

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MEMORY-ORCHESTRATED MULTI-PROMPT LEARNING FOR INFRARED AND VISIBLE IMAGE FUSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Infrared and visible image fusion aims to integrate complementary information from different modalities into a unified representation. However, existing methods lack the capability to leverage historical fusion experiences and generate modality-specific semantic guidance, thereby limiting their adaptability and fusion quality. To address these challenges, this study proposes a Memory-Orchestrated Multi-Prompt Learning Network that transforms fusion from a static feature combination process into a dynamic prompt-guided learning paradigm. Our method encompasses two core mechanisms: 1) Memory-driven experiential prompts that capture and reuse successful fusion patterns from historical cases through a CLIP-evaluated dynamic memory bank; 2) Graph-driven modality-specific prompts that model cross-modal semantic relationships via specialized semantic graph networks to generate targeted guidance for each modality. These dual prompts are jointly modulated across multiple scales and progressively integrated into the fusion process, enabling stable, interpretable, and transferable guidance for fusion decisions without relying on full supervision. Furthermore, we exploit residual priors to assess the salient complementarity of source features, thereby constraining the solution space and enhancing the model’s effective perception of complementary characteristics. Extensive experiments, including both statistical metrics and performance on high-level vision tasks, demonstrate the effectiveness of the proposed method.

1 INTRODUCTION

Infrared and visible image fusion (IVIF) represents a critical image enhancement technique that integrates thermal radiation information from infrared images with textural details from visible images, generating more informative unified representations (Xu et al., 2020; Zhang & Demiris, 2023; Liu et al., 2024b). As a foundational vision task, IVIF significantly enhances the performance of downstream high-level vision tasks, including object detection (Liu et al., 2025a), scene analysis (Zheng et al., 2025), and autonomous navigation (Liu et al., 2023), by providing enriched multi-modal information.

The advancement of deep learning (DL) has provided powerful technical foundations for IVIF, where adaptive feature extraction and integration capabilities of deep networks effectively alleviate the limitations of hand-crafted rules inherent in traditional methods. Consequently, DL-based methods have become the predominant research paradigm. However, in the absence of ground truth supervision, existing DL-based methods typically rely on structural or attribute priors of source features to construct learning strategies that drive models to capture explicit cross-modal feature representations (Zhao et al., 2024a; 2023; 2025; Cheng et al., 2025). While effective to some extent, such constraints based on fixed loss functions or single priors struggle to provide stable guidance for generating high-quality fusion results. The fundamental challenge lies in translating the subjective notion of ‘*perceptual quality*’ into learnable optimization objectives under unsupervised conditions. Recent research efforts have attempted to bridge fusion processes with high-level vision tasks by establishing ‘*fusion-task*’ connections, injecting task semantics into fusion procedures to enhance model expressiveness (Liu et al., 2025a; Chen et al., 2025; Wu et al., 2025). However, the weak supervision nature of task semantics limits their generalizability, resulting in constrained performance when facing unknown tasks. Inspired by the rapid development of prompt learning, some researchers have leveraged vision-language models to guide IVIF models in learning gener-

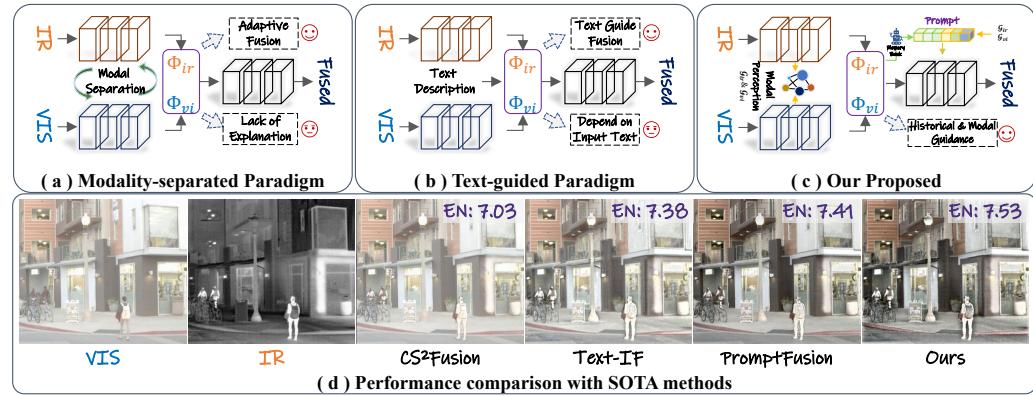


Figure 1: (a)-(c) present a comparative analysis of different fusion paradigms, including modality-specific modeling, text-guided fusion, and our proposed. (d) demonstrates the superior effectiveness of our proposed M2PN through comparisons with SOTA methods: modality-specific-based CS²Fusion (Wang et al., 2024), text-guided fusion Text-IF (Yi et al., 2024) and PromptFusion (Liu et al., 2024a).

alizable representations, thereby promoting high-quality image generation (Zhang et al., 2025; Li et al., 2025a; Liu et al., 2024a). Particularly in ground-truth-free scenarios, the integration of textual descriptions endows models with enhanced feature perception capabilities, enabling them to make informed fusion decisions based on semantic guidance rather than blind feature combination (Yi et al., 2024). Despite these advances, prompt learning-based IVIF methods face several critical challenges: 1) Existing methods primarily rely on explicitly modeled prompts and lack the ability to learn from historical successful fusion cases, failing to generate effective experiential prompts for current fusion tasks; 2) The distinct characteristics of infrared and visible modalities necessitate specialized semantic guidance, yet current methods fail to generate modality-specific prompts that account for inherent modal differences; 3) In the absence of ground truths and under cross-modal distribution inconsistency, translating human-perceived quality into learnable constraints for stable fusion quality remains unresolved.

Based on the above findings, this work proposes a Memory-Orchestrated Multi-Prompt Learning Network (M2PN) that transforms the fusion process into a dynamic, prompt-guided learning paradigm through adaptive prompt generation. Unlike existing paradigms that rely on explicit CLIP guidance, our method leverages CLIP’s robust evaluation capabilities to construct a self-evolving Dynamic Memory Bank (DMB) that stores high-quality fusion feature representations from historical learning episodes. The model subsequently queries this memory bank to capture and reuse successful fusion patterns, generating experiential prompts to guide current fusion decisions. Additionally, we design a Cross-Modal Semantic Graph Network (CSGN) that models modality-specific semantic relationships between infrared and visible images. Through modality-specialized graph representation learning, CSGN generates unique semantic guidance prompts for each modality. The experiential and modality-specific prompts are jointly modulated across multiple scales, with adaptive prompt weight adjustment based on feature responses, and progressively injected to guide fusion image generation. Furthermore, we leverage the structural priors of the residual maps to evaluate the complementary features of source features, employing a weighted loss function to constrain the solution space and enhance the model’s effective perception of complementary features. Extensive experimental results demonstrate that memory-guided multi-prompts learning can effectively guide the model in leveraging complementary contextual aggregation, achieving more competitive performance compared to SOTA methods. The main contributions of this work are summarized as follows:

- We propose M2PN, which transforms fusion from a static feature combination process into a dynamic prompt-guided learning paradigm.
- We introduce two complementary prompt generation strategies, memory-driven experiential prompts that leverage CLIP-evaluated historical fusion experiences through dynamic

108 retrieval, and graph-driven modality-specific prompts that generate specialized knowledge
 109 through semantic information propagation and aggregation in graph structures.
 110

111 • Efficient modules, such as memory-guided fusion and residual-weighted map mechanisms
 112 that effectively enhance M2PN’s performance through progressive prompt injection and
 113 complementarity-aware feature learning.

