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ABSTRACT

Infrared and visible image fusion aims to integrate complementary information
from different modalities into a unified representation. However, existing methods
lack the capability to leverage historical fusion experiences and generate modality-
specific semantic guidance, thereby limiting their adaptability and fusion quality.
To address these challenges, this study proposes a Memory-Orchestrated Multi-
Prompt Learning Network that transforms fusion from a static feature combina-
tion process into a dynamic prompt-guided learning paradigm. Our method en-
compasses two core mechanisms: 1) Memory-driven experiential prompts that
capture and reuse successful fusion patterns from historical cases through a CLIP-
evaluated dynamic memory bank; 2) Graph-driven modality-specific prompts that
model cross-modal semantic relationships via specialized semantic graph net-
works to generate targeted guidance for each modality. These dual prompts are
jointly modulated across multiple scales and progressively integrated into the fu-
sion process, enabling stable, interpretable, and transferable guidance for fusion
decisions without relying on full supervision. Furthermore, we exploit residual
priors to assess the salient complementarity of source features, thereby constrain-
ing the solution space and enhancing the model’s effective perception of comple-
mentary characteristics. Extensive experiments, including both statistical metrics
and performance on high-level vision tasks, demonstrate the effectiveness of the
proposed method.

1 INTRODUCTION

Infrared and visible image fusion (IVIF) represents a critical image enhancement technique that inte-
grates thermal radiation information from infrared images with textural details from visible images,
generating more informative unified representations (Xu et al., 2020; Zhang & Demiris, 2023; Liu
et al., 2024b). As a foundational vision task, IVIF significantly enhances the performance of down-
stream high-level vision tasks, including object detection (Liu et al., 2025a), scene analysis (Zheng
et al., 2025), and autonomous navigation (Liu et al., 2023), by providing enriched multi-modal
information.

The advancement of deep learning (DL) has provided powerful technical foundations for IVIF,
where adaptive feature extraction and integration capabilities of deep networks effectively allevi-
ate the limitations of hand-crafted rules inherent in traditional methods. Consequently, DL-based
methods have become the predominant research paradigm. However, in the absence of ground truth
supervision, existing DL-based methods typically rely on structural or attribute priors of source
features to construct learning strategies that drive models to capture explicit cross-modal feature
representations (Zhao et al., 2024a; 2023; 2025; Cheng et al., 2025). While effective to some
extent, such constraints based on fixed loss functions or single priors struggle to provide stable guid-
ance for generating high-quality fusion results. The fundamental challenge lies in translating the
subjective notion of ’perceptual quality’ into learnable optimization objectives under unsupervised
conditions. Recent research efforts have attempted to bridge fusion processes with high-level vision
tasks by establishing ’fusion-task’ connections, injecting task semantics into fusion procedures to
enhance model expressiveness (Liu et al., 2025a; Chen et al., 2025; Wu et al., 2025). However,
the weak supervision nature of task semantics limits their generalizability, resulting in constrained
performance when facing unknown tasks. Inspired by the rapid development of prompt learning,
some researchers have leveraged vision-language models to guide IVIF models in learning gener-
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Figure 1: (a)-(c) present a comparative analysis of different fusion paradigms, including modality-
specific modeling, text-guided fusion, and our proposed. (d) demonstrates the superior effective-
ness of our proposed M2PN through comparisons with SOTA methods: modality-specific-based
CS2Fusion (Wang et al., 2024), text-guided fusion Text-IF (Yi et al., 2024) and PromptFusion (Liu
et al., 2024a).

alizable representations, thereby promoting high-quality image generation (Zhang et al., 2025; Li
et al., 2025a; Liu et al., 2024a). Particularly in ground-truth-free scenarios, the integration of tex-
tual descriptions endows models with enhanced feature perception capabilities, enabling them to
make informed fusion decisions based on semantic guidance rather than blind feature combination
(Yi et al., 2024). Despite these advances, prompt learning-based IVIF methods face several critical
challenges: 1) Existing methods primarily rely on explicitly modeled prompts and lack the ability
to learn from historical successful fusion cases, failing to generate effective experiential prompts
for current fusion tasks; 2) The distinct characteristics of infrared and visible modalities necessitate
specialized semantic guidance, yet current methods fail to generate modality-specific prompts that
account for inherent modal differences; 3) In the absence of ground truths and under cross-modal
distribution inconsistency, translating human-perceived quality into learnable constraints for stable
fusion quality remains unresolved.

Based on the above findings, this work proposes a Memory-Orchestrated Multi-Prompt Learn-
ing Network (M2PN) that transforms the fusion process into a dynamic, prompt-guided learning
paradigm through adaptive prompt generation. Unlike existing paradigms that rely on explicit CLIP
guidance, our method leverages CLIP’s robust evaluation capabilities to construct a self-evolving
Dynamic Memory Bank (DMB) that stores high-quality fusion feature representations from his-
torical learning episodes. The model subsequently queries this memory bank to capture and reuse
successful fusion patterns, generating experiential prompts to guide current fusion decisions. Addi-
tionally, we design a Cross-Modal Semantic Graph Network (CSGN) that models modality-specific
semantic relationships between infrared and visible images. Through modality-specialized graph
representation learning, CSGN generates unique semantic guidance prompts for each modality. The
experiential and modality-specific prompts are jointly modulated across multiple scales, with adap-
tive prompt weight adjustment based on feature responses, and progressively injected to guide fusion
image generation. Furthermore, we leverage the structural priors of the residual maps to evaluate
the complementary features of source features, employing a weighted loss function to constrain the
solution space and enhance the model’s effective perception of complementary features. Extensive
experimental results demonstrate that memory-guided multi-prompts learning can effectively guide
the model in leveraging complementary contextual aggregation, achieving more competitive per-
formance compared to SOTA methods. The main contributions of this work are summarized as
follows:

• We propose M2PN, which transforms fusion from a static feature combination process into
a dynamic prompt-guided learning paradigm.

