi : Rn0 → Rnd for i = 1, 2 equivalent if F1(x) = F2(x) for all x ∈ Rn0 . We will also be interested
in data-dependent equivalence for a proper subset X ⊊ Rn0 . In this case, we say Fi are equivalent
for i = 1, 2 if F1(x) = F2(x) for all x ∈ X . In the literature (cf. (Zhao et al.; Godfrey et al.,
2022)), we typically see equivalences arising within a single architecture as a result of parameter
space symmetries.

A loss function,

L : Ω× (Rn0 × Rnd) → R, L(θ, (x, y)) := error(Fθ(x), y)

measures the error of a predicted output, Fθ(x), with respect to y, the given label on x, and the
empirical loss function LZ : Ω → R associated to a finite training set Z is the average loss on the
finite set, as a function of the parameter θ. The goal of a standard training algorithm is to find a
global minimizer of LZ . Moreover, if θmin is a global minimizer, then it is immediate that any Fθ′

equivalent to Fθmin on Z is also a global minimizer for any loss function.3 The dimension of the
space of global minimizers plays a crucial role in the dynamics of optimization algorithms at the end
stage of training (Damian et al., 2021) and (per the preceding discussion) is bounded below by the
dimension of the space of data-dependent function equivalences in the architecture.

In Grigsby et al. (2022; 2023); Zhao et al.; Grigsby & Lindsey (2024) it is noted that in favorable
situations the local dimension of parameter space symmetries is complementary to functional dimen-
sion. Explicitly (but informally), for a parameter θ: if D is the total parametric dimension, dθ is the

2We do not assume that the functions are associated to networks of the same architecture, but they necessarily
have the same input and output dimensions.

3Indeed, this is true for any t–level set L−1
Z (t) := {θ ∈ Ω | LZ(θ) = t} for t ∈ R.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

functional dimension at θ and sθ is the dimension of the space of parameter space symmetries near θ,
then D = dθ + sθ. The picture to have in mind is that parameter space is decomposed locally into
directions that can change the function (hence contribute to functional dimension) and directions that
preserve the function (hence contribute to the local space of symmetries).

In Section 4.1, we recall one rich source of parameter space symmetries, coming from the action of
the hidden symmetry group on parameter space defined in Zhao et al.. In Section 4.2 we describe a
mechanism, first described in Grigsby et al. (2023), whereby many architectures can develop a larger
set of data-dependent parameter space symmetries than expected, leading to higher-dimensional-than-
expected level sets in the loss landscape.

4.1 LIE GROUP ACTIONS, ORBITS, AND HIDDEN EQUIVALENCES

Following Zhao et al., we note that the parameter space of any feedforward network architecture
(n0, . . . , nd−1|nd) (for any choice of activation function) admits a natural action of the hidden
symmetry group, Ghid := GLn1

× . . .×GLnd−1
, of the architecture. Here, GLn denotes the general

linear group of invertible n× n matrices over R, so any g = (g1, . . . , gd−1) ∈ Ghid gives rise to a
map g · − : Ω → Ω defined as follows. If θ = (W 1, b1, . . . ,W d, bd) ∈ Ω, then:

g · (W ℓ, bℓ) := (gℓW
ℓg−1

ℓ−1, gℓb
ℓ), (4)

where we set g0 := Idn0 , gd := Idnd
, the identity matrices of the appropriate dimensions.

Ghid is an example of a Lie group, and the assignment of a smooth map on a vector space associated
to every element of a Lie group is an example of a Lie group action. One can and should understand
this particular action as induced by a much more natural action of the Lie group Ghid on the product
of the hidden layers, Rn1 × . . .× Rnd−1 , by layer-wise conjugation (change-of-basis).

In particular, ifH is a subgroup ofGhid whose action commutes with the component-wise application
of the activation function, then we can decompose parameter space into orbits under the action of H ,
and each H–orbit, Hθ := {h · θ | h ∈ H}, will consist of equivalent parameters; see Zhao et al. and
Section A in the Appendix for more details. Moreover, the classical orbit-stabilizer theorem for Lie
group actions (Corollary A.6, cf. Lee (2013)) then tells us that Hθ is diffeomorphic to the quotient
space, H/StabH(θ), where

StabH(θ) := {h ∈ H | h · θ = θ}
is the stabilizer of θ. In particular, the dimension of the orbit Hθ is the dimension of the Lie group H
minus the dimension of the stabilizer of any parameter θ in the orbit:

dim(Hθ) = dim(H)− dim(StabH(θ)). (5)

The picture and framework that emerges, described beautifully in ? (see also for an algebro-
geometric view on this framework), is that parameter space decomposes into orbits under the action
of a high-dimensional data-dependent symmetry group. Understanding the details of this parameter
symmetry group action - in particular, how the orbits interact in parameter space - will illuminate the
optimization dynamics of neural network models.
Definition 4.1. We define the hidden equivalence group, Heq ⊆ Ghid for a fixed architecture and
batch X ⊆ Rn0 of input data to be the largest subgroup of the hidden symmetry group that commutes
with the component-wise application of the activation function for all x ∈ X .