114

115 2 RELATED WORK

116

117 DL-based IVIF. Deep learning for IVIF has evolved along several interconnected threads. Early
 118 methods emphasized preserving complementary structural and visual cues from source images via
 119 tailored architectures and priors-driven objectives (Wang et al., 2024; 2025b; Zheng et al., 2025).
 120 Within this paradigm, CNN-based frameworks, DenseFuse (Li & Wu, 2018), U2Fusion (Xu et al.,
 121 2020), and FusionGAN (Ma et al., 2019), established foundational pipelines that assess input im-
 122 portance to retain salient source features. However, their local receptive fields inherently constrain
 123 long-range dependency modeling and cross-modal interaction (Zhao et al., 2023; Liu et al., 2025a).
 124 To overcome these limits, transformer-based approaches leverage self-attention to capture global
 125 context and facilitate richer cross-modal interactions. Representative works such as SwinFusion (Ma
 126 et al., 2022), CDDFuse (Zhao et al., 2023), and YDTR (Tang et al., 2022b) demonstrate that long-
 127 range spatial relationships between IR and VIS modalities can be explicitly modeled, leading to
 128 more robust fusion strategies. Building further, diffusion-based models introduce generative pri-
 129 ors and iterative denoising to encode distributions of source features. Dif-Fusion (Yue et al., 2023)
 130 pioneers this direction by casting channel distribution construction as a diffusion process, while
 131 DSPFusion (Tang et al., 2025) and DRMF (Tang et al., 2024) exploit diffusion’s stochastic sam-
 132 pling to enhance degradation resistance under challenging conditions. In parallel, task-oriented
 133 fusion integrates feedback from downstream vision tasks to guide optimization. TarDAL (Liu et al.,
 134 2023) jointly optimizes fusion and detection, and DCEvo (Liu et al., 2025a) employs evolutionary
 135 learning to balance multi-objective trade-offs. Yet, despite clear gains under matched settings, such
 136 pipelines may generalize poorly to unknown or shifting downstream tasks, highlighting the need for
 137 experience-aware and task-agnostic guidance.

138

139 Memory Mechanisms. Orthogonal to the choice of backbone, memory mechanisms endow feed-
 140 forward models with the capacity to store, retrieve, and reuse informative representations across
 141 instances, thereby compensating for the myopic nature of one-shot processing (Liu et al., 2025b;
 142 Zhou et al., 2024a;b). In contrastive learning, MoCo (He et al., 2020) stabilizes negative sampling
 143 through a momentum-updated memory bank, improving representation consistency at scale. For
 144 video object segmentation, QDMN (Liu et al., 2025b) introduces quality-guided updates so that
 145 high-quality frames are preferentially retained, reinforcing temporal coherence. Related ideas ap-
 146 pear in person re-identification, where adaptive memories continually refine identity prototypes from
 147 mini-batch instances (Yin et al., 2023), and in video-text retrieval, where memory banks help main-
 148 tain temporal correspondences across modalities to support robust cross-modal alignment (Wang
 149 et al., 2022). Collectively, these results suggest that explicit memory can accumulate experiential
 150 knowledge beneficial for dynamic, context-dependent tasks—an ability also desirable for IVIF.

151

152 Prompt Learning. Concurrently, prompt learning offers a complementary route to adapt pre-trained
 153 models with minimal overhead by injecting contextual signals (Khattak et al., 2023; Ma et al., 2023;
 154 Liao et al., 2025; Zhang et al., 2024). Built on CLIP (Radford et al., 2021), vision–language prompts
 155 have been shown to transfer semantic priors effectively across tasks such as detection (Ma et al.,
 156 2023), style transfer (Kwon & Ye, 2022), and image enhancement (Liang et al., 2023), often sur-
 157 passing traditional unsupervised cues by operating within semantically grounded latent spaces (Zhou
 158 et al., 2022). Motivated by these advances, IVIF studies have begun to incorporate textual guidance:
 159 IF-FILM (Zhao et al., 2024b) extracts explicit text cues from source images to steer fusion, Prompt-
 160 Fusion (Liu et al., 2024a) uses vision–language models to refine object-aware interactions, and Text-
 161 IF (Yi et al., 2024) leverages textual priors to break ground-truth bottlenecks for degradation-aware
 162 and interactive fusion. Despite these encouraging steps, current prompt-based IVIF faces three cou-
 163 pled limitations: (i) reliance on handcrafted or pre-defined prompts, which constrains adaptability;
 164 (ii) the absence of mechanisms to accumulate and reuse successful fusion experiences as compact
 165 guidance; and (iii) modality-agnostic prompt generation that overlooks distinct IR/VIS character-
 166 istics. These gaps motivate our objective: to automatically derive experiential, modality-aware

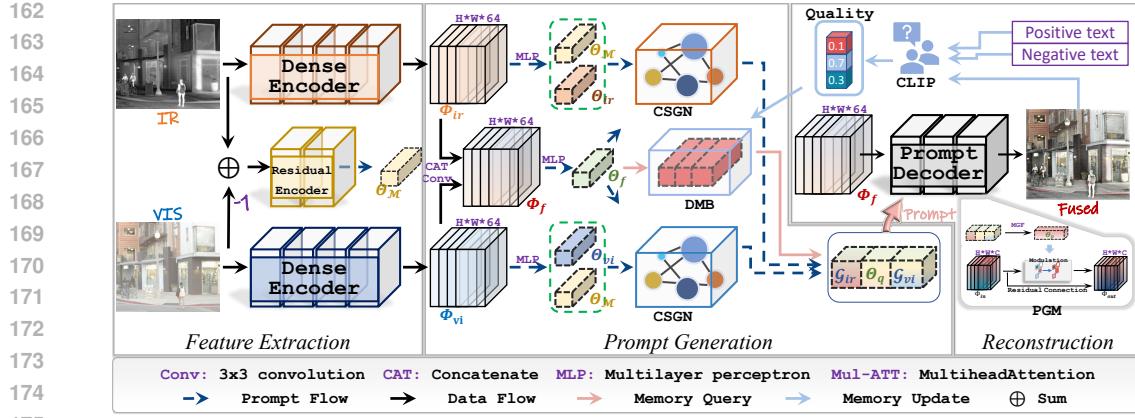


Figure 2: The framework of our memory-orchestrated multi-prompt learning network.

prompts that guide fusion without explicit supervision, thereby combining the strengths of memory and prompting in a unified framework.

