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ABSTRACT

Infrared and visible image fusion aims to integrate complementary information
from different modalities into a unified representation. However, existing methods
lack the capability to leverage historical fusion experiences and generate modality-
specific semantic guidance, thereby limiting their adaptability and fusion quality.
To address these challenges, this study proposes a Memory-Orchestrated Multi-
Prompt Learning Network that transforms fusion from a static feature combina-
tion process into a dynamic prompt-guided learning paradigm. Our method en-
compasses two core mechanisms: 1) Memory-driven experiential prompts that
capture and reuse successful fusion patterns from historical cases through a CLIP-
evaluated dynamic memory bank; 2) Graph-driven modality-specific prompts that
model cross-modal semantic relationships via specialized semantic graph net-
works to generate targeted guidance for each modality. These dual prompts are
jointly modulated across multiple scales and progressively integrated into the fu-
sion process, enabling stable, interpretable, and transferable guidance for fusion
decisions without relying on full supervision. Furthermore, we exploit residual
priors to assess the salient complementarity of source features, thereby constrain-
ing the solution space and enhancing the model’s effective perception of comple-
mentary characteristics. Extensive experiments, including both statistical metrics
and performance on high-level vision tasks, demonstrate the effectiveness of the
proposed method.

1 INTRODUCTION

Infrared and visible image fusion (IVIF) represents a critical image enhancement technique that inte-
grates thermal radiation information from infrared images with textural details from visible images,
generating more informative unified representations (Xu et al.l|2020; |Zhang & Demiris| 2023} |[Liu
et al.| 2024b). As a foundational vision task, IVIF significantly enhances the performance of down-
stream high-level vision tasks, including object detection (Liu et al.,2025a), scene analysis (Zheng
et al.l [2025), and autonomous navigation (Liu et al. 2023), by providing enriched multi-modal
information.

The advancement of deep learning (DL) has provided powerful technical foundations for IVIF,
where adaptive feature extraction and integration capabilities of deep networks effectively allevi-
ate the limitations of hand-crafted rules inherent in traditional methods. Consequently, DL-based
methods have become the predominant research paradigm. However, in the absence of ground truth
supervision, existing DL-based methods typically rely on structural or attribute priors of source
features to construct learning strategies that drive models to capture explicit cross-modal feature
representations (Zhao et al., [2024a; 2023}, 2025; |Cheng et al., 2025). While effective to some
extent, such constraints based on fixed loss functions or single priors struggle to provide stable guid-
ance for generating high-quality fusion results. The fundamental challenge lies in translating the
subjective notion of 'perceptual quality’ into learnable optimization objectives under unsupervised
conditions. Recent research efforts have attempted to bridge fusion processes with high-level vision
tasks by establishing 'fusion-task’ connections, injecting task semantics into fusion procedures to
enhance model expressiveness (Liu et al., 2025a; |Chen et al., 2025; Wu et al., 2025). However,
the weak supervision nature of task semantics limits their generalizability, resulting in constrained
performance when facing unknown tasks. Inspired by the rapid development of prompt learning,
some researchers have leveraged vision-language models to guide IVIF models in learning gener-
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Figure 1: (a)-(c) present a comparative analysis of different fusion paradigms, including modality-
specific modeling, text-guided fusion, and our proposed. (d) demonstrates the superior effective-
ness of our proposed M2PN through comparisons with SOTA methods: modality-specific-based
CS?Fusion (Wang et al.,[2024), text-guided fusion Text-IF and PromptFusion (Liu
et al1 [20243).

alizable representations, thereby promoting high-quality image generation (Zhang et al.} 2025}
et al.| 20254; [Ciu et al, 2024a)). Particularly in ground-truth-free scenarios, the integration of tex-
tual descriptions endows models with enhanced feature perception capabilities, enabling them to
make informed fusion decisions based on semantic guidance rather than blind feature combination
2024). Despite these advances, prompt learning-based IVIF methods face several critical
challenges: 1) Existing methods primarily rely on explicitly modeled prompts and lack the ability
to learn from historical successful fusion cases, failing to generate effective experiential prompts
for current fusion tasks; 2) The distinct characteristics of infrared and visible modalities necessitate
specialized semantic guidance, yet current methods fail to generate modality-specific prompts that
account for inherent modal differences; 3) In the absence of ground truths and under cross-modal
distribution inconsistency, translating human-perceived quality into learnable constraints for stable
fusion quality remains unresolved.

Based on the above findings, this work proposes a Memory-Orchestrated Multi-Prompt Learn-
ing Network (M2PN) that transforms the fusion process into a dynamic, prompt-guided learning
paradigm through adaptive prompt generation. Unlike existing paradigms that rely on explicit CLIP
guidance, our method leverages CLIP’s robust evaluation capabilities to construct a self-evolving
Dynamic Memory Bank (DMB) that stores high-quality fusion feature representations from his-
torical learning episodes. The model subsequently queries this memory bank to capture and reuse
successful fusion patterns, generating experiential prompts to guide current fusion decisions. Addi-
tionally, we design a Cross-Modal Semantic Graph Network (CSGN) that models modality-specific
semantic relationships between infrared and visible images. Through modality-specialized graph
representation learning, CSGN generates unique semantic guidance prompts for each modality. The
experiential and modality-specific prompts are jointly modulated across multiple scales, with adap-
tive prompt weight adjustment based on feature responses, and progressively injected to guide fusion
image generation. Furthermore, we leverage the structural priors of the residual maps to evaluate
the complementary features of source features, employing a weighted loss function to constrain the
solution space and enhance the model’s effective perception of complementary features. Extensive
experimental results demonstrate that memory-guided multi-prompts learning can effectively guide
the model in leveraging complementary contextual aggregation, achieving more competitive per-
formance compared to SOTA methods. The main contributions of this work are summarized as
follows:

* We propose M2PN, which transforms fusion from a static feature combination process into
a dynamic prompt-guided learning paradigm.