• We introduce two complementary prompt generation strategies, memory-driven experien-
tial prompts that leverage CLIP-evaluated historical fusion experiences through dynamic
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retrieval, and graph-driven modality-specific prompts that generate specialized knowledge
through semantic information propagation and aggregation in graph structures.

• Efficient modules, such as memory-guided fusion and residual-weighted map mechanisms
that effectively enhance M2PN’s performance through progressive prompt injection and
complementarity-aware feature learning.

2 RELATED WORK

DL-based IVIF. Deep learning for IVIF has evolved along several interconnected threads. Early
methods emphasized preserving complementary structural and visual cues from source images via
tailored architectures and priors-driven objectives (Wang et al., 2024; 2025b; Zheng et al., 2025).
Within this paradigm, CNN-based frameworks, DenseFuse (Li & Wu, 2018), U2Fusion (Xu et al.,
2020), and FusionGAN (Ma et al., 2019), established foundational pipelines that assess input im-
portance to retain salient source features. However, their local receptive fields inherently constrain
long-range dependency modeling and cross-modal interaction (Zhao et al., 2023; Liu et al., 2025a).
To overcome these limits, transformer-based approaches leverage self-attention to capture global
context and facilitate richer cross-modal interactions. Representative works such as SwinFusion (Ma
et al., 2022), CDDFuse (Zhao et al., 2023), and YDTR (Tang et al., 2022b) demonstrate that long-
range spatial relationships between IR and VIS modalities can be explicitly modeled, leading to
more robust fusion strategies. Building further, diffusion-based models introduce generative pri-
ors and iterative denoising to encode distributions of source features. Dif-Fusion (Yue et al., 2023)
pioneers this direction by casting channel distribution construction as a diffusion process, while
DSPFusion (Tang et al., 2025) and DRMF (Tang et al., 2024) exploit diffusion’s stochastic sam-
pling to enhance degradation resistance under challenging conditions. In parallel, task-oriented
fusion integrates feedback from downstream vision tasks to guide optimization. TarDAL (Liu et al.,
2023) jointly optimizes fusion and detection, and DCEvo (Liu et al., 2025a) employs evolutionary
learning to balance multi-objective trade-offs. Yet, despite clear gains under matched settings, such
pipelines may generalize poorly to unknown or shifting downstream tasks, highlighting the need for
experience-aware and task-agnostic guidance.

Memory Mechanisms. Orthogonal to the choice of backbone, memory mechanisms endow feed-
forward models with the capacity to store, retrieve, and reuse informative representations across
instances, thereby compensating for the myopic nature of one-shot processing (Liu et al., 2025b;
Zhou et al., 2024a;b). In contrastive learning, MoCo (He et al., 2020) stabilizes negative sampling
through a momentum-updated memory bank, improving representation consistency at scale. For
video object segmentation, QDMN (Liu et al., 2025b) introduces quality-guided updates so that
high-quality frames are preferentially retained, reinforcing temporal coherence. Related ideas ap-
pear in person re-identification, where adaptive memories continually refine identity prototypes from
mini-batch instances (Yin et al., 2023), and in video-text retrieval, where memory banks help main-
tain temporal correspondences across modalities to support robust cross-modal alignment (Wang
et al., 2022). Collectively, these results suggest that explicit memory can accumulate experiential
knowledge beneficial for dynamic, context-dependent tasks—an ability also desirable for IVIF.

Prompt Learning. Concurrently, prompt learning offers a complementary route to adapt pre-trained
models with minimal overhead by injecting contextual signals (Khattak et al., 2023; Ma et al., 2023;
Liao et al., 2025; Zhang et al., 2024). Built on CLIP (Radford et al., 2021), vision–language prompts
have been shown to transfer semantic priors effectively across tasks such as detection (Ma et al.,
2023), style transfer (Kwon & Ye, 2022), and image enhancement (Liang et al., 2023), often sur-
passing traditional unsupervised cues by operating within semantically grounded latent spaces (Zhou
et al., 2022). Motivated by these advances, IVIF studies have begun to incorporate textual guidance:
IF-FILM (Zhao et al., 2024b) extracts explicit text cues from source images to steer fusion, Prompt-
Fusion (Liu et al., 2024a) uses vision–language models to refine object-aware interactions, and Text-
IF (Yi et al., 2024) leverages textual priors to break ground-truth bottlenecks for degradation-aware
and interactive fusion. Despite these encouraging steps, current prompt-based IVIF faces three cou-
pled limitations: (i) reliance on handcrafted or pre-defined prompts, which constrains adaptability;
(ii) the absence of mechanisms to accumulate and reuse successful fusion experiences as compact
guidance; and (iii) modality-agnostic prompt generation that overlooks distinct IR/VIS character-
istics. These gaps motivate our objective: to automatically derive experiential, modality-aware
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Figure 2: The framework of our memory-orchestrated multi-prompt learning network.

prompts that guide fusion without explicit supervision, thereby combining the strengths of mem-
ory and prompting in a unified framework.

3 METHODOLOGY

Contemporary IVIF methods are fundamentally limited by treating each fusion instance as an iso-
lated optimization problem, thereby discarding valuable knowledge from successful fusion experi-
ences and applying uniform processing strategies that neglect the inherent heterogeneity between
infrared and visible modalities. In contrast, human visual perception demonstrates superior fusion
capabilities by unconsciously leveraging experiential knowledge from previous scenarios while nat-
urally adapting processing strategies to honor each modality’s distinctive characteristics. This cogni-
tive mechanism inspires our dual-prompt learning framework, which transforms the fusion paradigm
from fused = N(IR, V IS; Ψ) to fused = N(IR, V IS,B,G; Ψ), where fused, IR, and V IS
represent the fused image, infrared image, and visible image, respectively. N represents the fusion
function with static parameters Ψ. B encapsulates accumulated experiential knowledge from histor-
ical successful cases, and G captures modality-specific semantic understanding through graph-based
cross-modal reasoning. The semantic component G is operationalized through a GNN that mod-
els cross-modal relationships as learnable node interactions rather than static feature combinations.
This graph structure enables flexible information propagation along semantically meaningful path-
ways, capturing complex interdependencies between IR and VIS modalities that conventional oper-
ations cannot adequately represent. The framework thus addresses both temporal learning through
B and structural reasoning through G, enabling adaptive fusion decisions guided by accumulated
experience and cross-modal semantic understanding. As illustrated in Figure 2, our M2PN oper-
ates through a three-stage pipeline: feature extraction, prompt generation, and reconstruction. This
architecture transforms traditional static fusion into a dynamic, prompt-driven learning paradigm.