3 METHODOLOGY

Contemporary IVIF methods are fundamentally limited by treating each fusion instance as an isolated optimization problem, thereby discarding valuable knowledge from successful fusion experiences and applying uniform processing strategies that neglect the inherent heterogeneity between infrared and visible modalities. In contrast, human visual perception demonstrates superior fusion capabilities by unconsciously leveraging experiential knowledge from previous scenarios while naturally adapting processing strategies to honor each modality’s distinctive characteristics. This cognitive mechanism inspires our dual-prompt learning framework, which transforms the fusion paradigm from $fused = \mathbb{N}(IR, VIS; \Psi)$ to $fused = \mathbb{N}(IR, VIS, \mathbb{B}, \mathcal{G}; \Psi)$, where $fused$, IR , and VIS represent the fused image, infrared image, and visible image, respectively. \mathbb{N} represents the fusion function with static parameters Ψ . \mathbb{B} encapsulates accumulated experiential knowledge from historical successful cases, and \mathcal{G} captures modality-specific semantic understanding through graph-based cross-modal reasoning. The semantic component \mathcal{G} is operationalized through a GNN that models cross-modal relationships as learnable node interactions rather than static feature combinations. This graph structure enables flexible information propagation along semantically meaningful pathways, capturing complex interdependencies between IR and VIS modalities that conventional operations cannot adequately represent. The framework thus addresses both temporal learning through \mathbb{B} and structural reasoning through \mathcal{G} , enabling adaptive fusion decisions guided by accumulated experience and cross-modal semantic understanding. As illustrated in Figure 2, our M2PN operates through a three-stage pipeline: feature extraction, prompt generation, and reconstruction. This architecture transforms traditional static fusion into a dynamic, prompt-driven learning paradigm.

3.1 FEATURE EXTRACTION

We employ a Siamese-DenseEncoder (Wang et al., 2024) architecture to extract complementary feature representations Φ_{ir} and Φ_{vi} from IR and VIS , respectively. The DenseEncoder leverages dense connectivity patterns to capture multi-scale feature hierarchies while preserving fine-grained details across different semantic levels. Additionally, we introduce a lightweight residual encoder composed of two convolutional layers to extract residual features Φ_M from the residual map $M := IR - VIS$, which captures the fundamental modality differences and provides a structural prior for complementarity perception (Wang et al., 2025a; He et al., 2023; Zheng et al., 2025).

3.2 PROMPT GENERATION

The extracted source features Φ_{ir} and Φ_{vi} are concatenated to generate an initial fused representation Φ_f , which serves as the foundation for subsequent processing. (i) It acts as the core features

216 for fused image reconstruction; (ii) It collaborates with the residual feature $\Phi_{\mathcal{M}}$ and the source fea-
 217 tures to construct graph architectures, which are fed into the CSGN to generate modality-specific
 218 prompts through cross-modal semantic learning; (iii) It functions as a query mechanism to retrieve
 219 historical representations from the DMB, facilitating the generation of experiential prompts based
 220 on successful fusion patterns.

222 Cross-Modal Semantic Graph Network (CSGN).

223 To generate modality-specific prompts that capture
 224 the intrinsic characteristics of each modality, we
 225 design a CSGN to model semantic relationships
 226 through structured graph representations, as illus-
 227 trated in Figure 3. Specifically, for each modal-
 228 ity (IR and VIS), we construct a three-node seman-
 229 tic graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where the node set $\mathcal{V} =$
 230 $\{\Theta_{ir}/\Theta_{vi}, \Theta_f, \Theta_{\mathcal{M}}\}$. Each node's representation is
 231 derived through global average pooling followed by
 232 linear projection: $h_i = \text{Proj}(\text{GAP}(\Phi_i))$, where
 233 $i \in \{\Theta_{ir}/\Theta_{vi}, \Theta_f, \Theta_{\mathcal{M}}\}$.

234 The graph employs multi-head cross-modal attention mechanisms to enable semantic information
 235 propagation across nodes:

$$236 \quad 237 \quad \text{Att}(Q, K, V) = \text{Softmax} \left(\frac{\text{CAT}(Q_n, K_n) \cdot W_{\text{attn}}}{\sqrt{d_k}} \right) V_n \quad (1)$$

238 where Q_n , K_n , and V_n represent the *query*, *key*, and *value* projections for the n -th attention head, re-
 239 spectively. The CSGN processes *IR* and *VIS* modalities independently through dedicated attention
 240 layers, generating modality-specific graph representations \mathcal{G}_{ir} and \mathcal{G}_{vi} that encapsulate specialized
 241 semantic guidance for each modality.

242 **Dynamic Memory Bank (DMB).** To leverage historical fusion experiences, we implement a
 243 learnable memory mechanism that stores and retrieves high-quality fusion patterns. The DMB
 244 maintains a memory matrix $\mathcal{M} \in \mathbb{R}^{N \times D}$, where N represents the memory capacity and D de-
 245 notes the feature dimensionality. The memory bank operates through three sequential processes:
 246 similarity-based retrieval, quality evaluation, and dynamic updating.

247 Given the current fused features Φ_f , we first extract a global representation $\Theta_f = \text{Proj}(\text{GAP}(\Phi_f))$
 248 and compute cosine similarities with stored memory entries:

$$249 \quad 250 \quad 251 \quad s_i = \frac{\Theta_f \cdot \mathbb{M}_i}{\|\Theta_f\| \cdot \|\mathbb{M}_i\|} \quad (2)$$

252 The experiential prompt is generated through weighted aggregation: $\Theta_q = \sum_{i=1}^N \alpha_i \mathbb{M}_i$, where
 253 $\alpha_i = \text{Softmax}(s_i)$.

254 For quality assessment, we employ a CLIP-based evaluator that addresses the challenge of defining
 255 fusion quality without ground truth supervision. Rather than direct textual constraints on fusion
 256 generation, which suffers from semantic ambiguity and feature mismatch issues, we leverage CLIP's
 257 evaluation capability on well-defined quality attributes (texture, contrast, brightness). The quality
 258 score is computed as:

$$259 \quad 260 \quad 261 \quad Q_{\text{CLIP}} = \delta(\text{Sim}(I_f, T_{\text{pos}}) - \text{Sim}(I_f, T_{\text{neg}})) \quad (3)$$

262 where δ denotes the sigmoid function, I_f represents the CLIP encoding of the fused image,
 263 $\text{Sim}(x, y)$ calculates the cosine similarity of x and y , and T_{pos} , T_{neg} represent positive and neg-
 264 ative quality descriptions, respectively.

265 The memory bank employs adaptive thresholding to selectively store high-quality experiences. The
 266 threshold τ_t is dynamically adjusted based on historical quality distributions:

$$267 \quad 268 \quad \tau_t = \mu_{\text{hist}} + \kappa \cdot \sigma_{\text{hist}} \quad (4)$$

269 where μ_{hist} and σ_{hist} represent the historical mean and standard deviation of quality scores, and κ
 is a learnable scaling parameter. Only fusion instances satisfying $Q_{\text{CLIP}} > \tau_t$ are incorporated into

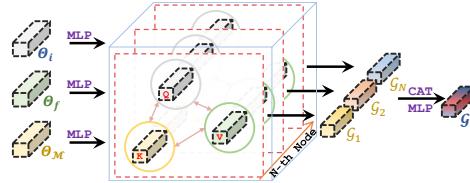


Figure 3: Pipeline for the MGF.