* We introduce two complementary prompt generation strategies, memory-driven experien-
tial prompts that leverage CLIP-evaluated historical fusion experiences through dynamic
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retrieval, and graph-driven modality-specific prompts that generate specialized knowledge
through semantic information propagation and aggregation in graph structures.

* Efficient modules, such as memory-guided fusion and residual-weighted map mechanisms
that effectively enhance M2PN’s performance through progressive prompt injection and
complementarity-aware feature learning.

2 RELATED WORK

DL-based IVIF. Deep learning for IVIF has evolved along several interconnected threads. Early
methods emphasized preserving complementary structural and visual cues from source images via
tailored architectures and priors-driven objectives (Wang et al.| [2024; |2025b; [Zheng et al.| [2025).
Within this paradigm, CNN-based frameworks, DenseFuse (Li & Wul [2018)), U2Fusion (Xu et al.,
2020), and FusionGAN (Ma et al} |[2019), established foundational pipelines that assess input im-
portance to retain salient source features. However, their local receptive fields inherently constrain
long-range dependency modeling and cross-modal interaction (Zhao et al., 2023} |Liu et al.| 2025a).
To overcome these limits, transformer-based approaches leverage self-attention to capture global
context and facilitate richer cross-modal interactions. Representative works such as SwinFusion (Ma
et al., 2022), CDDFuse (Zhao et al., [2023)), and YDTR (Tang et al., [2022b) demonstrate that long-
range spatial relationships between IR and VIS modalities can be explicitly modeled, leading to
more robust fusion strategies. Building further, diffusion-based models introduce generative pri-
ors and iterative denoising to encode distributions of source features. Dif-Fusion (Yue et al., [2023))
pioneers this direction by casting channel distribution construction as a diffusion process, while
DSPFusion (Tang et al.l 2025) and DRMF (Tang et al., [2024) exploit diffusion’s stochastic sam-
pling to enhance degradation resistance under challenging conditions. In parallel, task-oriented
fusion integrates feedback from downstream vision tasks to guide optimization. TarDAL (Liu et al.,
2023) jointly optimizes fusion and detection, and DCEvo (Liu et al., 2025a) employs evolutionary
learning to balance multi-objective trade-offs. Yet, despite clear gains under matched settings, such
pipelines may generalize poorly to unknown or shifting downstream tasks, highlighting the need for
experience-aware and task-agnostic guidance.

Memory Mechanisms. Orthogonal to the choice of backbone, memory mechanisms endow feed-
forward models with the capacity to store, retrieve, and reuse informative representations across
instances, thereby compensating for the myopic nature of one-shot processing (Liu et al., [2025b;
Zhou et al., 2024azb)). In contrastive learning, MoCo (He et al.,|2020) stabilizes negative sampling
through a momentum-updated memory bank, improving representation consistency at scale. For
video object segmentation, QDMN (Liu et al., 2025b) introduces quality-guided updates so that
high-quality frames are preferentially retained, reinforcing temporal coherence. Related ideas ap-
pear in person re-identification, where adaptive memories continually refine identity prototypes from
mini-batch instances (Yin et al., 2023)), and in video-text retrieval, where memory banks help main-
tain temporal correspondences across modalities to support robust cross-modal alignment (Wang
et al., |2022). Collectively, these results suggest that explicit memory can accumulate experiential
knowledge beneficial for dynamic, context-dependent tasks—an ability also desirable for IVIF.

Prompt Learning. Concurrently, prompt learning offers a complementary route to adapt pre-trained
models with minimal overhead by injecting contextual signals (Khattak et al., 2023 Ma et al.,2023;
Liao et al.| 2025;|Zhang et al.,[2024)). Built on CLIP (Radford et al.,2021)), vision—language prompts
have been shown to transfer semantic priors effectively across tasks such as detection (Ma et al.,
2023), style transfer (Kwon & Ye, [2022), and image enhancement (Liang et al., |2023), often sur-
passing traditional unsupervised cues by operating within semantically grounded latent spaces (Zhou
et al.,|2022). Motivated by these advances, IVIF studies have begun to incorporate textual guidance:
IF-FILM (Zhao et al.| [2024b)) extracts explicit text cues from source images to steer fusion, Prompt-
Fusion (Liu et al.|[2024a)) uses vision—language models to refine object-aware interactions, and Text-
IF (Yi et al.| 2024])) leverages textual priors to break ground-truth bottlenecks for degradation-aware
and interactive fusion. Despite these encouraging steps, current prompt-based IVIF faces three cou-
pled limitations: (i) reliance on handcrafted or pre-defined prompts, which constrains adaptability;
(i) the absence of mechanisms to accumulate and reuse successful fusion experiences as compact
guidance; and (iii) modality-agnostic prompt generation that overlooks distinct IR/VIS character-
istics. These gaps motivate our objective: to automatically derive experiential, modality-aware
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Figure 2: The framework of our memory-orchestrated multi-prompt learning network.

prompts that guide fusion without explicit supervision, thereby combining the strengths of mem-
ory and prompting in a unified framework.