It is immediate that all functions in any Heq-orbit of any parameter θ ∈ Ω are equivalent on X . In
particular, the dimension of Heq will give us a lower bound on the dimension of the level sets of the
empirical loss function (as long as the stabilizer is trivial on parameters in the orbit). It follows that if
the hidden equivalence group is larger than expected, then the the critical locus will also be larger
than expected (in the trivial stabilizer case):
Lemma 4.2. Let C ⊆ Ω be the critical locus for any empirical loss function LX : Ω → R. If there
exists θ ∈ C with trivial stabilizer (for which StabHeq

(θ) = {Id}), then dim(C) ≥ dim(Heq).
Remark 4.3. The expected dimension of the hidden equivalence group for a ReLU network of
architecture (n0, n1, . . . , nd−1|nd) is N =

∑d−1
ℓ=1 nℓ, the number of hidden neurons. Indeed, letting

PD+(n) denote the group of n× n matrices representable as a product PD, where P is an n× n
permutation matrix and D is an n× n diagonal matrix with strictly positive entries on the diagonal,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

it is well-known that the subgroup PD+(n1)× . . .× PD+(nd−1) of the hidden symmetry group
commutes with the component-wise application of ReLU (Zhao et al.; Godfrey et al., 2022), resulting
in the familiar positive scaling invariance and permutation invariance for hidden neurons in ReLU
networks (Rolnick & Kording, 2020; Bui Thi Mai & Lampert, 2020; Grigsby et al., 2023).

Lemma 4.2, which follows from the orbit-stabilizer theorem and the results in Appendix A, tells us
that if the hidden equivalence group on a batch of data X includes a subgroup of dimension larger
than N , then level sets of the loss will be larger than the expected dimension N , decreasing the
functional dimension on the batch. In the following section, we describe one way this can occur.

4.2 RESTRICTED ACTIVATION PATTERNS INDUCE HIDDEN EQUIVALENCES

If there are neurons for Fθ that are either always-active or always-inactive on a data set X ⊆ Rn0 ,
then ReLU acts locally as the Identity function at always-active neurons and effectively ignores
always-inactive neurons. This observation motivates the following, cf. Serra et al. (2020):

Definition 4.4. Let σ[1:k] : Rn → Rn denote the function that applies the activation function
ReLU(x) (resp., Id(x)) to the first k components (resp., to the last n−k components). A mixed ReLU-
linear neural network of architecture (n0, (n

R
1 , n

L
1), . . . , (n

R
d−1, n

L
d−1)|nd) is a neural network of

architecture (n0, nR1 +nI1, . . . , n
R
d−1+n

L
1 | nd) whose ℓth layer map is F ℓ(x) := σ[1:nR

ℓ](W
ℓx+bℓ).

The following results, whose formal statements and proofs appear in Appendix 4.1, together tell us
that the dimension of the hidden equivalence group is quadratic, rather than linear in the number of
neurons with fixed activation status with respect to the data set X .

Proposition 4.5. The hidden equivalence group of a mixed ReLU-linear neural network of architec-
ture (n0, n

R
1 + nI1, . . . , n

R
d−1 + nLd−1 | nd) has dimension at least d =

∑d−1
ℓ=0 n

R
ℓ +

∑d−1
ℓ=1 (n

L
ℓ)

2.

Theorem 1. Let θ ∈ Ω be almost any parameter4 in a feedforward ReLU network architec-
ture, (n0, . . . , nd−1|nd), with parametric dimension D, and let X ⊆ Rn0 be a subset of the
domain for which nfixedℓ of the hidden neurons from layer ℓ are either always-active or always-
inactive on all of X . Then the batch functional dimension of θ on X is at most D − d, where

d =
∑d−1

ℓ=1

(
nℓ − nfixedℓ

)
+
∑d−1

ℓ=1

(
nfixedℓ

)2

.

The idea of the proof of Theorem 1 is that near θ, the space of data-dependent parameter space
symmetries on X looks locally like the hidden equivalence group of a mixed ReLU-linear network
with nRℓ = n− nfixedℓ and nLℓ = nfixedℓ .

5 EXPERIMENTAL SETUP

To empirically investigate how the rank of the empirical NTK evolves during training, we define
functions of varying complexity, use those functions to construct toy datasets, and train feedforward
ReLU neural networks on those datasets. This section describes the details of this setup.

Functions and data sets: For our toy datasets, we choose univariate (input dimension 1) and bivariate
(input dimension 2) functions so we can easily plot their evolution during training.

Univariate: The univariate functions f1, f2, f3 : [0, 1] → R are defined as follows:

f1(x) = 1.5 + sin(2πx)

f2(x) = 1.5 + sin(2πx) + 0.5 sin(4πx)

f3(x) = 1.5 + sin(2πx) + 0.5 sin(4πx) + 0.4 sin(16πx).

For each function fi, we create a data set Di = {xj , yj}100j=1 ⊂ R × R by sampling the domain at
100 equally spaced points. Figure 1 shows the graphs and datasets for the functions fi.

4θ is in the complement of a Lebesgue measure 0 set defined in the proof of Proposition A.8 in the Appendix.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Bivariate: The bivariate functions g1, g2, g3 : [0, 1]2 → R, defined by

g1(x, y) = 1.5 + sin(2πx) + sin(2πy)

g2(x, y) = 1.5 + sin(2πx) + sin(2πy) + 0.5 sin(4πx)

g3(x, y) = 1.5 + sin(2πx) + sin(2πy) + 0.5 sin(4πx) + 0.4 sin(4πy).