270 the memory bank through momentum-based updates:
 271

$$\mathbb{M}_j^{(t+1)} = (1 - \beta) \cdot \mathbb{M}_j^{(t)} + \beta \cdot \Theta_f \quad (5)$$

272 where β control update rate is set to 0.1 and j denotes the memory slot with highest similarity.
 273

274 3.3 RECONSTRUCTION

275 The decoder adopts a stack of three Prompt Guidance Modules (PGMs). Each PGM consumes the
 276 current decoder features together with a dual-prompt design and returns a refined representation.
 277 Within each PGM, we couple Memory-Guided Fusion (MGF) with Adaptive Instance Normalization
 278 (AdaIN) (Huang & Belongie, 2017) to realize prompt-conditioned reconstruction. A residual
 279 connection preserves the input signal while enabling prompt-driven enhancement:
 280

$$\Phi_{out} = AdaIN(\Phi_{in}, \Theta_p^i) + \Phi_{in}, \quad (6)$$

281 where Φ_{in} denotes the input features to a PGM and Θ_p is the fused prompt.
 282

283 **Memory-Guided Fusion (MGF).** The fused prompt is produced by querying a modality bank
 284 with a memory embedding:
 285

$$\Theta_p = MGF(\mathcal{G}_{ir}, \mathcal{G}_{vi}, \Theta_q), \quad (7)$$

286 Concretely, MGF implements a multi-head attention operator that uses Θ_q as the *query* and treats
 287 $[\mathcal{G}_{ir}, \mathcal{G}_{vi}]$ as *keys/values*, yielding memory-informed selection weights over the modality bank:
 288

$$\alpha = \text{softmax}\left(\frac{(\Theta_q W_q) ([\mathcal{G}_{ir}, \mathcal{G}_{vi}] W_k)^\top}{\sqrt{d}}\right), \quad \Theta_p = \alpha ([\mathcal{G}_{ir}, \mathcal{G}_{vi}] W_v), \quad (8)$$

289 where W_q, W_k, W_v are learnable projections, $[\cdot, \cdot]$ denotes concatenation, d is the head dimension,
 290 and $\alpha \in \mathbb{R}^{1 \times 2}$ encodes the memory-guided preference over IR/VIS cues. This design jointly de-
 291 termines ‘*what to fuse*’ (via MGF) and ‘*how to modulate*’ (via AdaIN), while the residual connection
 292 preserves fidelity.
 293

300 3.4 OBJECT FUNCTION

301 The training objective of our M2PN comprises two complementary components: a fusion loss \mathcal{L}_f
 302 that guides the model to integrate cross-modal complementary features, and a modal separation loss
 303 \mathcal{L}_{ctr} that enforces modality-specific prompt specialization through contrastive learning. The overall
 304 loss function is formulated as:
 305

$$\mathcal{L}_{total} = \mathcal{L}_f + \mathcal{L}_{ctr} \quad (9)$$

306 **Fusion loss \mathcal{L}_f .** The fusion loss \mathcal{L}_f consists of a weighted fidelity term \mathcal{L}_w and a texture-structure
 307 preservation term \mathcal{L}_s , defined as:
 308

$$\mathcal{L}_f = \mathcal{L}_w + \lambda \mathcal{L}_s \quad (10)$$

309 where λ represent the trade-off factor. The weighted fidelity term constrains the solution space by
 310 introducing adaptive weighting mechanisms that drive the model to effectively preserve critical in-
 311 formation from both modalities. To ensure that the fused image simultaneously maintains thermal
 312 target sensitivity from infrared images and detail richness from visible images, we formulate the fu-
 313 sion goal as an energy minimization framework with adaptive weight allocation based on quantified
 314 information contribution from each modality:
 315

316 1) We design a dual-level saliency computation mechanism. The process first emphasizes tempera-
 317 ture salient regions through global standardization, then integrates local contrast enhancement with
 318 intensity weighting to ensure thermal target regions receive higher saliency weights:
 319

$$S_{ir} = \sigma(\hat{IR} + C(IR)) \cdot \sigma(\hat{IR}) \quad (11)$$

320 where $\hat{IR} = \frac{IR - \mu(IR)}{\sigma(IR)}$ represents the globally normalized infrared image, and $C(\cdot)$ denotes local
 321 window convolution for contrast enhancement.
 322

324 2) To quantify the information complementarity between modalities, we introduce residual entropy
 325 analysis to assess the importance of modal differences. The entropy of the residual probability
 326 distribution is computed as:

$$H_R = -\mathbb{E}[p_R \log(p_R + \epsilon) + (1 - p_R) \log(1 - p_R)] \quad (12)$$

329 where $p_R = \sigma(\mathcal{M})$ represents the normalized residual probability. The complementarity weight
 330 $\lambda_c = \sigma(H_R)$ adaptively regulates the contribution of residual information based on modal consis-
 331 tency.

332 3) Based on information-theoretic principles, we transform the contribution degree of each modality
 333 into energy functions, where lower energy indicates superior information preservation:

$$E_{ir} = -(S_{ir} + \lambda_c \cdot p_R \cdot S_{ir}) \quad E_{vi} = -((1 - S_{ir}) + \lambda_c \cdot p_R \cdot (1 - S_{ir})) \quad (13)$$

336 These energy functions simultaneously encode intrinsic saliency and complementary information,
 337 ensuring thermal target regions favor infrared contributions while texture-rich areas preserve visible
 338 light details. The pixel-level decision is achieved by comparing energy differences:

$$w_{ir} = \mathbb{I}(E_{ir} - E_{vi} < k \cdot \sigma(E_{ir} - E_{vi})) \quad (14)$$

341 where \mathbb{I} is the indicator function and k serves as a control parameter to ensure the robustness of
 342 the decision-making of $k \cdot \sigma(E_{ir} - E_{vi})$ under different scenarios. The complementary weight is
 343 computed as $w_{vi} = 1 - w_{ir}$.

344 Finally, the weighted fidelity loss is formulated as:

$$\mathcal{L}_w = \|w_{ir} \cdot IR - w_{ir} \cdot fused\|_1 + \|w_{vi} \cdot VIS - w_{vi} \cdot fused\|_1 \quad (15)$$

347 Moreover, to enhance visual quality and preserve structural details while avoiding common detail
 348 loss during fusion, we introduce a quality term combining structural similarity and texture preserva-
 349 tion:

$$\mathcal{L}_s = SSIM(fused, IR) + SSIM(fused, VIS) + \|\nabla fused - Max(\nabla IR, \nabla VIS)\|_1 \quad (16)$$

352 where $SSIM(\cdot)$ measures structural similarity, $Max(\cdot)$ and $\nabla(\cdot)$ represents the max function and
 353 the gradient operator, respectively.