3.1 FEATURE EXTRACTION

We employ a Siamese-DenseEncoder (Wang et al., 2024) architecture to extract complementary
feature representations Φir and Φvi from IR and V IS, respectively. The DenseEncoder leverages
dense connectivity patterns to capture multi-scale feature hierarchies while preserving fine-grained
details across different semantic levels. Additionally, we introduce a lightweight residual encoder
composed of two convolutional layers to extract residual features ΦM from the residual mapM :=
IR− V IS, which captures the fundamental modality differences and provides a structural prior for
complementarity perception (Wang et al., 2025a; He et al., 2023; Zheng et al., 2025).

3.2 PROMPT GENERATION

The extracted source features Φir and Φvi are concatenated to generate an initial fused representa-
tion Φf , which serves as the foundation for subsequent processing. (i) It acts as the core features

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

for fused image reconstruction; (ii) It collaborates with the residual feature ΦM and the source fea-
tures to construct graph architectures, which are fed into the CSGN to generate modality-specific
prompts through cross-modal semantic learning; (iii) It functions as a query mechanism to retrieve
historical representations from the DMB, facilitating the generation of experiential prompts based
on successful fusion patterns.
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Figure 3: Pipeline for the MGF.

Cross-Modal Semantic Graph Network (CSGN).
To generate modality-specific prompts that capture
the intrinsic characteristics of each modality, we
design a CSGN to model semantic relationships
through structured graph representations, as illus-
trated in Figure 3. Specifically, for each modal-
ity (IR and VIS), we construct a three-node seman-
tic graph G = (V, E), where the node set V =
{Θir/Θvi,Θf ,ΘM}. Each node’s representation is
derived through global average pooling followed by
linear projection: hi = Proj(GAP (Φi)), where
i ∈ {Θir/Θvi,Φf ,ΦM}.
The graph employs multi-head cross-modal attention mechanisms to enable semantic information
propagation across nodes:

Att(Q,K, V ) = Softmax

(
CAT (Qn,Kn) ·Wattn√

dk

)
Vn (1)

where Qn, Kn, and Vn represent the query, key, and value projections for the n-th attention head, re-
spectively. The CSGN processes IR and V IS modalities independently through dedicated attention
layers, generating modality-specific graph representations Gir and Gvi that encapsulate specialized
semantic guidance for each modality.

Dynamic Memory Bank (DMB). To leverage historical fusion experiences, we implement a
learnable memory mechanism that stores and retrieves high-quality fusion patterns. The DMB
maintains a memory matrix M ∈ RN×D, where N represents the memory capacity and D de-
notes the feature dimensionality. The memory bank operates through three sequential processes:
similarity-based retrieval, quality evaluation, and dynamic updating.

Given the current fused features Φf , we first extract a global representation Θf = Proj(GAP (Φf ))
and compute cosine similarities with stored memory entries:

si =
Θf ·Mi

||Θf || · ||Mi||
(2)

The experiential prompt is generated through weighted aggregation: Θq =
∑N

i=1 αiMi, where
αi = Softmax(si).

For quality assessment, we employ a CLIP-based evaluator that addresses the challenge of defining
fusion quality without ground truth supervision. Rather than direct textual constraints on fusion
generation, which suffers from semantic ambiguity and feature mismatch issues, we leverage CLIP’s
evaluation capability on well-defined quality attributes (texture, contrast, brightness). The quality
score is computed as:

QCLIP = δ(Sim(If , Tpos)− Sim(If , Tneg)) (3)

where δ denotes the sigmoid function, If represents the CLIP encoding of the fused image,
Sim(x, y) calculates the cosine similarity of x and y, and Tpos, Tneg represent positive and neg-
ative quality descriptions, respectively.

The memory bank employs adaptive thresholding to selectively store high-quality experiences. The
threshold τt is dynamically adjusted based on historical quality distributions:

τt = µhist + κ · σhist (4)

where µhist and σhist represent the historical mean and standard deviation of quality scores, and κ
is a learnable scaling parameter. Only fusion instances satisfying QCLIP > τt are incorporated into
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the memory bank through momentum-based updates:

M(t+1)
j = (1− β) ·M(t)

j + β ·Θf (5)

where β control update rate is set to 0.1 and j denotes the memory slot with highest similarity.

3.3 RECONSTRUCTION

The decoder adopts a stack of three Prompt Guidance Modules (PGMs). Each PGM consumes the
current decoder features together with a dual–prompt design and returns a refined representation.
Within each PGM, we couple Memory-Guided Fusion (MGF) with Adaptive Instance Normaliza-
tion (AdaIN) (Huang & Belongie, 2017) to realize prompt-conditioned reconstruction. A residual
connection preserves the input signal while enabling prompt-driven enhancement:

Φout = AdaIN(Φin,Θ
i
p) + Φin, (6)

where Φin denotes the input features to a PGM and Θp is the fused prompt.

Memory-Guided Fusion (MGF). The fused prompt is produced by querying a modality bank
with a memory embedding:

Θp = MGF (Gir,Gvi,Θq) , (7)

Concretely, MGF implements a multi-head attention operator that uses Θq as the query and treats
[Gir, Gvi] as keys/values, yielding memory-informed selection weights over the modality bank:

α = softmax

(
(ΘqWq) ([Gir, Gvi]Wk)

⊤
√
d

)
, Θp = α

(
[Gir, Gvi]Wv

)
, (8)

where Wq,Wk,Wv are learnable projections, [·, ·] denotes concatenation, d is the head dimension,
and α ∈ R1×2 encodes the memory-guided preference over IR/V IS cues. This design jointly de-
termines ’what to fuse’ (via MGF) and ’how to modulate’ (via AdaIN), while the residual connection
preserves fidelity.