For each bivariate function gi, we create a dataset Dgi = {xj , yj}400j=1 ⊂ R2 × R by sampling the
domain at 400 equally spaced points (a 20× 20 grid). Figure 11 in the Appendix shows the graphs
and datasets for the bivariate functions gi.

The purpose of the vertical shift 1.5 in the functions is to make all functions strictly positive. We do
not add noise to our data sets.

Training setup: For all experiments, we used the fixed architecture
(input dimension, 15, 15, 15, 15, 1) of fully-connected, feedforward ReLU neural networks.
For the univariate experiments, the associated number of trainable parameters is D = 1006, and for
the bivariate experiments, the parametric dimension is D = 1021. We train the networks using the
Adam optimizer with MSELoss, learning rate 0.01, weight decay 1e-4 (unless otherwise specified in
text), and shuffled minibatches of batchsize 16. We initialize each training run by randomly selecting
all weights and biases using the He initialization (also called Kaiming initialization), i.e. all weights
and all biases for a given layer are selected randomly from a normal distribution with mean 0 and

standard deviation
√

2
fan in , where fan in is the number of input features for that layer.

Batch functional dimension computation: At specified epochs during training, we compute the
batch functional dimension using the inputs for the entire data set Di as the batch. To do this, we first
compute the matrix

JEDi(θ) :=


∇θf(x1; θ)
∇θf(x2; θ)

...
∇θf(xm; θ)


where each xj is one of the inputs of a point (xj , yj) ∈ Di and f(·, θ) is the function determined by
the parameter θ. We then compute the batch functional dimension as

dimba.fun(θ) = torch.linalg.matrix rank(JEDi
(θ)).

Note that the command torch.linalg.matrix rank computes the number of “non-zero” singular values,
where a singular value is considered non-zero if it is greater than the default error tolerance for
floating point calculations. This default threshold is defined for a n×m matrix A as

threshold(A) := max(n,m) · σmax · ϵ

where σmax is the largest singular value of A and ϵ represents machine precision, which is roughly
1.19 ∗ 10−7 for dtype float32. Thus, our computation of batch functional dimension will set to 0 any
singular values sufficiently small with respect to the maximum possible rank of the Jacobian matrix
(100 for our 1D experiments and 400 for our 2D experiments), and the largest singular value, which
empirically were ≈ 103 for our 1D experiments and ≈ 104 for our 2D experiments. The calculation
of the rank is therefore setting to 0 singular values below (roughly) 0.01 for our 1D experiments and
0.1 for our 2D experiments (both typically 10−5 times σmax).

6 EXPERIMENTAL RESULTS

The empirical NTK is typically rank deficient at initialization. This observation is supported by
Figures 4, 8, 5, 7, 9, 10, 12, 13, 14.

Weight decay suppresses batch functional dimension of trained networks. See Figure 4.

Evolution of functional dimension before and after approximate function stabilization. Figures
3 and 6 show, for each univariate dataset Di, the functions found during a training run. Visual investi-
gation of these and similar plots for other random initializations suggests that, in our experimental

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Comparing the impact of the weight decay rate on functional dimension evolution. Left:
We track functional dimension (trained on D1) during 20 randomly initialized training runs for each
of 3 weight decay rates: 0, 1e-4, and 1e-2. Right: Averages at each epoch over the 20 training runs
per group. (Functional dimension was computed every 100 epochs.)

setup, the functions found by training on D1 typically appear to be approximately stable by epoch
100, on D2 by epoch 1000-1500, and on D3 by epoch 2000-4000. Continuing to train beyond the
point when the function approximately stabilizes does not appear to lead to overfitting (Figure 6 in
the Appendix visualizes function evolution over 3000 epochs for f1.)

Figure 8 depicts trajectories of functional dimension evolution across training epochs until approxi-
mate functional stabilization for multiple random initializations. The trend shown in each of the plots
in Figure 8 is that, on average, functional dimension increases until the epoch at which we stopped
training (chosen to correspond to roughly when the functions tend to stabilize).

Batch functional dimension tracks dataset complexity. Figure 2 supports the conclusion that for
the univariate datasets, on average, training tends to select a function whose complexity, as measured
by functional dimension, reflects the complexity of the data set. That is, the rank of the empirical
NTK after 3000 epochs of training correlates positively with the complexity of the function the model
is learning. Figure 5 demonstrates same trend holds for the bivariate datasets.

Figure 5: Left: Trajectories of batch functional dimension over 10 randomly initialized training runs
for each bivariate dataset (using weight decay 0, functional dimension computed every 100 epochs).
Right: Averages. (All trained functions had r2 scores ≥ 0.95.)

Batch functional dimension is correlated with number of regions sampled. See Figures 9, 10.
Proposition C.3 in Appendix C proves that, except for a measure 0 situation, the functional dimension
is bounded by the number of linear regions sampled by the dataset times (n0 + 1), where n0 is the
input dimension.