354 **Modal separation loss \mathcal{L}_{ctr} .** To enhance the discriminability of modality-specific cues and ensure
 355 appropriate cue specialization, we follow Wang et al. (2024) to introduce a modality contrastive
 356 learning framework that aims to promote intra-modality consistency while enforcing semantic sep-
 357 aration between modalities:

$$\begin{aligned} \mathcal{L}_{ctr} = & \mathcal{L}_{min}(\mathcal{G}_{ir}, \mathcal{G}_{vi}) + \mathcal{L}_{min}(\mathcal{G}_{ir}, \mathcal{F}_{vi}) + \mathcal{L}_{min}(\mathcal{G}_{vi}, \mathcal{F}_{ir}) \\ & + \mathcal{L}_{max}(\mathcal{G}_{ir}, \mathcal{F}_{ir}) + \mathcal{L}_{max}(\mathcal{G}_{vi}, \mathcal{F}_{vi}) \end{aligned} \quad (17)$$

361 where \mathcal{F}_{ir} and \mathcal{F}_{vi} are the flattened $\Phi(ir)$ and $\Phi(vi)$, $\mathcal{L}_{min}(\cdot, \cdot)$ encourages feature dissimilarity
 362 between different modalities, and $\mathcal{L}_{max}(\cdot, \cdot)$ promotes similarity within the same modality.

364 4 EXPERIMENT

367 4.1 EXPERIMENTAL DETAIL

368 To evaluate our proposed M2PN, we conducted comprehensive experiments across four datasets:
 369 M³FD (Liu et al., 2023), ADD (Ahn et al., 2023), TNO (Toet, 2017), and MSRS (Tang et al.,
 370 2022a). These datasets were utilized for different tasks: all four datasets were employed for IVIF,
 371 while M³FD was additionally used for object detection and MSRS for image segmentation. Our
 372 M2PN was trained and validated on the RoadScene (Xu et al., 2020) dataset, then directly tested
 373 on the four test datasets to demonstrate its robustness and generalization capability. We compared
 374 M2PN against nine SOTA methods, including A²RNet (Li et al., 2025b), DCEvo (Liu et al., 2025a),
 375 FreeFusion (Zhao et al., 2025), GIFNet (Cheng et al., 2025), PromptFusion (Liu et al., 2024a),
 376 Text-IF (Yi et al., 2024), LRRNet (Li et al., 2023), CDDFuse (Zhao et al., 2023), and SHIP (Zheng
 377 et al., 2024). To ensure fair comparison, all models were obtained from their respective authors, and
 all experiments were implemented using PyTorch.

378

379
380
Table 1: Quantitative comparison results on the TNO, MSRS, M³FD and ADD. The best results are
highlighted in **bold**.

Method	TNO						ADD						MSRS						M ³ FD					
	EN	SF	SD	AG	NI	VI	EN	SF	SD	AG	NI	VI	EN	SF	SD	AG	NI	VI	EN	SF	SD	AG	NI	VI
A ² RNet	7.05	3.43	9.47	3.29	4.75	0.56	6.28	2.76	9.41	2.11	3.77	0.39	6.60	3.49	8.56	2.92	4.28	0.66	6.60	3.49	8.56	2.92	4.28	0.66
DCEvo	6.91	4.01	9.29	3.94	4.49	0.44	6.48	4.31	9.32	3.24	3.99	0.56	6.64	4.52	8.36	3.81	4.45	0.83	6.64	4.52	8.36	3.81	4.45	0.83
FreeFusion	7.05	6.17	9.68	6.19	4.83	1.02	6.83	6.08	10.05	5.16	4.57	1.16	5.16	5.33	6.97	3.74	3.53	1.05	7.25	7.57	9.70	6.95	5.04	1.02
GIFNet	6.94	5.17	8.94	4.97	4.59	0.65	6.81	6.39	9.69	5.05	4.39	0.96	5.96	5.00	6.77	3.50	3.59	0.68	7.04	7.61	9.23	6.11	4.78	0.83
PromptFusion	7.01	4.22	9.20	4.17	4.67	0.55	6.60	4.21	9.12	3.00	4.10	0.65	6.65	4.36	8.33	3.61	4.35	0.79	6.78	5.31	10.03	4.46	4.43	0.47
Text-IF	7.21	5.18	9.54	5.17	4.89	0.70	6.99	5.23	9.48	4.32	4.70	1.01	6.74	4.67	8.52	3.95	4.49	0.91	6.93	6.21	9.88	5.34	4.66	0.63
LRRNet	7.05	3.81	9.17	3.86	4.64	0.46	6.75	3.82	9.49	3.22	4.26	0.63	6.19	3.31	7.82	2.67	3.74	0.43	6.44	4.21	9.31	3.61	4.05	0.89
CDDFuse	7.09	4.55	9.38	4.51	4.76	0.61	6.65	4.62	9.24	3.31	4.21	0.76	6.71	4.51	8.43	3.77	4.49	0.83	6.90	5.77	9.97	4.81	4.66	0.89
SHIP	6.93	4.76	9.25	4.69	4.47	0.40	6.49	4.89	9.12	4.05	3.96	0.58	6.44	4.64	8.15	3.97	4.17	0.79	6.83	6.03	10.01	5.20	4.49	0.90
Ours	7.34	6.78	9.64	6.88	5.14	1.20	7.33	5.86	10.60	5.20	5.06	1.09	7.16	6.76	9.18	6.53	4.87	1.09	7.36	8.28	10.21	7.17	5.15	1.23

387

388
389
Table 2: Performance on high-level vision tasks. The best results are highlighted in **bold**.

Method	Object Detection							Semantic Segmentation						
	Per	Car	Bus	Mot	Tru	Lam	mAP	UnL	Car	Per	Bike	Cur	Stop	mIoU
A ² RNet	0.795	0.906	0.886	0.659	0.810	0.798	0.809	0.9818	0.8809	0.6875	0.6882	0.5557	0.6445	0.74
DCEvo	0.780	0.907	0.891	0.675	0.788	0.815	0.809	0.9819	0.8775	0.6865	0.6792	0.5243	0.6383	0.731
FreeFusion	0.785	0.910	0.887	0.695	0.807	0.802	0.814	0.9794	0.8591	0.6808	0.6432	0.4516	0.5715	0.698
GIFNet	0.787	0.907	0.881	0.702	0.765	0.811	0.809	0.9814	0.8730	0.6862	0.6902	0.5437	0.6207	0.733
PromptFusion	0.775	0.911	0.890	0.648	0.813	0.806	0.807	0.9814	0.8655	0.6744	0.6809	0.5388	0.6514	0.732
Text-IF	0.773	0.907	0.905	0.693	0.810	0.795	0.814	0.9821	0.8798	0.6829	0.6985	0.5355	0.6373	0.736
LRRNet	0.780	0.911	0.878	0.694	0.804	0.798	0.811	0.9817	0.8800	0.6762	0.6787	0.5475	0.6417	0.734
CDDFuse	0.788	0.911	0.888	0.698	0.820	0.789	0.816	0.9818	0.8717	0.6911	0.6891	0.5578	0.6569	0.741
SHIP	0.790	0.909	0.877	0.673	0.812	0.810	0.812	0.9824	0.8862	0.6961	0.6918	0.5662	0.6307	0.742
Ours	0.794	0.910	0.880	0.712	0.786	0.824	0.818	0.9825	0.8814	0.7064	0.6999	0.5487	0.6647	0.747