3.4 OBJECT FUNCTION

The training objective of our M2PN comprises two complementary components: a fusion loss Lf

that guides the model to integrate cross-modal complementary features, and a modal separation loss
Lctr that enforces modality-specific prompt specialization through contrastive learning. The overall
loss function is formulated as:

Ltotal = Lf + Lctr (9)

Fusion loss Lf . The fusion loss Lf consists of a weighted fidelity term Lw and a texture-structure
preservation term Ls, defined as:

Lf = Lw + λLs (10)

where λ represent the trade-off factor. The weighted fidelity term constrains the solution space by
introducing adaptive weighting mechanisms that drive the model to effectively preserve critical in-
formation from both modalities. To ensure that the fused image simultaneously maintains thermal
target sensitivity from infrared images and detail richness from visible images, we formulate the fu-
sion goal as an energy minimization framework with adaptive weight allocation based on quantified
information contribution from each modality:

1) We design a dual-level saliency computation mechanism. The process first emphasizes tempera-
ture salient regions through global standardization, then integrates local contrast enhancement with
intensity weighting to ensure thermal target regions receive higher saliency weights:

Sir = σ(ÎR + C(IR)) · σ( ˆIR) (11)

where ˆIR = IR−µ(IR)
σ(IR) represents the globally normalized infrared image, and C(·) denotes local

window convolution for contrast enhancement.
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2) To quantify the information complementarity between modalities, we introduce residual entropy
analysis to assess the importance of modal differences. The entropy of the residual probability
distribution is computed as:

HR = −E[pR log(pR + ϵ) + (1− pR) log(1− pR)] (12)

where pR = σ(M) represents the normalized residual probability. The complementarity weight
λc = σ(HR) adaptively regulates the contribution of residual information based on modal consis-
tency.

3) Based on information-theoretic principles, we transform the contribution degree of each modality
into energy functions, where lower energy indicates superior information preservation:

Eir = −(Sir + λc · pR · Sir) Evi = −((1− Sir) + λc · pR · (1− Sir)) (13)

These energy functions simultaneously encode intrinsic saliency and complementary information,
ensuring thermal target regions favor infrared contributions while texture-rich areas preserve visible
light details. The pixel-level decision is achieved by comparing energy differences:

wir = I(Eir − Evi < k · σ(Eir − Evi)) (14)

where I is the indicator function and k serves as a control parameter to ensure the robustness of
the decision-making of k · σ(Eir − Evi) under different scenarios. The complementary weight is
computed as wvi = 1− wir.

Finally, the weighted fidelity loss is formulated as:

Lw = ∥wir · IR− wir · fused∥1 + ∥wvi · V IS − wvi · fused∥1 (15)

Moreover, to enhance visual quality and preserve structural details while avoiding common detail
loss during fusion, we introduce a quality term combining structural similarity and texture preserva-
tion:

Ls = SSIM(fused, IR) + SSIM(fused, V IS) + ∥∇fused−Max(∇IR,∇V IS)∥1 (16)

where SSIM(·) measures structural similarity, Max(·) and ∇(·) represents the max function and
the gradient operator, respectively.

Modal separation loss Lctr. To enhance the discriminability of modality-specific cues and ensure
appropriate cue specialization, we follow Wang et al. (2024) to introduce a modality contrastive
learning framework that aims to promote intra-modality consistency while enforcing semantic sep-
aration between modalities:

Lctr = Lmin(Gir,Gvi) + Lmin(Gir,Fvi) + Lmin(Gvi,Fir)

+ Lmax(Gir,Fir) + Lmax(Gvi,Fvi)
(17)

where Fir and Fvi are the flattened Φ(ir) and Φ(vi), Lmin(·, ·) encourages feature dissimilarity
between different modalities, and Lmax(·, ·) promotes similarity within the same modality.

4 EXPERIMENT

4.1 EXPERIMENTAL DETAIL

To evaluate our proposed M2PN, we conducted comprehensive experiments across four datasets:
M3FD (Liu et al., 2023), ADD (Ahn et al., 2023), TNO (Toet, 2017), and MSRS (Tang et al.,
2022a). These datasets were utilized for different tasks: all four datasets were employed for IVIF,
while M3FD was additionally used for object detection and MSRS for image segmentation. Our
M2PN was trained and validated on the RoadScene (Xu et al., 2020) dataset, then directly tested
on the four test datasets to demonstrate its robustness and generalization capability. We compared
M2PN against nine SOTA methods, including A2RNet (Li et al., 2025b), DCEvo (Liu et al., 2025a),
FreeFusion (Zhao et al., 2025), GIFNet (Cheng et al., 2025), PromptFusion (Liu et al., 2024a),
Text-IF (Yi et al., 2024), LRRNet (Li et al., 2023), CDDFuse (Zhao et al., 2023), and SHIP (Zheng
et al., 2024). To ensure fair comparison, all models were obtained from their respective authors, and
all experiments were implemented using PyTorch.
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Table 1: Quantitative comparison results on the TNO, MSRS, M3FD and ADD. The best results are
highlighted in bold.