7 CONCLUSIONS

We have performed both a theoretical and empirical investigation of the behavior of the empirical
NTK during training of deep ReLU networks on toy datasets, assembling empirical evidence that the
rank of the empirical NTK in this setting is (i) lower-than-expected at initialization, and (ii) tracks
task complexity. We provide a possible theoretical explanation for this phenomenon by relating the
rank of the empirical NTK to the functional dimension, whose behavior for ReLU networks has been
related to a growing body of literature on parameter space symmetries.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pp. 242–252. PMLR,
2019. URL http://proceedings.mlr.press/v97/allen-zhu19a.html.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pp. 322–332. PMLR, 2019. URL http://
proceedings.mlr.press/v97/arora19a.html.

Joachim Bona-Pellissier, Francois Malgouyres, and Francois Bachoc. Local identifiability of deep
ReLU neural networks: The theory. In Advances in Neural Information Processing Systems
(NeurIPS), 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/hash/b0ae046e198a5e43141519868a959c74-Abstract-Conference.
html.

Joachim Bona-Pellissier, Fran cois Malgouyres, and Fran cois Bachoc. Geometry-induced implicit
regularization in deep ReLU neural networks. Preprint arXiv:2402.08269, 2024.

Phuong Bui Thi Mai and Christoph Lampert. Functional vs. parametric equivalence of ReLU
networks. In International Conference on Learning Representations (ICLR), 2020.

Youngmin Cho and Lawrence K. Saul. Kernel methods for deep learning. In Yoshua
Bengio, Dale Schuurmans, John D. Lafferty, Christopher K. I. Williams, and Aron Cu-
lotta (eds.), Advances in Neural Information Processing Systems 22: 23rd Annual Con-
ference on Neural Information Processing Systems 2009. Proceedings of a meeting held
7-10 December 2009, Vancouver, British Columbia, Canada, pp. 342–350. Curran Asso-
ciates, Inc., 2009. URL https://proceedings.neurips.cc/paper/2009/hash/
5751ec3e9a4feab575962e78e006250d-Abstract.html.

Alex Damian, Tengyu Ma, and Jason D. Lee. Label noise SGD provably prefers flat global minimizers.
In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
27449–27461, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
e6af401c28c1790eaef7d55c92ab6ab6-Abstract.html.

Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stéphane d’Ascoli,
Giulio Biroli, Matthieu Wyart, and Clément Hongler. Disentangling feature and lazy training in
deep neural networks. arXiv preprint arXiv:1906.08034, 2019.

Charles Godfrey, Davis Brown, Tegan Emerson, and Henry Kvinge. On the symmetries of deep
learning models and their internal representations. In Sanmi Koyejo, S. Mohamed, A. Agarwal,
Danielle Belgrave, K. Cho, and A. Oh (eds.), NeurIPS 2022, New Orleans, LA, 2022.

J. Elisenda Grigsby and Kathryn Lindsey. On transversality of bent hyperplane arrangements and
the topological expressiveness of ReLU neural networks. SIAM Journal on Applied Algebra and
Geometry, 6(2):216–242, 2022.

J. Elisenda Grigsby and Kathryn Lindsey. On functional dimension and persistent pseudodimension.
Preprint arXiv:2410.17191, 2024.

J. Elisenda Grigsby, Kathryn Lindsey, Robert Meyerhoff, and Chenxi Wu. Functional dimension of
feedforward ReLU neural networks. Preprint arXiv:2209.04036, 2022.

J. Elisenda Grigsby, Kathryn Lindsey, and David Rolnick. Hidden symmetries of ReLU net-
works. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML

10

http://proceedings.mlr.press/v97/allen-zhu19a.html
http://proceedings.mlr.press/v97/arora19a.html
http://proceedings.mlr.press/v97/arora19a.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b0ae046e198a5e43141519868a959c74-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b0ae046e198a5e43141519868a959c74-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b0ae046e198a5e43141519868a959c74-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2009/hash/5751ec3e9a4feab575962e78e006250d-Abstract.html
https://proceedings.neurips.cc/paper/2009/hash/5751ec3e9a4feab575962e78e006250d-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/e6af401c28c1790eaef7d55c92ab6ab6-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/e6af401c28c1790eaef7d55c92ab6ab6-Abstract.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pp. 11734–11760. PMLR, 2023. URL https://proceedings.mlr.press/
v202/grigsby23a.html.

Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
SJgndT4KwB.

Boris Hanin and David Rolnick. Deep ReLU networks have surprisingly few activation patterns. In
Advances in Neural Information Processing Systems (NeurIPS), 2019.

Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent hierarchy.
In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 4542–4551.
PMLR, 2020. URL http://proceedings.mlr.press/v119/huang20l.html.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. 2018.

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as lin-
ear models under gradient descent. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
8570–8581, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
0d1a9651497a38d8b1c3871c84528bd4-Abstract.html.

Jaehoon Lee, Samuel S. Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman
Novak, and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical
study. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
ad086f59924fffe0773f8d0ca22ea712-Abstract.html.

John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathematics.
Springer, New York, second edition, 2013. ISBN 978-1-4419-9981-8.

Giovanni Luca Marchetti, Vahid Shahverdi, Stefano Mereta, Matthew Trager, and Kathlén Kohn. An
invitation to neuroalgebraic geometry. CoRR, abs/2501.18915, 2025. doi: 10.48550/ARXIV.2501.
18915. URL https://doi.org/10.48550/arXiv.2501.18915.

Marissa Masden. Algorithmic determination of the combinatorial structure of the linear regions of
ReLU neural networks. Preprint arXiv:2207.07696, 2022.