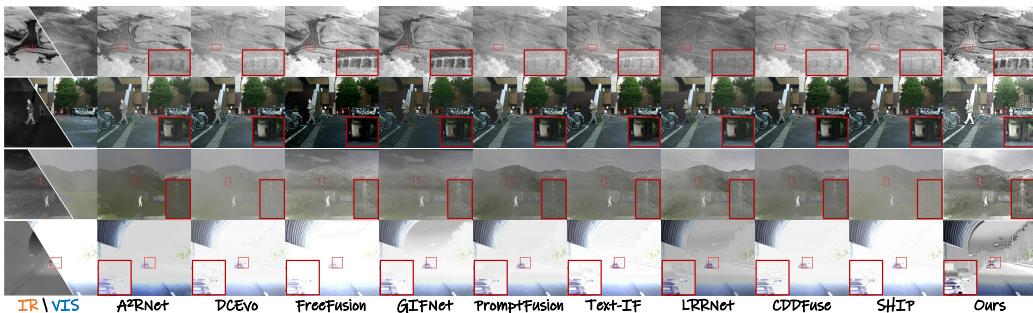
400
401
402
403
404
405
406
407
408
409
410
Figure 4: Visual comparison of different methods on the TNO, MSRS, M³FD and ADD.411
412
413
414
4.2 FUSION RESULT415
416
417
418
419
420
421
422
423
424
425
426
427
428
We employed six quantitative quality assessment metrics to evaluate the fusion results: Entropy (EN), Spatial Frequency (SF), Standard Deviation (SD), Average Gradient (AG), Nonlinear Information Quantity-based Metric (NI), and Visual Information Fidelity in Frequency domain (VI). For all these metrics, higher values indicate superior fusion performance (Liu et al., 2024b; Zhang & Demiris, 2023). **Qualitative comparisons:** Figure 4 presents a qualitative comparison between our M2PN and SOTA methods. It is evident that our method excels in preserving textural details and thermal radiation information, particularly in challenging scenarios such as trees in darkness, signal towers in fog, and vehicles in overexposed regions. These improvements facilitate a better understanding of complex scenes. **Quantitative Comparisons:** Subsequently, we conducted quantitative comparisons using six evaluation metrics, as shown in Table 1. Our method demonstrates superior performance across nearly all metrics, validating that our method effectively integrates complementary features from cross-modal inputs. This integration enables the fused images to achieve higher fidelity, preserve more edge information, and exhibit reduced distortion.429
430
431
4.3 PERFORMANCE IN HIGH-LEVEL VISION TASKS432
433
434
We evaluate the proposed method on the M³FD and MSRS datasets for object detection and semantic segmentation, with results summarized in Table 2. Our method achieves the highest mAP and

Figure 5: A visualization of the ablation experiment.

mIoU across both tasks, confirming its robustness and generalization. Specifically, it delivers clear improvements in pedestrian (Per), motorcycle (Mot), and lamp post (Lam) detection, as well as in unlabeled (UnL), pedestrian (Per), bicycle (Bike), and car stop (Stop) segmentation, showing advantages in handling small objects and complex semantic regions. These gains arise from the synergy between memory-driven experience prompts and modality-specific prompts. The former stabilizes feature learning by reusing high-quality fusion patterns, while the latter provides modality-aware guidance, enabling fused images with stronger structural consistency and semantic separability. As a result, our design enhances both statistical metrics and high-level vision performance.

4.4 ABLATION STUDY

We conducted nine ablation experiments to systematically evaluate our proposed method, with qualitative and quantitative results shown in Figure 5 and Table 3, respectively. **Cases**

1-3 investigate core components: Case 1 (w/o $\Theta_M \& \Theta_f$) removes residual structure and fusion priors to assess CSGN’s fine-grained modality perception; Case 2 ($CLIP \rightarrow \mathbb{D}$) replaces CLIP with a discriminator following Wang et al. (2025b) to evaluate text priors’ effectiveness; Case 3 (w/o CLIP) removes CLIP evaluation in DMB, using self-updating instead. **Cases 4-5 examine module contributions:** Case 4 (w/o CSGN) and Case 5 (w/o DMB) directly remove CMGN and DMB re-

spectively to verify their effectiveness in prompt-based learning. **Cases 6-8 analyze loss function components** : removing regularization term \mathcal{L}_s (Case 6), adaptive weight w (Case 7), and contrastive learning \mathcal{L}_{ctr} (Case 8). **Case 9** (w/o Θ_p) removes all prompt learning components to validate their contribution to model optimization. Results demonstrate that our dual-prompt guided method achieves superior performance through effective collaboration among all modules.

5 CONCLUSION

This study proposes the M2PN model, which transforms image fusion from a static feature aggregation process into a dynamic prompt-guided learning paradigm. By introducing cross-modal prompts and a memory mechanism, the model achieves efficient modeling and dynamic balancing of different modality features, thereby enhancing detail preservation and semantic consistency in the fusion process. In addition, specifically designed modules such as CSGN and DMB ensure the effective output of prompts. Furthermore, by quantifying information contributions and adaptively assigning weights, the model narrows the solution space and better preserves source image features. Experimental results demonstrate that M2PN not only outperforms existing methods in quantitative metrics but also exhibits stronger robustness and generalization in complex environments, effectively facilitating the deployment of high-level vision tasks.

486 REFERENCES
487

488 Seongyong Ahn, Inwook Shim, Jihong Min, and Kuk-Jin Yoon. Easyfuse: Easy-to-learn visible
489 and infrared image fusion framework based on unpaired set. *Pattern Recognition Letters*, 174:
490 99–105, 2023.

491 Wenzhi Cao, Minghui Zheng, and Qing Liao. Semantic region adaptive fusion of infrared and visible
492 images via dual-deeplab guidance. *IEEE Transactions on Instrumentation and Measurement*, 72:
493 1–16, 2023.

494 Jun Chen, Liling Yang, Wei Yu, Wenping Gong, Zhanchuan Cai, and Jiayi Ma. Sdsfusion: A
495 semantic-aware infrared and visible image fusion network for degraded scenes. *IEEE Transactions on Image Processing*, 2025.

496 Chunyang Cheng, Tianyang Xu, Zhenhua Feng, Xiaojun Wu, Zhangyong Tang, Hui Li, Zeyang
497 Zhang, Sara Atito, Muhammad Awais, and Josef Kittler. One model for all: Low-level task
500 interaction is a key to task-agnostic image fusion. In *Proceedings of the Computer Vision and*
501 *Pattern Recognition Conference*, pp. 28102–28112, 2025.

502 Chunming He, Kai Li, Guoxia Xu, Yulun Zhang, Runze Hu, Zhenhua Guo, and Xiu Li. Degradation-
503 resistant unfolding network for heterogeneous image fusion. In *Proceedings of the IEEE/CVF*
504 *international conference on computer vision*, pp. 12611–12621, 2023.