Method TNO ADD MSRS M3FD

EN SF SD AG NI VI EN SF SD AG NI VI EN SF SD AG NI VI EN SF SD AG NI VI

A2RNet 7.05 3.43 9.47 3.29 4.75 0.56 6.28 2.76 9.41 2.11 3.77 0.39 6.60 3.49 8.56 2.92 4.28 0.66 6.60 3.49 8.56 2.92 4.28 0.66
DCEvo 6.91 4.01 9.29 3.94 4.49 0.44 6.48 4.31 9.32 3.24 3.99 0.56 6.64 4.52 8.36 3.81 4.45 0.83 6.64 4.52 8.36 3.81 4.45 0.83

FreeFusion 7.05 6.17 9.68 6.19 4.83 1.02 6.83 6.08 10.05 5.16 4.57 1.16 5.16 5.33 6.97 3.74 3.53 1.05 7.25 7.57 9.70 6.95 5.04 1.02
GIFNet 6.94 5.17 8.94 4.97 4.59 0.65 6.81 6.39 9.69 5.05 4.39 0.96 5.96 5.00 6.77 3.50 3.59 0.68 7.04 7.61 9.23 6.11 4.78 0.83

PromptFusion 7.01 4.22 9.20 4.17 4.67 0.55 6.60 4.21 9.12 3.00 4.10 0.65 6.65 4.36 8.33 3.61 4.35 0.79 6.78 5.31 10.03 4.46 4.43 0.47
Text-IF 7.21 5.18 9.54 5.17 4.89 0.70 6.99 5.23 9.48 4.32 4.70 1.01 6.74 4.67 8.52 3.95 4.49 0.91 6.93 6.21 9.88 5.34 4.66 0.63
LRRNet 7.05 3.81 9.17 3.86 4.64 0.46 6.75 3.82 9.49 3.22 4.26 0.63 6.19 3.31 7.82 2.67 3.74 0.43 6.44 4.21 9.31 3.61 4.05 0.89

CDDFuse 7.09 4.55 9.38 4.51 4.76 0.61 6.65 4.62 9.24 3.31 4.21 0.76 6.71 4.51 8.43 3.77 4.49 0.83 6.90 5.77 9.97 4.81 4.66 0.89
SHIP 6.93 4.76 9.25 4.69 4.47 0.40 6.49 4.89 9.12 4.05 3.96 0.58 6.44 4.64 8.15 3.97 4.17 0.79 6.83 6.03 10.01 5.20 4.49 0.90

Ours 7.34 6.78 9.64 6.88 5.14 1.20 7.33 5.86 10.60 5.20 5.06 1.09 7.16 6.76 9.18 6.53 4.87 1.09 7.36 8.28 10.21 7.17 5.15 1.23

Table 2: Performance on high-level vision tasks. The best results are highlighted in bold.
Method Object Detection Semantic Segmentation

Per Car Bus Mot Tru Lam mAP UnL Car Per Bike Cur Stop mIoU
A2RNet 0.795 0.906 0.886 0.659 0.810 0.798 0.809 0.9818 0.8809 0.6875 0.6882 0.5557 0.6445 0.74
DCEvo 0.780 0.907 0.891 0.675 0.788 0.815 0.809 0.9819 0.8775 0.6865 0.6792 0.5243 0.6383 0.731

FreeFusion 0.785 0.910 0.887 0.695 0.807 0.802 0.814 0.9794 0.8591 0.6808 0.6432 0.4516 0.5715 0.698
GIFNet 0.787 0.907 0.881 0.702 0.765 0.811 0.809 0.9814 0.8730 0.6862 0.6902 0.5437 0.6207 0.733

PromptFusion 0.775 0.911 0.890 0.648 0.813 0.806 0.807 0.9814 0.8655 0.6744 0.6809 0.5388 0.6514 0.732
Text-IF 0.773 0.907 0.905 0.693 0.810 0.795 0.814 0.9821 0.8798 0.6829 0.6985 0.5355 0.6373 0.736
LRRNet 0.780 0.911 0.878 0.694 0.804 0.798 0.811 0.9817 0.8800 0.6762 0.6787 0.5475 0.6417 0.734

CDDFuse 0.788 0.911 0.888 0.698 0.820 0.789 0.816 0.9818 0.8717 0.6911 0.6891 0.5578 0.6569 0.741
SHIP 0.790 0.909 0.877 0.673 0.812 0.810 0.812 0.9824 0.8862 0.6961 0.6918 0.5662 0.6307 0.742
Ours 0.794 0.910 0.880 0.712 0.786 0.824 0.818 0.9825 0.8814 0.7064 0.6999 0.5487 0.6647 0.747

PromptFusion Text-IF LRRNetA²RNet CDDFuseDCEvo SHIPFreeFusion OursGIFNetIR \ VIS

Figure 4: Visual comparison of different methods on the TNO, MSRS, M3FD and ADD.

4.2 FUSION RESULT

We employed six quantitative quality assessment metrics to evaluate the fusion results: Entropy
(EN), Spatial Frequency (SF), Standard Deviation (SD), Average Gradient (AG), Nonlinear Infor-
mation Quantity-based Metric (NI), and Visual Information Fidelity in Frequency domain (VI). For
all these metrics, higher values indicate superior fusion performance (Liu et al., 2024b; Zhang &
Demiris, 2023). Qualitative comparisons: Figure 4 presents a qualitative comparison between our
M2PN and SOTA methods. It is evident that our method excels in preserving textural details and
thermal radiation information, particularly in challenging scenarios such as trees in darkness, signal
towers in fog, and vehicles in overexposed regions. These improvements facilitate a better under-
standing of complex scenes. Quantitative Comparisons: Subsequently, we conducted quantitative
comparisons using six evaluation metrics, as shown in Table 1. Our method demonstrates superior
performance across nearly all metrics, validating that our method effectively integrates complemen-
tary features from cross-modal inputs. This integration enables the fused images to achieve higher
fidelity, preserve more edge information, and exhibit reduced distortion.

4.3 PERFORMANCE IN HIGH-LEVEL VISION TASKS

We evaluate the proposed method on the M3FD and MSRS datasets for object detection and seman-
tic segmentation, with results summarized in Table 2. Our method achieves the highest mAP and

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

VIS

w/o DMB w/o ℒ𝑐𝑐𝑐𝑐𝑐𝑐w/o ℒ𝑠𝑠 w/o 𝓌𝓌 w/o 𝛷𝛷𝑝𝑝

w/o CSGN

IR

Ours w/o 𝛩𝛩ℳ&𝛩𝛩𝑓𝑓 CLIP→ 𝔻𝔻 w/o CLIP

Figure 5: A visualization of the ablation experiment.

mIoU across both tasks, confirming its robustness and generalization. Specifically, it delivers clear
improvements in pedestrian (Per), motorcycle (Mot), and lamp post (Lam) detection, as well as in
unlabeled (UnL), pedestrian (Per), bicycle (Bike), and car stop (Stop) segmentation, showing advan-
tages in handling small objects and complex semantic regions. These gains arise from the synergy
between memory-driven experience prompts and modality-specific prompts. The former stabilizes
feature learning by reusing high-quality fusion patterns, while the latter provides modality-aware
guidance, enabling fused images with stronger structural consistency and semantic separability. As
a result, our design enhances both statistical metrics and high-level vision performance.