Michael Murray, Hui Jin, Benjamin Bowman, and Guido Montúfar. Characterizing the spectrum of
the NTK via a power series expansion. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/forum?id=Tvms8xrZHyR.

Quynh Nguyen and Marco Mondelli. Global convergence of deep networks with one wide layer
followed by pyramidal topology. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/
hash/8abfe8ac9ec214d68541fcb888c0b4c3-Abstract.html.

Quynh Nguyen, Marco Mondelli, and Guido F. Montúfar. Tight bounds on the smallest eigenvalue
of the neural tangent kernel for deep relu networks. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp. 8119–8129.
PMLR, 2021. URL http://proceedings.mlr.press/v139/nguyen21g.html.

11

https://proceedings.mlr.press/v202/grigsby23a.html
https://proceedings.mlr.press/v202/grigsby23a.html
https://openreview.net/forum?id=SJgndT4KwB
https://openreview.net/forum?id=SJgndT4KwB
http://proceedings.mlr.press/v119/huang20l.html
https://proceedings.neurips.cc/paper/2019/hash/0d1a9651497a38d8b1c3871c84528bd4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0d1a9651497a38d8b1c3871c84528bd4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ad086f59924fffe0773f8d0ca22ea712-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ad086f59924fffe0773f8d0ca22ea712-Abstract.html
https://doi.org/10.48550/arXiv.2501.18915
https://openreview.net/forum?id=Tvms8xrZHyR
https://proceedings.neurips.cc/paper/2020/hash/8abfe8ac9ec214d68541fcb888c0b4c3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/8abfe8ac9ec214d68541fcb888c0b4c3-Abstract.html
http://proceedings.mlr.press/v139/nguyen21g.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

David Rolnick and Konrad P. Kording. Reverse-engineering deep ReLU networks. In International
Conference on Machine Learning (ICML), 2020.

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, 2002.

Thiago Serra, Abhinav Kumar, and Srikumar Ramalingam. Lossless compression of deep neural
networks. In Emmanuel Hebrard and Nysret Musliu (eds.), Integration of Constraint Programming,
Artificial Intelligence, and Operations Research - 17th International Conference, CPAIOR 2020,
Vienna, Austria, September 21-24, 2020, Proceedings, volume 12296 of Lecture Notes in Computer
Science, pp. 417–430. Springer, 2020. doi: 10.1007/978-3-030-58942-4\ 27. URL https:
//doi.org/10.1007/978-3-030-58942-4_27.

Gribonval Rémi Stock, Pierre. An embedding of ReLU networks and an analysis of their identifiability.
Constructive Approximation, 57:853–899, 2023.

Bo Xie, Yingyu Liang, and Le Song. Diverse neural network learns true target functions. In
Aarti Singh and Xiaojin (Jerry) Zhu (eds.), Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA,
volume 54 of Proceedings of Machine Learning Research, pp. 1216–1224. PMLR, 2017. URL
http://proceedings.mlr.press/v54/xie17a.html.

Bo Zhao, Iordan Ganev, Robin Walters, Rose Yu, and Nima Dehmamy. Symmetries, flat minima, and
the conserved quantities of gradient flow. In ICLR 2023, Kigali, Rwanda. OpenReview.net.

Bo Zhao, Robin Walters, and Rose Yu. Symmetry in neural network parameter spaces. CoRR,
abs/2506.13018, 2025. doi: 10.48550/ARXIV.2506.13018. URL https://doi.org/10.
48550/arXiv.2506.13018.

A LIE GROUP ACTIONS, HOMOGENEOUS SPACES, ORBITS, AND STABILIZERS

We recall some classical results about Lie group actions on smooth manifolds, following the treatment
in Lee (2013).
Definition A.1. A Lie group is a smooth manifold G that is also a group, for which the group
operations are all smooth maps. That is, G is endowed with a multiplication map

m : G×G→ G m(g, h) = gh

and an inversion map

i : G→ G i(g) = g−1,

and both m and i are smooth (derivatives of all orders are well-defined).
Definition A.2. If G is a Lie group with identity element Id, and Ω is a smooth manifold, a smooth
left action of G on Ω is a map

ψ : G× Ω → Ω (g, θ) 7→ g · θ
satisfying:

• ψ is a smooth map.

• g1 · (g2 · θ) = (g1g2) · θ for all g1, g2 ∈ G, θ ∈ Ω,

• Id · θ = θ for all θ ∈ Ω.
Definition A.3. Let G be a Lie group acting smoothly on a smooth manifold Ω.

• The action of G on Ω is said to be transitive if for all θ, θ′ ∈ Ω there exists g ∈ G such that
g · θ = θ′.

• For θ ∈ Ω, the orbit of θ under the action of G is the set of points in Ω obtainable by
applying an element g ∈ G to θ:

Gθ := {g · θ | g ∈ G}.

12

https://doi.org/10.1007/978-3-030-58942-4_27
https://doi.org/10.1007/978-3-030-58942-4_27
http://proceedings.mlr.press/v54/xie17a.html
https://doi.org/10.48550/arXiv.2506.13018
https://doi.org/10.48550/arXiv.2506.13018

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

• For θ ∈ Ω, the stabilizer of θ is the set

StabG(θ) := {g ∈ G | g · θ = θ}.
Definition A.4. A homogeneous G–space is a smooth manifold M equipped with a transitive action
of a Lie group G.