3 METHODOLOGY

Contemporary IVIF methods are fundamentally limited by treating each fusion instance as an iso-
lated optimization problem, thereby discarding valuable knowledge from successful fusion experi-
ences and applying uniform processing strategies that neglect the inherent heterogeneity between
infrared and visible modalities. In contrast, human visual perception demonstrates superior fusion
capabilities by unconsciously leveraging experiential knowledge from previous scenarios while nat-
urally adapting processing strategies to honor each modality’s distinctive characteristics. This cogni-
tive mechanism inspires our dual-prompt learning framework, which transforms the fusion paradigm
from fused = N(IR,VIS; V) to fused = N(IR,VIS,B,G; V), where fused, IR, and VIS
represent the fused image, infrared image, and visible image, respectively. N represents the fusion
function with static parameters . B encapsulates accumulated experiential knowledge from histor-
ical successful cases, and G captures modality-specific semantic understanding through graph-based
cross-modal reasoning. The semantic component G is operationalized through a GNN that mod-
els cross-modal relationships as learnable node interactions rather than static feature combinations.
This graph structure enables flexible information propagation along semantically meaningful path-
ways, capturing complex interdependencies between IR and VIS modalities that conventional oper-
ations cannot adequately represent. The framework thus addresses both temporal learning through
B and structural reasoning through G, enabling adaptive fusion decisions guided by accumulated
experience and cross-modal semantic understanding. As illustrated in Figure 2} our M2PN oper-
ates through a three-stage pipeline: feature extraction, prompt generation, and reconstruction. This
architecture transforms traditional static fusion into a dynamic, prompt-driven learning paradigm.

3.1 FEATURE EXTRACTION

We employ a Siamese-DenseEncoder (Wang et al., [2024) architecture to extract complementary
feature representations ®;, and ®,; from /R and V' 1.9, respectively. The DenseEncoder leverages
dense connectivity patterns to capture multi-scale feature hierarchies while preserving fine-grained
details across different semantic levels. Additionally, we introduce a lightweight residual encoder
composed of two convolutional layers to extract residual features ® o4 from the residual map M :=
IR — VIS, which captures the fundamental modality differences and provides a structural prior for
complementarity perception (Wang et al., [2025a; |He et al.,2023; |Zheng et al., [2025).

3.2 PROMPT GENERATION

The extracted source features ®;, and ®,,; are concatenated to generate an initial fused representa-
tion @, which serves as the foundation for subsequent processing. (i) It acts as the core features
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for fused image reconstruction; (ii) It collaborates with the residual feature ® o, and the source fea-
tures to construct graph architectures, which are fed into the CSGN to generate modality-specific
prompts through cross-modal semantic learning; (iii) It functions as a query mechanism to retrieve
historical representations from the DMB, facilitating the generation of experiential prompts based
on successful fusion patterns.

Cross-Modal Semantic Graph Network (CSGN).
To generate modality-specific prompts that capture

the intrinsic characteristics of each modality, we ;.’,;2": Py =

design a CSGN to model semantic relationships L.(Z. ,,/,-,-,' § i—> ﬁl}'
through structured graph representations, as illus- (g% “> ' & i '_>¢3,' e,
trated in Figure Specifically, for each modal- .23 .. | . (&7 TR -6
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tic graph G = (V,€), where the node set V =
{©ir/Oui, O, O r}. Each node’s representation is
derived through global average pooling followed by
linear projection: h; = Proj(GAP(®;)), where
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The graph employs multi-head cross-modal attention mechanisms to enable semantic information
propagation across nodes:

Figure 3: Pipeline for the MGF.
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where Q.,, K, and V,, represent the query, key, and value projections for the n-th attention head, re-
spectively. The CSGN processes I R and V' 1.5 modalities independently through dedicated attention
layers, generating modality-specific graph representations G;,. and G,; that encapsulate specialized
semantic guidance for each modality.

Dynamic Memory Bank (DMB). To leverage historical fusion experiences, we implement a
learnable memory mechanism that stores and retrieves high-quality fusion patterns. The DMB
maintains a memory matrix M € RN*D where N represents the memory capacity and D de-
notes the feature dimensionality. The memory bank operates through three sequential processes:
similarity-based retrieval, quality evaluation, and dynamic updating.

Given the current fused features ® ¢, we first extract a global representation © y = Proj(GAP(®y))
and compute cosine similarities with stored memory entries:

O; - M;

_ o 2
AR @)

Si
The experiential prompt is generated through weighted aggregation: ©, = Zfil o;M;, where
a; = Softmax(s;).

For quality assessment, we employ a CLIP-based evaluator that addresses the challenge of defining
fusion quality without ground truth supervision. Rather than direct textual constraints on fusion
generation, which suffers from semantic ambiguity and feature mismatch issues, we leverage CLIP’s
evaluation capability on well-defined quality attributes (texture, contrast, brightness). The quality
score is computed as:

QCLIP = 5(Sim(lfanos) - Sim(lfaneg)) (3)

where ¢ denotes the sigmoid function, Iy represents the CLIP encoding of the fused image,
Stm(z,y) calculates the cosine similarity of = and y, and T),s, Tyeq represent positive and neg-
ative quality descriptions, respectively.

The memory bank employs adaptive thresholding to selectively store high-quality experiences. The
threshold 7 is dynamically adjusted based on historical quality distributions:

Tt = Phist + K Ohist 4

where [p;s¢ and op;s represent the historical mean and standard deviation of quality scores, and
is a learnable scaling parameter. Only fusion instances satisfying Q¢ ;p > 7 are incorporated into



Under review as a conference paper at ICLR 2026

the memory bank through momentum-based updates:
t+1 t
MY = (1-8) MY + 8.0, (5)

where 3 control update rate is set to 0.1 and j denotes the memory slot with highest similarity.

3.3 RECONSTRUCTION

The decoder adopts a stack of three Prompt Guidance Modules (PGMs). Each PGM consumes the
current decoder features together with a dual-prompt design and returns a refined representation.
Within each PGM, we couple Memory-Guided Fusion (MGF) with Adaptive Instance Normaliza-
tion (AdaIN) (Huang & Belongie, |2017) to realize prompt-conditioned reconstruction. A residual
connection preserves the input signal while enabling prompt-driven enhancement:

(I)out = AdaIN((bln; 9;)) + (binv (6)
where ®;, denotes the input features to a PGM and ©,, is the fused prompt.