4.4 ABLATION STUDY

Table 3: Ablation study results on validation
dataset. The best results are highlighted in bold.

Method EN SF SD AG NI VI
w/o ΘM&Θf 7.16 6.22 10.09 5.95 4.71 0.50
CLIP → D 7.36 6.98 10.24 6.69 5.04 0.64
w/o CLIP 7.38 6.94 10.19 6.74 5.05 0.65
w/o CSGN 7.21 6.21 10.08 5.96 4.79 0.52
w/o DMB 7.20 6.30 10.08 5.99 4.78 0.51

w/o Ls 7.08 5.07 10.58 5.07 4.83 0.38
w/o w 7.25 6.85 10.16 6.56 4.87 0.58

w/o Lctr 7.23 6.47 10.13 6.23 4.82 0.55
w/o Θp 7.26 6.42 10.04 6.17 4.87 0.57
Ours 7.53 8.25 10.38 7.94 5.30 0.88

We conducted nine ablation experiments to sys-
tematically evaluate our proposed method, with
qualitative and quantitative results shown in
Figure 5 and Table 3, respectively. Cases
1-3 investigate core components: Case 1
(w/o ΘM&Θf ) removes residual structure and
fusion priors to assess CSGN’s fine-grained
modality perception; Case 2 (CLIP → D)
replaces CLIP with a discriminator following
Wang et al. (2025b) to evaluate text priors’ ef-
fectiveness; Case 3 (w/o CLIP) removes CLIP
evaluation in DMB, using self-updating in-
stead. Cases 4-5 examine module contribu-
tions: Case 4 (w/o CSGN) and Case 5 (w/o
DMB) directly remove CMGN and DMB re-
spectively to verify their effectiveness in prompt-based learning. Cases 6-8 analyze loss func-
tion components : removing regularization term Ls (Case 6), adaptive weight w (Case 7), and
contrastive learning Lctr (Case 8). Case 9 (w/o Θp) removes all prompt learning components to
validate their contribution to model optimization. Results demonstrate that our dual-prompt guided
method achieves superior performance through effective collaboration among all modules.

5 CONCLUSION

This study proposes the M2PN model, which transforms image fusion from a static feature aggrega-
tion process into a dynamic prompt-guided learning paradigm. By introducing cross-modal prompts
and a memory mechanism, the model achieves efficient modeling and dynamic balancing of differ-
ent modality features, thereby enhancing detail preservation and semantic consistency in the fusion
process. In addition, specifically designed modules such as CSGN and DMB ensure the effective
output of prompts. Furthermore, by quantifying information contributions and adaptively assigning
weights, the model narrows the solution space and better preserves source image features. Experi-
mental results demonstrate that M2PN not only outperforms existing methods in quantitative metrics
but also exhibits stronger robustness and generalization in complex environments, effectively facili-
tating the deployment of high-level vision tasks.
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A APPENDIX

A.1 MOTIVATION REVIEW

Contemporary IVIF methods suffer from a fundamental limitation: they treat each fusion instance
as an isolated optimization problem, discarding valuable knowledge from successful fusion experi-
ences. Consider the conventional fusion formulation:

fused = N(IR, V IS; Ψ) (18)

where N represents the fusion function with static parameters Ψ, ignoring historical success patterns.

Human visual perception excels at fusion tasks by leveraging experiential knowl-
edge—unconsciously drawing upon patterns from previous similar scenarios. This cognitive
mechanism motivates a dynamic learning paradigm that accumulates and utilizes historical fusion
experiences:

fused = N(IR, V IS,B; Ψ) (19)

where B represents accumulated experiential knowledge.

However, experiential knowledge alone is insufficient due to fundamental modality heterogeneity.
Infrared images capture thermal radiation patterns while visible images provide textural details un-
der favorable illumination—resulting in distinct information distributions and semantic expressions.
Conventional approaches apply uniform processing strategies, failing to capitalize on each modal-
ity’s unique advantages and potentially introducing harmful cross-modal interference.

The challenge extends beyond separate processing to understanding complex interdependencies and
complementary relationships. Cross-modal semantic relationships are inherently non-linear and
context-dependent, requiring sophisticated modeling that captures both intra-modal characteristics
and inter-modal interactions simultaneously. Traditional linear combinations or simple attention
mechanisms are insufficient for these complex dynamics.

Graph-based representations offer a natural solution for modeling such relational structures. Unlike
rigid sequential or convolutional architectures, graph networks flexibly represent arbitrary relation-
ships and enable information propagation along semantically meaningful pathways. This capability
is particularly valuable for modeling intricate dependencies between modalities and their fusion
outcomes, as graphs can encode relationships as edges while representing modal features as nodes.

#1 #2 #3 EN:7.65         Fused

#1 #2 #3 EN:7.51         Fusedw
/
o
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Figure 6: Visualization of features before and after prompt learning.
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Therefore, our design motivation centers on a dual-prompt learning framework combining historical
experiential knowledge for global guidance with graph-based cross-modal reasoning for modality-
specific understanding:

fused = N(IR, V IS,B,G; Ψ) (20)
where G represents graph-based cross-modal semantic reasoning, addressing both temporal learning
from experience and structural modeling of complex cross-modal relationships for sophisticated
adaptive fusion decisions.

Figure 6 presents the visualization of feature maps and fused images before and after prompt injec-
tion. It is evident that with the introduction of prompts, the model is better able to capture com-
plementary feature representations from the source features, particularly enhancing the preservation
of texture and salient features. Consequently, the fused images exhibit more discriminative feature
representations, thereby improving their information content.