It is immediate from the definitions that if a Lie group G acts smoothly on a smooth manifold Ω, then
for every θ ∈ Ω, every G–orbit Gθ is a homogeneous space.5

Proofs of the following results can be found in the section on Homogeneous spaces in Chapter 9 of
Lee (2013), which mostly rely on the equivariant rank theorem for Lie groups (Theorem 9.7 in Lee
(2013)).
Lemma A.5. (Lemma 9.23 of Lee (2013)) If G is a Lie group acting smoothly on Ω, StabG(θ) is a
closed Lie subgroup of G for every θ ∈ Ω.
Theorem 2. (Theorem 9.22 of Lee (2013) Let G be a Lie group, and let H ⊆ G be a closed Lie
subgroup of G. The left coset space G/H has a unique smooth manifold structure such that the
quotient map π : G → G/H is a smooth submersion. Moreover, G/H is also a homogeneous
G–space with respect to the natural G–action on the quotient group.
Theorem 3. (Theorem 9.24 of Lee (2013) Let G be a Lie group and M a homogeneous G–space.
Then the coset space (quotient space) G/StabG(θ) is diffeomorphic to M .
Corollary A.6. (Orbit-stabilizer theorem) Let G be a Lie group acting smoothly on a manifold Ω,
and let Gθ be the G–orbit of θ ∈ Ω. Then G/StabG(θ) is diffeomorphic to Gθ. In particular,

dim(Gθ) = dim(G)− dim(StabG(θ).

The following lemma is immediate from the definitions.
Lemma A.7. Let X be a smooth manifold, G a Lie group acting on X , and H ⊆ G a Lie subgroup
of G. For θ ∈ X , if StabG(θ) is trivial, then so is StabH(θ).

Proof. StabH(θ) is by definition a subgroup of StabG(θ), so if StabG(θ) is the trivial subgroup, then
so is StabH(θ).

We will sometimes need the following architecture restriction in order to deduce properties of the
functional dimension from our knowledge of a particular Lie group action:
Assumption A.1. We say that an architecture (n0, . . . , nd−1 |nd) is roughly monotonic if:

(i) For all ℓ ∈ {1, . . . , d}, we have nℓ − 1 ≤ nℓ−1, or

(ii) For all ℓ ∈ {1, . . . , d}, we have nℓ−1 − 1 ≤ nℓ.

In other words, the dimensions of the layers either grow or shrink (up to a linear error) through the
network. In practice, architectures are typically roughly rectangular, so this restriction is mild.
Proposition A.8. Let Ω be the parameter space for a ReLU neural network of architecture
(n0, n1, . . . , nd−1 | nd). If Assumption A.1 holds, then for almost all θ ∈ Ω, StabGhid

(θ) is trivial.

In other words, as long as the dimensions of the layers don’t shrink too fast (condition (i)) or grow
too fast (condition (ii)) as you move through the network, every parameter away from a Lebesgue
measure 0 set in parameter space has trivial stabilizer under the action of the hidden symmetry group.

Proof. Recall (Equation 4) that

g = (g1, . . . , gd) ∈ Ghid := GLn1
× . . .×GLnd−1

acts on θ = (W 1, b1, . . . ,W d, bd) ∈ Ω by:

(W ℓ, bℓ) → (gℓW
ℓg−1

ℓ−1, gℓb
ℓ),

5Beware that this does not imply that every G–orbit is a smoothly imbedded submanifold of Ω. See the
examples in the section on Proper Actions in Chapter 9 of Lee (2013).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

so if g is in the stabilizer of θ, then (recalling that for convenience we set g0 = gd = Id) we have:

g1W
1 = W 1 g1b

1 = b1

g2W
2g−1

1 = W 2 g2b
2 = b2

· · · · · ·
gd−1W

d−1g−1
d−2 = W d−1 gd−1b

d−1 = bd−1

W dg−1
d−1 = W d

Now note that by the first line of equations above, 1 must be an eigenvalue of g1, and the dimension
of the eigenspace of 1 must be at least the the rank of the matrix, (W 1 b1), whose columns are all in
the in the eigenspace of 1 for g1. But if we assume that g1 ̸= Id, then by the fact that each square
matrix has a unique Jordan canonical form (up to reordering the blocks), and the number of Jordan
blocks associated to each eigenvalue is equal to the dimension of the eigenspace for that eigenvalue,
the dimension of the eigenspace of 1 is bounded above by n1 − 1. Since generically (away from a
Lebesgue measure 0 set) (W 1 b1) has rank = min{n1, n0 + 1}, we conclude that n0 + 1 ≤ n1 − 1.
But if the dimensions of the layers satisfy condition (i), then we have n0 ≥ n1 − 1, so g1 = Id.
Applying this logic to each equation in turn, working from the top to the bottom in the list of equations
above and using condition (i), we conclude that gℓ = Id for all ℓ and hence the stabilizer of a generic
θ is trivial.

We arrive at the same conclusion by applying the same reasoning to the transpose of gℓ, working
from the final equation to the first. In this case, we will need to restrict to symmetric matrices gℓ
in order for it to be possible for the rows of a generic W ℓ to be in the 1-eigenspace of (gℓ)T and
simultaneously have a generic bℓ be in the 1–eigenspace of gℓ. But if we restrict to symmetric gℓ
(that is, gℓ = gTℓ) and use assumption (ii), then the same argument as in the previous paragraph tells
us that for generic θ, gℓ = Id for all ℓ.