Memory-Guided Fusion (MGF). The fused prompt is produced by querying a modality bank
with a memory embedding:

0, = MGF(Gir,Gui, Oy) (7)

Concretely, MGF implements a multi-head attention operator that uses ©, as the guery and treats
[Gir, Gui as keys/values, yielding memory-informed selection weights over the modality bank:

@<W iry Jvui Wi T
o = SOftl’l’laX<( 1 q) ([g g ] k) ) s @p = « ([gira gvl] Wv)a (8)
Vd
where W,, W, W, are learnable projections, [-, -] denotes concatenation, d is the head dimension,

and o € R'*? encodes the memory-guided preference over I R/V IS cues. This design jointly de-
termines "what to fuse’ (via MGF) and "how to modulate’ (via AdalN), while the residual connection
preserves fidelity.

3.4 OBIJECT FUNCTION

The training objective of our M2PN comprises two complementary components: a fusion loss £y
that guides the model to integrate cross-modal complementary features, and a modal separation loss
L+ that enforces modality-specific prompt specialization through contrastive learning. The overall
loss function is formulated as:

‘Ctotal = £f + ‘Cctr (9)

Fusion loss £;. The fusion loss £ consists of a weighted fidelity term £,, and a texture-structure
preservation term L, defined as:

L =Loy+ M\, (10)

where A represent the trade-off factor. The weighted fidelity term constrains the solution space by
introducing adaptive weighting mechanisms that drive the model to effectively preserve critical in-
formation from both modalities. To ensure that the fused image simultaneously maintains thermal
target sensitivity from infrared images and detail richness from visible images, we formulate the fu-
sion goal as an energy minimization framework with adaptive weight allocation based on quantified
information contribution from each modality:

1) We design a dual-level saliency computation mechanism. The process first emphasizes tempera-
ture salient regions through global standardization, then integrates local contrast enhancement with
intensity weighting to ensure thermal target regions receive higher saliency weights:

Si = (IR + C(IR)) - o(IR) (11)

where IR = %I%R) represents the globally normalized infrared image, and C(-) denotes local
window convolution for contrast enhancement.
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2) To quantify the information complementarity between modalities, we introduce residual entropy
analysis to assess the importance of modal differences. The entropy of the residual probability
distribution is computed as:

Hr = —E[prlog(pr +€) + (1 — pr)log(1 — pr)] (12)

where pr = (M) represents the normalized residual probability. The complementarity weight
Ae = o(Hp) adaptively regulates the contribution of residual information based on modal consis-
tency.

3) Based on information-theoretic principles, we transform the contribution degree of each modality
into energy functions, where lower energy indicates superior information preservation:

Eir = —(Sir + e - Pr - Sir) Ey=—(1-=8)+A-pr-(1—S5)) (13)

These energy functions simultaneously encode intrinsic saliency and complementary information,
ensuring thermal target regions favor infrared contributions while texture-rich areas preserve visible
light details. The pixel-level decision is achieved by comparing energy differences:

Wip = H(Ezr - Em' <k- U(Eir - Em)) (14)

where [ is the indicator function and k serves as a control parameter to ensure the robustness of
the decision-making of k - o(E;,. — E,;) under different scenarios. The complementary weight is
computed as wy; = 1 — w;y.

Finally, the weighted fidelity loss is formulated as:
Ly = ||wir - IR — wyy - fused||1 + ||wyi - VIS — wy; - fused|| (15)

Moreover, to enhance visual quality and preserve structural details while avoiding common detail
loss during fusion, we introduce a quality term combining structural similarity and texture preserva-
tion:

Ly =SSIM(fused,IR) + SSIM(fused,VIS) + ||V fused — Max(VIR,VVIS)||1 (16)

where SSTM(-) measures structural similarity, Max(-) and V(-) represents the max function and
the gradient operator, respectively.

Modal separation loss L. To enhance the discriminability of modality-specific cues and ensure
appropriate cue specialization, we follow [Wang et al.[ (2024) to introduce a modality contrastive
learning framework that aims to promote intra-modality consistency while enforcing semantic sep-
aration between modalities:

ACctr = Emin(gira gvi) + Emin(gim]:vi) + Emin(gvia ]:'Lr)
+ ﬁmam(gira ]:7, ) + Emaa: (g'ui7 ]:vi)

where F;, and F,; are the flattened <I>(ir) and <I>(m'), Lomin(+, ) encourages feature dissimilarity
between different modalities, and £, (+, -) promotes similarity within the same modality.

a7

4 EXPERIMENT

4.1 EXPERIMENTAL DETAIL

To evaluate our proposed M2PN, we conducted comprehensive experiments across four datasets:
M?3FD (Liu et al., 2023), ADD (Ahn et al., 2023), TNO (Toet, 2017), and MSRS (Tang et al.}
2022a)). These datasets were utilized for different tasks: all four datasets were employed for IVIF,
while M3FD was additionally used for object detection and MSRS for image segmentation. Our
M?2PN was trained and validated on the RoadScene (Xu et al., [2020) dataset, then directly tested
on the four test datasets to demonstrate its robustness and generalization capability. We compared
M2PN against nine SOTA methods, including AZRNet (Li et al.,[2025b), DCEvo (Liu et al.l[2025al),
FreeFusion (Zhao et al.l |[2025), GIFNet (Cheng et al.| [2025)), PromptFusion (Liu et al., 2024a),
Text-IF (Yietal.,|2024), LRRNet (Li et al.|[2023)), CDDFuse (Zhao et al.,[2023)), and SHIP (Zheng
et al.,2024). To ensure fair comparison, all models were obtained from their respective authors, and
all experiments were implemented using PyTorch.
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Table 1: Quantitative comparison results on the TNO, MSRS, M?FD and ADD. The best results are

highlighted in bold.
Method | TNO | ADD | MSRS | M’FD
| EN SF SD AG NI VI |EN SF SD AG NI VI |EN SF SD AG NI VI |EN SF SD AG N VI
APRNet | 705 343 947 329 475 056 | 628 276 941 211 377 039 | 660 349 856 292 428 066 | 660 349 856 292 428 066