505 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
506 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on*
507 *computer vision and pattern recognition*, pp. 9729–9738, 2020.

508 Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
509 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 1501–1510,
510 2017.

511 Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shah-
512 baz Khan. Maple: Multi-modal prompt learning. In *Proceedings of the IEEE/CVF conference on*
513 *computer vision and pattern recognition*, pp. 19113–19122, 2023.

514 Gihyun Kwon and Jong Chul Ye. Clipstyler: Image style transfer with a single text condition. In
515 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 18062–
516 18071, 2022.

517 Hui Li and Xiao-Jun Wu. Densefuse: A fusion approach to infrared and visible images. *IEEE*
518 *Transactions on Image Processing*, 28(5):2614–2623, 2018.

519 Hui Li, Tianyang Xu, Xiao-Jun Wu, Jiwen Lu, and Josef Kittler. Lrrnet: A novel representation
520 learning guided fusion network for infrared and visible images. *IEEE transactions on pattern*
521 *analysis and machine intelligence*, 45(9):11040–11052, 2023.

522 Hui Li, Congcong Bian, Zeyang Zhang, Xiaoning Song, Xi Li, and Xiao-Jun Wu. Occo: Lvm-
523 guided infrared and visible image fusion framework based on object-aware and contextual
524 contrastive learning. *International Journal of Computer Vision*, pp. 1–25, 2025a.

525 Jiawei Li, Hongwei Yu, Jiansheng Chen, Xinlong Ding, Jinlong Wang, Jinyuan Liu, Bochao Zou,
526 and Huimin Ma. A²rnet: Adversarial attack resilient network for robust infrared and visible
527 image fusion. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp.
528 4770–4778, 2025b.

529 Zhexin Liang, Chongyi Li, Shangchen Zhou, Ruicheng Feng, and Chen Change Loy. Iterative
530 prompt learning for unsupervised backlit image enhancement. In *Proceedings of the IEEE/CVF*
531 *International Conference on Computer Vision*, pp. 8094–8103, 2023.

532 Rongxin Liao, Feng Li, Yanyan Wei, Zenglin Shi, Le Zhang, Huihui Bai, and Meng Wang. Prompt
533 to restore, restore to prompt: Cyclic prompting for universal adverse weather removal. *arXiv*
534 *preprint arXiv:2503.09013*, 2025.

540 Jinyuan Liu, Zhu Liu, Guanyao Wu, Long Ma, Risheng Liu, Wei Zhong, Zhongxuan Luo, and Xin
 541 Fan. Multi-interactive feature learning and a full-time multi-modality benchmark for image fusion
 542 and segmentation. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 543 pp. 8115–8124, 2023.

544 Jinyuan Liu, Xingyuan Li, Zirui Wang, Zhiying Jiang, Wei Zhong, Wei Fan, and Bin Xu. Prompt-
 545 fusion: Harmonized semantic prompt learning for infrared and visible image fusion. *IEEE/CAA
 546 Journal of Automatica Sinica*, 2024a.

547 Jinyuan Liu, Guanyao Wu, Zhu Liu, Di Wang, Zhiying Jiang, Long Ma, Wei Zhong, and Xin Fan. Infrared
 548 and visible image fusion: From data compatibility to task adaption. *IEEE Transactions
 549 on Pattern Analysis and Machine Intelligence*, 2024b.

550 Jinyuan Liu, Bowei Zhang, Qingyun Mei, Xingyuan Li, Yang Zou, Zhiying Jiang, Long Ma, Risheng
 551 Liu, and Xin Fan. Dcevo: Discriminative cross-dimensional evolutionary learning for infrared and
 552 visible image fusion. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 553 pp. 2226–2235, 2025a.

554 Yong Liu, Ran Yu, Fei Yin, Xinyuan Zhao, Wei Zhao, Weihao Xia, Jiahao Wang, Yitong Wang,
 555 Yansong Tang, and Yujiu Yang. Learning high-quality dynamic memory for video object seg-
 556 mentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 47(5):3452–3468,
 557 2025b. doi: 10.1109/TPAMI.2025.3532306.

558 Jiayi Ma, Wei Yu, Pengwei Liang, Chang Li, and Junjun Jiang. Fusiongan: A generative adversarial
 559 network for infrared and visible image fusion. *Information fusion*, 48:11–26, 2019.

560 Jiayi Ma, Linfeng Tang, Fan Fan, Jun Huang, Xiaoguang Mei, and Yong Ma. Swinfusion: Cross-
 561 domain long-range learning for general image fusion via swin transformer. *IEEE/CAA Journal of
 562 Automatica Sinica*, 9(7):1200–1217, 2022.

563 Shuailei Ma, Chen-Wei Xie, Ying Wei, Siyang Sun, Jiaqi Fan, Xiaoyi Bao, Yuxin Guo, and Yun
 564 Zheng. Understanding the multi-modal prompts of the pre-trained vision-language model. *arXiv
 565 preprint arXiv:2312.11570*, 2023.

566 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 567 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 568 models from natural language supervision. In *International conference on machine learning*, pp.
 569 8748–8763. PMLR, 2021.

570 Linfeng Tang, Jiteng Yuan, Hao Zhang, Xingyu Jiang, and Jiayi Ma. Piafusion: A progressive
 571 infrared and visible image fusion network based on illumination aware. *Information Fusion*, 83:
 572 79–92, 2022a.

573 Linfeng Tang, Yuxin Deng, Xunpeng Yi, Qinglong Yan, Yixuan Yuan, and Jiayi Ma. Drmf:
 574 Degradation-robust multi-modal image fusion via composable diffusion prior. In *Proceedings
 575 of the 32nd ACM International Conference on Multimedia*, pp. 8546–8555, 2024.

576 Linfeng Tang, Chunyu Li, Guoqing Wang, Yixuan Yuan, and Jiayi Ma. Dspfusion: Image fusion
 577 via degradation and semantic dual-prior guidance. *arXiv preprint arXiv:2503.23355*, 2025.

578 Wei Tang, Fazhi He, and Yu Liu. Ydtr: Infrared and visible image fusion via y-shape dynamic
 579 transformer. *IEEE Transactions on Multimedia*, 25:5413–5428, 2022b.

580 Alexander Toet. The tno multiband image data collection. *Data in brief*, 15:249, 2017.

581 Haoran Wang, Di Xu, Dongliang He, Fu Li, Zhong Ji, Jungong Han, and Errui Ding. Boosting video-
 582 text retrieval with explicit high-level semantics. In *Proceedings of the 30th ACM international
 583 conference on multimedia*, pp. 4887–4898, 2022.

584 Xue Wang, Zheng Guan, Wenhua Qian, Jinde Cao, Shu Liang, and Jin Yan. Cs2fusion: Contrastive
 585 learning for self-supervised infrared and visible image fusion by estimating feature compensation
 586 map. *Information Fusion*, 102:102039, 2024.

594 Xue Wang, Zheng Guan, Wenhua Qian, Jinde Cao, and Runzhuo Ma. Pid controller-driven network
 595 for image fusion. *IEEE Transactions on Multimedia*, 2025a.