Definition A.9. For 0 ≤ k ≤ n let σ[1:k] : Rn → Rn denote the function that applies the activation
function ReLU(x) (resp., Id(x)) to the first k components (resp., to the last n− k components).

A mixed ReLU-linear neural network of architecture (n0, (nR1 , n
L
1), . . . , (n

R
d−1, n

L
d−1)|nd) is a neural

network of architecture (n0, n
R
1 + nI1, . . . , n

R
d−1 + nL1 | nd) whose ℓth layer map is

F ℓ(x) :=

{
σ[1:nR

ℓ](W
ℓx+ bℓ) for 1 ≤ ℓ < d

W ℓx+ bℓ for ℓ = d.
(6)

Proposition A.10. Given any parameter θ ∈ Ω in a mixed ReLU-linear neural network of architecture

(n0, n
R
1 + nI1, . . . , n

R
d−1 + nLd−1 | nd),

all parameters in the H-orbit of θ for the hidden symmetry subgroup

H := {D+(n
R
1)×GL(nL1)} × . . .× {D+(n

R
d−1)×GL(nLd−1)}

are equivalent to θ. That is:

Fhθ(x) = Fθ(x) ∀ x ∈ Rn0 , h ∈ H.

Moreover, if the architecture is roughly monotonic (Definition A.1), then for almost all parameters θ,

dim(Hθ) = dim(H) =

d−1∑
ℓ=0

nRℓ +

d−1∑
ℓ=1

(nLℓ)
2.

Proof. LetD+(n
R
ℓ)×GL(nLℓ) ⊆ GL(nℓ) be the subgroup ofGL(nℓ) consisting of 2-block matrices

with an nRℓ × nRℓ upper-left block of diagonal matrices with positive entries on the diagonal, and an
nLℓ × nLℓ lower-right block of invertible matrices. The subgroup

H = {D+(n
R
1)×GL(nL1)} × . . .× {D+(n

R
d−1)×GL(nLd−1)}

acts on θ ∈ Ω as in Equation 4. dand since D+(n
R
ℓ) commutes with component-wise application

of ReLU on the first nRℓ neurons, and GL(nLℓ) commutes with the component-wise application of

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

the Id activation function on the last nLℓ neurons, the action of H on Ω leaves the overall function
invariant. Since the architecture is roughly monotonic, for almost all parameters θ ∈ Ω, the stabilizer
of the H action is trivial by Lemma A.7 and Proposition A.8, so the orbit-stabilizer theorem tells us:

dim(Hθ) = dim(H)− 0 =

d−1∑
ℓ=1

nRℓ +

d−1∑
ℓ=1

(nLℓ)
2.

The following theorem says that if there are any neurons for a parameter θ that have fixed activation
status (always-active or always-inactive) on an entire batch X of data, then the dimension of the
space of local data-dependent parameter space symmetries matches the dimension of the hidden
equivalence group for a mixed ReLU-linear network where all of the fixed-status neurons are treated
as linear.
Theorem 1. Let θ ∈ Ω be almost any parameter6 in a feedforward ReLU network architec-
ture, (n0, . . . , nd−1|nd), with parametric dimension D, and let X ⊆ Rn0 be a subset of the
domain for which nfixedℓ of the hidden neurons from layer ℓ are either always-active or always-
inactive on all of X . Then the batch functional dimension of θ on X is at most D − d, where

d =
∑d−1

ℓ=1

(
nℓ − nfixedℓ

)
+
∑d−1

ℓ=1

(
nfixedℓ

)2

.

Proof of Theorem 1. By the well-known description of the piecewise polynomial structure of ReLU
network functions (cf. the appendices of Hanin & Rolnick (2019),Grigsby et al. (2023) and Section
2.6 of Grigsby & Lindsey (2024)), on a neighborhood of each point of X = {x1, . . . , xm}, Fθ is a
polynomial function in the parameters θ, realized as a sum of monomials determined by the open
paths at xi in the computational graph for the architecture. It follows that if we delete the stably
inactive neurons and replace the ReLU activation function with the Id function on the stably active
neurons of the computational graph, the parameterized ReLU neural network class looks locally on X
like a mixed ReLU-linear network whose ReLU neurons in layer ℓ are precisely those neurons whose
activation status is not fixed onX . The neurons in layer ℓ whose activation status onX is active on all
of X look locally like linear neurons (i.e., we can replace ReLU with the Id activation function) and
the neurons in layer ℓ whose activation status is inactive on all of X can be deleted from the network.
Explicitly, if we list the kℓ := kℓ,+ + kℓ,− stably active and inactive neurons on X last in the ℓth
layer, then we can replace the component-wise application of ReLU on the last kℓ neurons with the
component-wise application of Id without impacting the overall function Fθ. Accordingly, the action
of the subgroup, H := {(D+(n1 − k1)×GL(k1)} × . . .× {D+(nd−1)×GL(kd−1)}, commutes
with this mixed activation function. So Heq contains H , and dim(H) =

∑d−1
ℓ=1 (nℓ−kℓ)+

∑d−1
ℓ=1 k

2
ℓ .