A.2 CLIP-BASED QUALITY EVALUATION

The fundamental challenge in unsupervised image fusion lies in establishing reliable quality assess-
ment criteria without ground truth references. Traditional metrics such as entropy, mutual infor-
mation, or gradient-based measures often fail to capture perceptual quality that aligns with human
visual perception. To address this limitation, we leverage the robust cross-modal understanding
capabilities of CLIP (Contrastive Language-Image Pre-training) to construct a semantically-aware
quality evaluator that can assess fusion results from a human-centric perspective.

The motivation for employing CLIP stems from three key observations: i) CLIP’s large-scale pre-
training on diverse image-text pairs enables it to understand high-level semantic concepts of im-
age quality; ii) Its contrastive learning paradigm naturally supports comparative quality assessment
through similarity computation; iii) The text-guided evaluation provides interpretable quality criteria
that can be explicitly defined and adjusted.

Quality Assessment Framework. Our CLIP-based evaluator operates through a contrastive cat-
egories of text-image matching paradigm. We design two complementary textual descriptions that
capture the essential characteristics of high-quality and low-quality fusion results:

Algorithm 1 Training of the proposed M2PN
Input: IR&V IS
Random initialization: Siamese-DenseEncoder: ESD(·), Residual Encoder: ER(·), CSGN(·),
DMB(·), PGM(·)
Fixed Parameters: λ = 15; Training epoch: K; Batch size: 16; Initial learning rate: 0.001

1: for n = 1 to Kp do
2: while not complete all iterations do
3: % Feature Extraction

Φir,Φvi ← ESD(IR, V IS); ΘM ← ER(IR− V IS)
4: Φf ← Cov(CAT (Φir,Φvi))
5: Gir ← CSGM(MLP (Φir),MLP (Φf ),Θf )

Gvi ← CSGM(MLP (Φvi),MLP (Φf ),Θf )
% Generating modality-specific cues by building a graph of cross-modal features

6: Θq ← DMB(Θf ) % Query the memory bank to provide current fusion clues
7: for it = 1 to 3 do
8: % Stepwise integration of fusion prompts for feature reconstruction guidance

Φf = PGM(Φf ;MGF (Gir,Gvi,Θq))
9: end for

10: fused = Tanh(Φf ); % Utilize Ltotal ← Eq.(10, 17) to update the all model
11: Quality ← CLIP (Fused)

% Employ positive and negative textual descriptors based on image texture, contrast, and
luminance characteristics to evaluate the quality of fused images and dynamically update
the memory bank with the assessment results

12: end while
13: end for
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Figure 7: Visualization of the high-level vision task results.

Positive Quality Prompt (Tpso):”A high-quality image with clear contrast, sharp details, proper
brightness, clean composition without noise or artifacts.”; ”An excellent image showing sharp de-
tails, accurate tones, optimal lighting, and no noise or artifacts.”; ”A clear, well-defined image with
precise textures, natural brightness, and flawless composition without imperfections.”

Negative Quality Prompt (Tneg):”Low-quality image with poor contrast, blurry details, improper
brightness, significant noise and visible artifacts.”; ”An excellent image showing sharp details, ac-
curate tones, optimal lighting, and no noise or artifacts.”,”A clear, well-defined image with precise
textures, natural brightness, and flawless composition without imperfections.”; ”An unclear image
with blurred edges, poor exposure, and visible grain or compression artifacts.”; ”Distorted image
with dull contrast, missing details, uneven brightness, and distracting noise patterns.”

These prompts encapsulate multiple dimensions of perceptual quality including contrast preserva-
tion, detail clarity, brightness appropriateness, compositional coherence, and artifact suppression,
all critical aspects for evaluating fusion effectiveness.

A.3 EXPERIMENT SETUP

Implementation Details: Our M2PN is implemented on a single NVIDIA 2080Ti GPU with 11
GB memory, running at 3.0 GHz with an Intel i7-9700 CPU. We employ the Adam optimizer with
a batch size of 16 and an initial learning rate of 0.001, utilizing thermal decay for model training.
To align the input data modalities, we utilize the YCbCr color space to separate the luminance and
chrominance components of V IS, and restore the V IS chrominance of the fused image after fusion.
The overall training strategy can be found in Algorithm 1.

Benchmark Datasets: We randomly crop the RoadScene dataset into 8,000 pairs of 128 × 128
patches for training, with 40 image pairs selected as the validation set. We randomly select 40 image

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

VIS

IR

IR

PromptFusion

Ours

Text-IF

A²RNet

LRRNet

DCEvo

CDDFuse

FreeFusion

VIS

GIFNet

SHIPGT

IR

PromptFusion

Ours

Text-IF

A²RNet

LRRNet

DCEvo

CDDFuse

FreeFusion

VIS

GIFNet

SHIP

VIS

IR

Object Detection

Semantic Segmentation

Figure 8: More visualizations of fused results on the test dataset.

pairs from the TNO dataset for testing. For the M3FD dataset, we adopt the ”independent scene for
fusion” subset as the test dataset. Regarding the MSRS dataset, we randomly select 361 image pairs
as the test dataset. We construct a test dataset of 24 scene pairs by randomly sampling frames from
the ADD sequence dataset.

For the object detection task, we utilize the ”for fusion, detection and fused-based detection” subset
from M3FD, constructing training, validation, and test sets in a 6:2:2 ratio, and select YOLOv5 as
the detector.

In the semantic segmentation task, we used the training set provided by MSRS to retrain the seg-
mentation network (Cao et al., 2023) to explore the performance of M2PN.

A.4 MORE RESULTS

Additional Results on test dataset: Figure 7 presents comprehensive fusion results, clearly
demonstrating that our method achieves superior visual performance, particularly excelling in small
target detection. Notably, our M2PN effectively emphasizes the source feature information, with
this enhancement becoming more pronounced in nighttime scenarios. We attribute this phenomenon
primarily to our text prompts that specifically emphasize texture, contrast, and brightness. Conse-
quently, after coupling modal-specific representations, these prompts effectively drive the model to
highlight crucial source feature information. In comparison, Text-IF, despite being driven by prompt
learning, exhibits relatively poor performance due to limitations inherent in CLIP’s knowledge struc-
ture. While PromptFusion employs learnable prompts to better adapt to open environments, it lacks
modal-specific self-prompting mechanisms. This deficiency results in mutual suppression between
modal feature representations, leading to conflicting performance outcomes.