DCEvo 691 401 929 394 449 044 | 648 431 932 324 399 056 | 6.64 452 836 381 445 083 | 6.64 452 836 381 445 083
FreeFusion 705 617 9.68 619 483 1.02 | 683 608 1005 516 457 116 | 516 533 697 374 353 105|725 757 970 695 504 1.02
GIFNet 694 517 894 497 459 065 | 681 639 969 505 439 096 | 596 500 677 350 359 068|704 761 923 611 478 083
PromptFusion | 701 422 920 417 467 055|660 421 912 300 410 065 | 665 436 833 361 435 079|678 531 1003 446 443 047
Text-IF 721 518 954 517 489 070 | 699 523 948 432 470 101 | 674 467 852 395 449 091 | 693 621 988 534 466 0.63
LRRNet 705 381 9.17 386 464 046 | 675 382 949 322 426 063 | 619 331 7.82 267 374 043 | 644 421 931 361 405 089
CDDFuse 709 455 938 451 476 061 | 665 462 924 331 421 076 | 671 451 843 377 449 083 | 690 577 997 481 466 089
SHIP 693 476 925 469 447 040 | 649 489 912 405 396 058 | 644 464 815 397 417 079 | 683 6.03 1001 520 449 090

Ours 734 678 9.64 688 514 120 | 733 586 10.60 520 506 1.09 | 7.6 676 918 653 487 109 | 736 828 1021 717 515 123

Table 2: Performance on high-level vision tasks. The best results are highlighted in bold.

Object Detection | Semantic Segmentation
Per Car Bus Mot Tru Lam mAP\ UnL Car Per Bike Cur Stop mloU

A2RNet 0.795 0.906 0.886 0.659 0.810 0.798 0.809 | 0.9818 0.8809 0.6875 0.6882 0.5557 0.6445 0.74
DCEvo 0.780 0.907 0.891 0.675 0.788 0.815 0.809 | 0.9819 0.8775 0.6865 0.6792 0.5243 0.6383 0.731
FreeFusion 0.785 0910 0.887 0.695 0.807 0.802 0.814 | 0.9794 0.8591 0.6808 0.6432 0.4516 0.5715 0.698
GIFNet 0.787 0.907 0.881 0.702 0.765 0.811 0.809 | 0.9814 0.8730 0.6862 0.6902 0.5437 0.6207 0.733
PromptFusion | 0.775 0.911 0.890 0.648 0.813 0.806 0.807 | 0.9814 0.8655 0.6744 0.6809 0.5388 0.6514 0.732
Text-IF 0.773 0907 0.905 0.693 0.810 0.795 0.814 | 0.9821 0.8798 0.6829 0.6985 0.5355 0.6373 0.736
LRRNet 0.780 0911 0.878 0.694 0.804 0.798 0.811 | 0.9817 0.8800 0.6762 0.6787 0.5475 0.6417 0.734
CDDFuse 0.788 0.911 0.888 0.698 0.820 0.789 0.816 | 0.9818 0.8717 0.6911 0.6891 0.5578 0.6569 0.741
SHIP 0.790 0909 0.877 0.673 0.812 0.810 0.812 | 0.9824 0.8862 0.6961 0.6918 0.5662 0.6307 0.742
Ours 0.794 0910 0.880 0.712 0.786 0.824 0.818 | 0.9825 0.8814 0.7064 0.6999 0.5487 0.6647 0.747

Method ‘
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Figure 4: Visual comparison of different methods on the TNO, MSRS, M3FD and ADD.

4.2 FUSION RESULT

We employed six quantitative quality assessment metrics to evaluate the fusion results: Entropy
(EN), Spatial Frequency (SF), Standard Deviation (SD), Average Gradient (AG), Nonlinear Infor-
mation Quantity-based Metric (NI), and Visual Information Fidelity in Frequency domain (VI). For
all these metrics, higher values indicate superior fusion performance (Liu et al) [2024Db}; [Zhang &
2023). Qualitative comparisons: Figure[d]presents a qualitative comparison between our
M2PN and SOTA methods. It is evident that our method excels in preserving textural details and
thermal radiation information, particularly in challenging scenarios such as trees in darkness, signal
towers in fog, and vehicles in overexposed regions. These improvements facilitate a better under-
standing of complex scenes. Quantitative Comparisons: Subsequently, we conducted quantitative
comparisons using six evaluation metrics, as shown in Table [T} Our method demonstrates superior
performance across nearly all metrics, validating that our method effectively integrates complemen-
tary features from cross-modal inputs. This integration enables the fused images to achieve higher
fidelity, preserve more edge information, and exhibit reduced distortion.

4.3 PERFORMANCE IN HIGH-LEVEL VISION TASKS

We evaluate the proposed method on the M3FD and MSRS datasets for object detection and seman-
tic segmentation, with results summarized in Table |Zl Our method achieves the highest mAP and
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Figure 5: A visualization of the ablation experiment.

mloU across both tasks, confirming its robustness and generalization. Specifically, it delivers clear
improvements in pedestrian (Per), motorcycle (Mot), and lamp post (Lam) detection, as well as in
unlabeled (UnL), pedestrian (Per), bicycle (Bike), and car stop (Stop) segmentation, showing advan-
tages in handling small objects and complex semantic regions. These gains arise from the synergy
between memory-driven experience prompts and modality-specific prompts. The former stabilizes
feature learning by reusing high-quality fusion patterns, while the latter provides modality-aware
guidance, enabling fused images with stronger structural consistency and semantic separability. As
a result, our design enhances both statistical metrics and high-level vision performance.