The statement about the functional dimension is then an immediate consequence of Corollary 4.3 of
Grigsby & Lindsey (2024) and the orbit-stabilizer theorem, once we note that there exists a non-empty
open ball around θ on which an open subset of H acts with nontrivial stabilizer.

B ADDITIONAL PLOTS AND EXPERIMENTAL RESULTS

B.1 UNIVARIATE DATASETS

6θ is in the complement of a Lebesgue measure 0 set defined in the proof of Proposition A.8 in the Appendix.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 6: Training after approximate stabilization of the function does not show evidence of overfitting.
This plot shows the evolution of functions found in a single training run for f1 over 3000 epochs.

Figure 7: Functional dimension trajectories for 25 randomly initialized training runs over 3000
epochs using the f1 dataset.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 8: Evolution of functional dimension for multiple, randomly-initialized training runs until
approximate stabilization. The black dotted lines indicate the average over the “successful” training
runs – which we define as those with coefficient of correlation r2 ≥ 0.9 at the end of training. (The r2
score is recorded to the right of each trajectory.) For f1 we computed the trajectory for 100 randomly
initialized training runs; for each of f2 and f3 we computed 20 training run trajectories.)

Figure 9: Tracking functional dimension and number of linear regions sampled every 100 epochs
during a single training run for f1.

Figure 10: Averages over 20 randomly initialized training runs for f1 of number of linear regions
sampled and functional dimension.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.2 BIVARIATE DATASETS

Figure 11: Graphs and datasets for the bivariate functions g1, g2 and g3.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 12: Functional dimension and contour maps of a single training run (with weight decay = 0)
for g1 every 100 epochs.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 13: Functional dimension and contour maps of a single training run (with weight decay 0) for
g2 every 100 epochs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 14: Functional dimension and contour maps of a single training run (with weight decay 0) for
g3 every 100 epochs.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C NUMBER OF LINEAR REGIONS SAMPLED BY THE DATA SET INPUTS

Definition C.1. Fix a finite set Z ∈ Rn0 . Let θ be a parameter such that every point zi ∈ Z is in the
interior of a top-dimensional cell of the canonical polyhedral complex C(θ). Then we will say that
the number of linear regions of fθ sampled by Z is the number of n0-dimensional cells of C(θ) that
have nonempty intersection with Z.

Remark C.2. The reason for requiring that every point zi is in the interior of a top-dimensional
cell is to avoid ambiguity in counting caused by a point zi being on the boundary of two or more
top-dimensional cells.
Proposition C.3. Fix an architecture (n0, . . . , 1) of fully-connected feedforward ReLU neural
networks with one-dimensional output. Fix a finite set Z ⊂ Rn0 . Let θ be a generic, transversal,
combinatorially stable parameter such that every point zi is in the interior of a n0-dimensional cell of
the canonical polyhedral complex C(θ). Then dimba.fun(θ, Z) is at most (n0 + 1) times the number
of linear regions of fθ sampled by Z.

In particular, for an architecture with one-dimensional input and output, dimba.fun(θ, Z) is at most
twice the number of linear regions sampled by Z.

Proof. Suppose z1, . . . , zk are all in the interior of the same cell C ∈ C(θ). The assumptions
on θ guarantee (from results in Grigsby et al. (2022)) that there is an open neighborhood U of
θ on which the function {zi} × U → R given by (z, u) 7→ f(θ)(z) is affine-linear (in every
coordinate). Consequently, if the point zk+1 can be expressed as a linear combination of the points
z1, . . . , zk, then the row vector JEzk+1

(θ) can be expressed as a linear combination of the row vectors
JEz1(θ), . . . ,JEzk(θ). Since a top-dimensional geometric simplex in Rn0 has n0 + 1 points, and
batch functional dimension is the number of linearly independent rows of the corresponding matrix,
the result follows.

Figure 9 tracks the batch functional dimension and number of linear regions sampled by D1 over a
single training run. Figure 10 computes averages per epoch over 20 randomly initialized training
runs.

The plots demonstrate that there is a strong correlation between the number of linear regions sampled
by D1 and the batch functional dimension. However, the batch functional dimension is well below
the upper bound imposed by the number of linear regions as in Proposition C.3.
Remark C.4. Definition C.1 and Proposition C.3 are closely related to notion of decisive sets defined in
Grigsby et al. (2022). A decisive set for a parameter θ is a set Z ⊂ Rn0 consisting of precisely n0 +1
points in the interior of each top-dimensional polyhedron C ∈ C(θ) that form an n0-dimensional
simplex. Grigsby et al. (2022) proves that for a generic, transversal, combinatorially stable parameter,
functional dimension is attained on any decisive set.

22

	Introduction
	Related work
	Background and notation
	Fully-connected feedforward ReLU networks
	Spectrum of the NTK for ReLU networks
	Batch functional dimension and the empirical NTK for ReLU networks

	parameter space symmetries, functional dimension, and the geometry of the loss landscape
	Lie Group Actions, Orbits, and Hidden Equivalences
	Restricted activation patterns induce hidden equivalences

	Experimental setup
	Experimental results
	Conclusions
	Lie group actions, homogeneous spaces, orbits, and stabilizers
	Additional plots and experimental results
	Univariate datasets
	Bivariate datasets

	Number of linear regions sampled by the data set inputs