High-level Vision Task: Figure 8 demonstrates the qualitative results of our proposed method on
object detection and semantic segmentation tasks. Guided by historical experience and modality-
specific information, our M2PN can effectively identify and perceive salient representations within
source features. Consequently, it provides fine-grained scene information for high-level vision tasks,
maintaining robust performance even in challenging scenarios involving small targets or dense re-
gions, such as vehicle detection and the detection of pedestrians behind vehicles—capabilities that
other methods struggle to achieve.

CMGN Performance Visualization: To validate the effectiveness of CMSG components, we con-
ducted comprehensive ablation experiments. As illustrated in Figure 9, the t-SNE visualization
demonstrates the facilitating effects of components Θf&ΘM on modality-specific learning. The
experimental results reveal that components Θf&ΘM significantly enhance the model’s capacity
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Figure 9: Visualization of features before and after prompt learning.

Figure 10: Visualization of dynamic thresholds and status of the DMB.

Figure 11: Visualization of DMB internal feature responses before and after training.

to perceive distinct modality attributes, resulting in more compact intra-class clustering and more
pronounced inter-class separation in the visualization space, thereby confirming the efficacy of the
proposed M2PN.

0 5 0 1 0 0 1 5 0 2 0 0
5

7

9

M e m o r y  C a p a c i t y

 E N   N I   V I × 1 0  

Figure 12: Effect of memory bank capacity
on model performance.

DMB Performance Visualization: Regarding the
design effectiveness of the DMB, we conducted sys-
tematic ablation studies to investigate its validity.
Figures 10 and 11 present the complete learning
evolution process of DMB features. Experimen-
tal observations reveal that the designed memory
bank mechanism exhibits a beneficial evolutionary
trajectory from unstable to stable states through-
out the training process: (i) The dynamic thresh-
old demonstrates progressive convergence character-
istics during iterative training, ensuring the rational-
ity and consistency of the sample selection strategy;
(ii) The similarity metrics within the memory bank
rapidly improve and eventually stabilize, reflecting
the mechanism’s favorable convergence properties;
(iii) Feature diversity gradually decreases as training progresses, forming more compact and discrim-
inative feature representations; (iiii) The slot update frequency transitions from frequent adjustments
in early training phases to balanced fine-tuning in later stages, while the quality distribution evolves
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Figure 13: Visualization of the effectiveness of dynamic thresholding on DMB.

Table 4: Comparison with different text prompts. The best results are highlighted in bold.
Method EN SF SD AG NI VI

Definition of fusion. 7.522 8.104 10.395 7.758 5.298 0.868
Text prompt for Text-IF. 7.525 8.146 10.392 7.804 5.297 0.864

Ours 7.530 8.249 10.381 7.941 5.303 0.877

from an initially scattered state to convergence within high-quality intervals. These experimental
findings collectively demonstrate that the proposed mechanism can effectively establish a stable and
high-quality feature storage system. In Figure 12, we further examine the effect of memory bank
capacity on the model. Intuitively, setting the capacity to 100 yields near-optimal performance, and
larger capacities only fluctuate around this optimum. Therefore, considering efficiency and perfor-
mance trade-offs, we set the memory bank capacity to 100.

Table 5: Computational efficiency of SOTA methods on the
validation dataset. The best results are highlighted in bold.

Method Para. (M) FLOPS (G) FPS EN

A2RNet 10.61 36.5 0.16 7.30
DCEvo 2.01 195 1.43 7.18

FreeFusion 5.67 96.7 6.54 7.12
GIFNet 0.82 39.0 2.10 7.35

PromptFusion 7.78 - 3.15 7.41
Text-IF 336.8 215 2.78 7.38
LRRNet 0.05 3.3 8.19 7.14

CDDFuse 1.19 32.8 3.60 7.45
SHIP 0.55 35.2 2.08 7.16
Ours 0.97 15.6 25.6 7.53

Furthermore, we specifically inves-
tigated the effectiveness of the dy-
namic threshold design. As shown
in Figure 13, the experimental results
demonstrate that introducing the dy-
namic threshold strategy significantly
optimizes the evolutionary trajectory
of the memory bank, enabling faster
convergence to stable states during
training while facilitating the storage
of more discriminative, high-quality
feature representations. This further
validates both the necessity and effec-
tiveness of the proposed design.

Text prompt analysis. To evaluate
the impact of fusion text versus qual-
ity text on model performance, we
conducted comparative experiments, with results presented in Table 4. We employed a typical fu-
sion definition text: ”This image effectively integrates the thermal radiation information from the
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infrared image and the texture details from the visible light image,” and compared it with the fu-
sion text used by Text-IF: ”This is the infrared and visible light image fusion task.” As discussed in
the previous section, fusion definitions are relatively abstract for CLIP models due to their inherent
knowledge structure. In contrast, our approach can more effectively guide the model to generate
high-quality images by explicitly defining fusion quality criteria.

Performance on the validation dataset: We conducted a comprehensive evaluation of M2PN’s
computational efficiency on the validation dataset, encompassing key metrics including learnable
parameters (Para), floating-point operations (FLOPs) at 256 × 256 resolution, frames per second
(FPS), and EN. As presented in Table 5, our method demonstrates a compelling trade-off between
computational efficiency and performance quality. While M2PN exhibits higher parameter count
and FLOPs compared to the algorithm-unrolling based LRRNet, it achieves superior FPS and EN
scores, establishing a solid foundation for practical deployment. Moreover, when compared to text-
prompt-based approaches such as Text-IF and PromptFusion, our method leverages historical ex-
perience and modality-specific prompt learning to achieve enhanced performance with significantly
reduced computational overhead. This efficiency gain validates the effectiveness of our design phi-
losophy, which prioritizes intelligent prompt construction over brute-force parameter scaling.
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