4.4 ABLATION STUDY

We conducted nine ablation experiments to sys-
tematically evaluate our proposed method, with
qualitative and quantitative results shown in Table 3: Ablation study results on validation
Figure [5] and Table [3] respectively. Cases dataset. The best results are highlighted in bold.
1-3 investigate core components: Case 1 Method | EN SF SD AG NI VI
(w/.o O &@ ) removes residual structure.and wlo 0 &0 | 716 622 1009 595 471 050
fusion priors to assess CSGN’s fine-grained CLIP =D | 736 698 1024 6.69 504 064
modality perception; Case 2 (CLIP — D) wlo CLIP | 738 694 10.19 6.74 505 0.65
replaces CLIP with a discriminator following ~ W/ CSGN | 721 621 1008 596 479 0.52
. w/o DM B 720 630 10.08 599 478 0.51
Wang et al| (2025b) to evaluate text priors’ ef- wio L, 708 507 1058 507 483 038
fectiveness; Case 3 (w/o CLIP) removes CLIP w/o w 725 6.85 10.16 656 4.87 058
evaluation in DMB, using self-updating in- w/0 Loty 723 647 1013 623 482 055
stead. Cases 4-5 examine module contribu- W(/)‘L?SP ;gg g;g 18'22’ S‘;Z ‘s"gz 3;;
tions: Case 4 (w/o CSGN) and Case 5 (w/o : : - : - :
DMB) directly remove CMGN and DMB re-
spectively to verify their effectiveness in prompt-based learning. Cases 6-8 analyze loss func-
tion components : removing regularization term L, (Case 6), adaptive weight w (Case 7), and
contrastive learning L., (Case 8). Case 9 (w/o ©,) removes all prompt learning components to
validate their contribution to model optimization. Results demonstrate that our dual-prompt guided
method achieves superior performance through effective collaboration among all modules.

5 CONCLUSION

This study proposes the M2PN model, which transforms image fusion from a static feature aggrega-
tion process into a dynamic prompt-guided learning paradigm. By introducing cross-modal prompts
and a memory mechanism, the model achieves efficient modeling and dynamic balancing of differ-
ent modality features, thereby enhancing detail preservation and semantic consistency in the fusion
process. In addition, specifically designed modules such as CSGN and DMB ensure the effective
output of prompts. Furthermore, by quantifying information contributions and adaptively assigning
weights, the model narrows the solution space and better preserves source image features. Experi-
mental results demonstrate that M2PN not only outperforms existing methods in quantitative metrics
but also exhibits stronger robustness and generalization in complex environments, effectively facili-
tating the deployment of high-level vision tasks.
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A APPENDIX

A.1 MOTIVATION REVIEW

Contemporary IVIF methods suffer from a fundamental limitation: they treat each fusion instance
as an isolated optimization problem, discarding valuable knowledge from successful fusion experi-
ences. Consider the conventional fusion formulation:

fused =N(IR,VIS; W) (18)
where N represents the fusion function with static parameters ¥, ignoring historical success patterns.

Human visual perception excels at fusion tasks by leveraging experiential knowl-
edge—unconsciously drawing upon patterns from previous similar scenarios. This cognitive
mechanism motivates a dynamic learning paradigm that accumulates and utilizes historical fusion
experiences:

fused =N(IR,VIS,B; ) (19)
where B represents accumulated experiential knowledge.

However, experiential knowledge alone is insufficient due to fundamental modality heterogeneity.
Infrared images capture thermal radiation patterns while visible images provide textural details un-
der favorable illumination—resulting in distinct information distributions and semantic expressions.
Conventional approaches apply uniform processing strategies, failing to capitalize on each modal-
ity’s unique advantages and potentially introducing harmful cross-modal interference.

The challenge extends beyond separate processing to understanding complex interdependencies and
complementary relationships. Cross-modal semantic relationships are inherently non-linear and
context-dependent, requiring sophisticated modeling that captures both intra-modal characteristics
and inter-modal interactions simultaneously. Traditional linear combinations or simple attention
mechanisms are insufficient for these complex dynamics.

Graph-based representations offer a natural solution for modeling such relational structures. Unlike
rigid sequential or convolutional architectures, graph networks flexibly represent arbitrary relation-
ships and enable information propagation along semantically meaningful pathways. This capability
is particularly valuable for modeling intricate dependencies between modalities and their fusion
outcomes, as graphs can encode relationships as edges while representing modal features as nodes.

Figure 6: Visualization of features before and after prompt learning.
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Therefore, our design motivation centers on a dual-prompt learning framework combining historical
experiential knowledge for global guidance with graph-based cross-modal reasoning for modality-
specific understanding:

fused =N(IR,VIS,B,G; V) (20)
where G represents graph-based cross-modal semantic reasoning, addressing both temporal learning
from experience and structural modeling of complex cross-modal relationships for sophisticated
adaptive fusion decisions.

Figure [6] presents the visualization of feature maps and fused images before and after prompt injec-
tion. It is evident that with the introduction of prompts, the model is better able to capture com-
plementary feature representations from the source features, particularly enhancing the preservation
of texture and salient features. Consequently, the fused images exhibit more discriminative feature
representations, thereby improving their information content.

A.2 CLIP-BASED QUALITY EVALUATION

The fundamental challenge in unsupervised image fusion lies in establishing reliable quality assess-
ment criteria without ground truth references. Traditional metrics such as entropy, mutual infor-
mation, or gradient-based measures often fail to capture perceptual quality that aligns with human
visual perception. To address this limitation, we leverage the robust cross-modal understanding
capabilities of CLIP (Contrastive Language-Image Pre-training) to construct a semantically-aware
quality evaluator that can assess fusion results from a human-centric perspective.

The motivation for employing CLIP stems from three key observations: i) CLIP’s large-scale pre-
training on diverse image-text pairs enables it to understand high-level semantic concepts of im-
age quality; ii) Its contrastive learning paradigm naturally supports comparative quality assessment
through similarity computation; iii) The text-guided evaluation provides interpretable quality criteria
that can be explicitly defined and adjusted.

Quality Assessment Framework. Our CLIP-based evaluator operates through a contrastive cat-
egories of text-image matching paradigm. We design two complementary textual descriptions that
capture the essential characteristics of high-quality and low-quality fusion results:

Algorithm 1 Training of the proposed M2PN
Input: TR&VIS
Random initialization: Siamese-DenseEncoder: Esp(-), Residual Encoder: Er(-), CSGN(-),
DMB(-), PGM(-)
Fixed Parameters: )\ = 15; Training epoch: K; Batch size: 16; Initial learning rate: 0.001
1: for n =1 to K, do
2:  while not complete all iterations do

3: % Feature Extraction

D, Dy «— Esp(IR,VIS); Op +— ER(IR—-VIS)
4 O Cov(CAT(®yy, Do)
5: Gir < CSGM(MLP(®,,), MLP(®;),0y)

% Generating modality-specific cues by building a graph of cross-modal features

6: ©4 < DM B(Oy) % Query the memory bank to provide current fusion clues
7: for it = 1to 3 do
8: % Stepwise integration of fusion prompts for feature reconstruction guidance
(I)f = PGM(q)f; MGF(gira Gui, @(1))
9: end for
10: fused = Tanh(®y); % Utilize Liotar < Eq.(10}17)) to update the all model
11: Quality < CLIP(Fused)

% Employ positive and negative textual descriptors based on image texture, contrast, and
luminance characteristics to evaluate the quality of fused images and dynamically update
the memory bank with the assessment results

12:  end while

13: end for
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Figure 7: Visualization of the high-level vision task results.

Positive Quality Prompt (T},s,): "A high-quality image with clear contrast, sharp details, proper
brightness, clean composition without noise or artifacts.”; ”An excellent image showing sharp de-
tails, accurate tones, optimal lighting, and no noise or artifacts.”; ”A clear, well-defined image with
precise textures, natural brightness, and flawless composition without imperfections.”

Negative Quality Prompt (T},¢q): ”Low-quality image with poor contrast, blurry details, improper
brightness, significant noise and visible artifacts.”; ”An excellent image showing sharp details, ac-
curate tones, optimal lighting, and no noise or artifacts.”,”A clear, well-defined image with precise
textures, natural brightness, and flawless composition without imperfections.”; ”An unclear image
with blurred edges, poor exposure, and visible grain or compression artifacts.”; ”Distorted image
with dull contrast, missing details, uneven brightness, and distracting noise patterns.”

These prompts encapsulate multiple dimensions of perceptual quality including contrast preserva-
tion, detail clarity, brightness appropriateness, compositional coherence, and artifact suppression,
all critical aspects for evaluating fusion effectiveness.

A.3 EXPERIMENT SETUP

Implementation Details: Our M2PN is implemented on a single NVIDIA 2080Ti GPU with 11
GB memory, running at 3.0 GHz with an Intel i7-9700 CPU. We employ the Adam optimizer with
a batch size of 16 and an initial learning rate of 0.001, utilizing thermal decay for model training.
To align the input data modalities, we utilize the YCbCr color space to separate the luminance and
chrominance components of V' 1.5, and restore the V' 1.S chrominance of the fused image after fusion.
The overall training strategy can be found in Algorithm [T}

Benchmark Datasets: We randomly crop the RoadScene dataset into 8,000 pairs of 128 x 128
patches for training, with 40 image pairs selected as the validation set. We randomly select 40 image
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Figure 8: More visualizations of fused results on the test dataset.

pairs from the TNO dataset for testing. For the M3FD dataset, we adopt the ”independent scene for
fusion” subset as the test dataset. Regarding the MSRS dataset, we randomly select 361 image pairs
as the test dataset. We construct a test dataset of 24 scene pairs by randomly sampling frames from
the ADD sequence dataset.

For the object detection task, we utilize the “for fusion, detection and fused-based detection” subset
from M3FD, constructing training, validation, and test sets in a 6:2:2 ratio, and select YOLOVS5 as
the detector.

In the semantic segmentation task, we used the training set provided by MSRS to retrain the seg-
mentation network 2023) to explore the performance of M2PN.

A.4 MORE RESULTS

Additional Results on test dataset: Figure [7] presents comprehensive fusion results, clearly
demonstrating that our method achieves superior visual performance, particularly excelling in small
target detection. Notably, our M2PN effectively emphasizes the source feature information, with
this enhancement becoming more pronounced in nighttime scenarios. We attribute this phenomenon
primarily to our text prompts that specifically emphasize texture, contrast, and brightness. Conse-
quently, after coupling modal-specific representations, these prompts effectively drive the model to
highlight crucial source feature information. In comparison, Text-IF, despite being driven by prompt
learning, exhibits relatively poor performance due to limitations inherent in CLIP’s knowledge struc-
ture. While PromptFusion employs learnable prompts to better adapt to open environments, it lacks
modal-specific self-prompting mechanisms. This deficiency results in mutual suppression between
modal feature representations, leading to conflicting performance outcomes.

High-level Vision Task: Figure [8|demonstrates the qualitative results of our proposed method on
object detection and semantic segmentation tasks. Guided by historical experience and modality-
specific information, our M2PN can effectively identify and perceive salient representations within
source features. Consequently, it provides fine-grained scene information for high-level vision tasks,
maintaining robust performance even in challenging scenarios involving small targets or dense re-
gions, such as vehicle detection and the detection of pedestrians behind vehicles—capabilities that
other methods struggle to achieve.

CMGN Performance Visualization: To validate the effectiveness of CMSG components, we con-
ducted comprehensive ablation experiments. As illustrated in Figure 0] the t-SNE visualization
demonstrates the facilitating effects of components © ;&0 o4 on modality-specific learning. The
experimental results reveal that components O y&© o significantly enhance the model’s capacity
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Figure 9: Visualization of features before and after prompt learning.
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Figure 10: Visualization of dynamic thresholds and status of the DMB.
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Figure 11: Visualization of DMB internal feature responses before and after training.

to perceive distinct modality attributes, resulting in more compact intra-class clustering and more
pronounced inter-class separation in the visualization space, thereby confirming the efficacy of the

proposed M2PN.

DMB Performance Visualization: Regarding the
design effectiveness of the DMB, we conducted sys-
tematic ablation studies to investigate its validity.
Figures [I0] and [T1] present the complete learning
evolution process of DMB features. Experimen-
tal observations reveal that the designed memory
bank mechanism exhibits a beneficial evolutionary
trajectory from unstable to stable states through-
out the training process: (i) The dynamic thresh-
old demonstrates progressive convergence character-
istics during iterative training, ensuring the rational-
ity and consistency of the sample selection strategy;
(ii) The similarity metrics within the memory bank
rapidly improve and eventually stabilize, reflecting
the mechanism’s favorable convergence properties;

9] ™ EN — NI — VIx10

5 1

0 50 100 150 200
Memory Capacity

Figure 12: Effect of memory bank capacity
on model performance.

(iii) Feature diversity gradually decreases as training progresses, forming more compact and discrim-
inative feature representations; (iiii) The slot update frequency transitions from frequent adjustments
in early training phases to balanced fine-tuning in later stages, while the quality distribution evolves
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Figure 13: Visualization of the effectiveness of dynamic thresholding on DMB.

Table 4: Comparison with different text prompts. The best results are highlighted in bold.
Method ‘ EN SF SD AG NI VI
Definition of fusion. |7.522 8.104 10.395 7.758 5.298 0.868

Text prompt for Text-IF. | 7.525 8.146 10.392 7.804 5.297 0.864
Ours 7.530 8.249 10.381 7.941 5.303 0.877

from an initially scattered state to convergence within high-quality intervals. These experimental
findings collectively demonstrate that the proposed mechanism can effectively establish a stable and
high-quality feature storage system. In Figure [I2] we further examine the effect of memory bank
capacity on the model. Intuitively, setting the capacity to 100 yields near-optimal performance, and
larger capacities only fluctuate around this optimum. Therefore, considering efficiency and perfor-

mance trade-offs, we set the memory bank capacity to 100.

Furthermore, we specifically inves-
tigated the effectiveness of the dy-
namic threshold design. As shown
in Figure[T3] the experimental results

Table 5: Computational efficiency of SOTA methods on the
validation dataset. The best results are highlighted in bold.

dempnstrate that introduc.ing. the dy- Method | Para. (M) FLOPS(G) FPS EN
namic threshold strategy significantly
optimizes the evolutionary trajectory A’RNet 10.61 36.5 0.16  7.30
of the memory bank, enabling faster DCEVP 2.01 195 143 7.18
convergence to stable states during FreeFusion 5.67 96.7 6.54  7.12
training while facilitating the storage GIFNet. 0.82 39.0 2.10 - 7.35
of more discriminative, high-quality ~ PromptFusion 7.78 - 3.15 741
feature representations. This further Text-IF 336.8 215 2.78 7.38
validates both the necessity and effec- LRRNet 0.05 3.3 8.19 7.14
tiveness of the proposed design. CDDFuse 1.19 32.8 3.60 7.45
SHIP 0.55 35.2 2.08 7.16
Ours 0.97 15.6 256 17.53

Text prompt analysis. To evaluate
the impact of fusion text versus qual-
ity text on model performance, we

conducted comparative experiments, with results presented in Table @l We employed a typical fu-
sion definition text: “This image effectively integrates the thermal radiation information from the
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infrared image and the texture details from the visible light image,” and compared it with the fu-
sion text used by Text-1F: "This is the infrared and visible light image fusion task.” As discussed in
the previous section, fusion definitions are relatively abstract for CLIP models due to their inherent
knowledge structure. In contrast, our approach can more effectively guide the model to generate
high-quality images by explicitly defining fusion quality criteria.

Performance on the validation dataset: We conducted a comprehensive evaluation of M2PN’s
computational efficiency on the validation dataset, encompassing key metrics including learnable
parameters (Para), floating-point operations (FLOPs) at 256 x 256 resolution, frames per second
(FPS), and EN. As presented in Table [5] our method demonstrates a compelling trade-off between
computational efficiency and performance quality. While M2PN exhibits higher parameter count
and FLOPs compared to the algorithm-unrolling based LRRNet, it achieves superior FPS and EN
scores, establishing a solid foundation for practical deployment. Moreover, when compared to text-
prompt-based approaches such as Text-IF and PromptFusion, our method leverages historical ex-
perience and modality-specific prompt learning to achieve enhanced performance with significantly
reduced computational overhead. This efficiency gain validates the effectiveness of our design phi-
losophy, which prioritizes intelligent prompt construction over brute-force parameter scaling.
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