596

597 Xue Wang, Zheng Guan, Wenhua Qian, Jinde Cao, Runzhuo Ma, and Cong Bi. A degradation-aware
 598 guided fusion network for infrared and visible image. *Information Fusion*, 118:102931, 2025b.

599

600 Guanyao Wu, Haoyu Liu, Hongming Fu, Yichuan Peng, Jinyuan Liu, Xin Fan, and Risheng Liu.
 601 Every sam drop counts: Embracing semantic priors for multi-modality image fusion and beyond.
 602 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 17882–17891,
 603 2025.

604

605 Han Xu, Jiayi Ma, Junjun Jiang, Xiaojie Guo, and Haibin Ling. U2fusion: A unified unsupervised
 606 image fusion network. *IEEE transactions on pattern analysis and machine intelligence*, 44(1):
 607 502–518, 2020.

608

609 Xunpeng Yi, Han Xu, Hao Zhang, Linfeng Tang, and Jiayi Ma. Text-if: Leveraging semantic text
 610 guidance for degradation-aware and interactive image fusion. In *Proceedings of the IEEE/CVF
 Conference on Computer Vision and Pattern Recognition*, pp. 27026–27035, 2024.

611

612 Junhui Yin, Xinyu Zhang, Zhanyu Ma, Jun Guo, and Yifan Liu. A real-time memory updating
 613 strategy for unsupervised person re-identification. *IEEE Transactions on Image Processing*, 32:
 2309–2321, 2023. doi: 10.1109/TIP.2023.3266166.

614

615 Jun Yue, Leyuan Fang, Shaobo Xia, Yue Deng, and Jiayi Ma. Dif-fusion: Toward high color fi-
 616 delity in infrared and visible image fusion with diffusion models. *IEEE Transactions on Image
 617 Processing*, 32:5705–5720, 2023.

618

619 Hao Zhang, Lei Cao, Xuhui Zuo, Zhenfeng Shao, and Jiayi Ma. Omnidfuse: Composite degradations-
 620 robust image fusion with language-driven semantics. *IEEE Transactions on Pattern Analysis and
 621 Machine Intelligence*, 2025.

622

623 Xingchen Zhang and Yiannis Demiris. Visible and infrared image fusion using deep learning. *IEEE
 Transactions on Pattern Analysis and Machine Intelligence*, 45(8):10535–10554, 2023.

624

625 Zhanjie Zhang, Quanwei Zhang, Wei Xing, Guangyuan Li, Lei Zhao, Jiakai Sun, Zehua Lan, Jun-
 626 sheng Luan, Yiling Huang, and Huaizhong Lin. Artbank: Artistic style transfer with pre-trained
 627 diffusion model and implicit style prompt bank. In *Proceedings of the AAAI conference on artifi-
 628 cial intelligence*, volume 38, pp. 7396–7404, 2024.

629

630 Wenda Zhao, Hengshuai Cui, Haipeng Wang, You He, and Huchuan Lu. Freefusion: Infrared and
 631 visible image fusion via cross reconstruction learning. *IEEE Transactions on Pattern Analysis
 and Machine Intelligence*, 2025.

632

633 Zixiang Zhao, Haowen Bai, Jiangshe Zhang, Yulun Zhang, Shuang Xu, Zudi Lin, Radu Timofte,
 634 and Luc Van Gool. Cddfuse: Correlation-driven dual-branch feature decomposition for multi-
 635 modality image fusion. In *Proceedings of the IEEE/CVF conference on computer vision and
 pattern recognition*, pp. 5906–5916, 2023.

636

637 Zixiang Zhao, Haowen Bai, Jiangshe Zhang, Yulun Zhang, Kai Zhang, Shuang Xu, Dongdong Chen,
 638 Radu Timofte, and Luc Van Gool. Equivariant multi-modality image fusion. In *Proceedings of
 639 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 25912–25921, 2024a.

640

641 Zixiang Zhao, Lilun Deng, Haowen Bai, Yukun Cui, Zhipeng Zhang, Yulun Zhang, Haotong Qin,
 642 Dongdong Chen, Jiangshe Zhang, Peng Wang, et al. Image fusion via vision-language model.
arXiv preprint arXiv:2402.02235, 2024b.

643

644 Guan Zheng, Xue Wang, Wenhua Qian, Peng Liu, and Runzhuo Ma. Residual prior-driven
 645 frequency-aware network for image fusion. *arXiv preprint arXiv:2507.06735*, 2025.

646

647 Naishan Zheng, Man Zhou, Jie Huang, Junming Hou, Haoying Li, Yuan Xu, and Feng Zhao. Probing
 648 synergistic high-order interaction in infrared and visible image fusion. In *Proceedings of the
 649 IEEE/CVF conference on computer vision and pattern recognition*, pp. 26384–26395, 2024.

648 Junbao Zhou, Ziqi Pang, and Yu-Xiong Wang. Rmem: Restricted memory banks improve video ob-
 649 ject segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 650 *Recognition*, pp. 18602–18611, 2024a.

651 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
 652 language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022.

653 Xiaoqiang Zhou, Chaoyou Fu, Huaibo Huang, and Ran He. Dynamic graph memory bank for video
 654 inpainting. *IEEE Transactions on Circuits and Systems for Video Technology*, 34(11):10831–
 655 10844, 2024b.

659 A APPENDIX

660 A.1 MOTIVATION REVIEW

663 Contemporary IVIF methods suffer from a fundamental limitation: they treat each fusion instance
 664 as an isolated optimization problem, discarding valuable knowledge from successful fusion experi-
 665 ences. Consider the conventional fusion formulation:

$$667 \quad fused = \mathbb{N}(IR, VIS; \Psi) \quad (18)$$

669 where \mathbb{N} represents the fusion function with static parameters Ψ , ignoring historical success patterns.

670 Human visual perception excels at fusion tasks by leveraging experiential knowl-
 671 edge—unconsciously drawing upon patterns from previous similar scenarios. This cognitive
 672 mechanism motivates a dynamic learning paradigm that accumulates and utilizes historical fusion
 673 experiences:

$$674 \quad fused = \mathbb{N}(IR, VIS, \mathbb{B}; \Psi) \quad (19)$$

676 where \mathbb{B} represents accumulated experiential knowledge.

677 However, experiential knowledge alone is insufficient due to fundamental modality heterogeneity.
 678 Infrared images capture thermal radiation patterns while visible images provide textural details un-
 679 der favorable illumination—resulting in distinct information distributions and semantic expressions.
 680 Conventional approaches apply uniform processing strategies, failing to capitalize on each modal-
 681 ity’s unique advantages and potentially introducing harmful cross-modal interference.

682 The challenge extends beyond separate processing to understanding complex interdependencies and
 683 complementary relationships. Cross-modal semantic relationships are inherently non-linear and
 684 context-dependent, requiring sophisticated modeling that captures both intra-modal characteristics
 685 and inter-modal interactions simultaneously. Traditional linear combinations or simple attention
 686 mechanisms are insufficient for these complex dynamics.

687 Graph-based representations offer a natural solution for modeling such relational structures. Unlike
 688 rigid sequential or convolutional architectures, graph networks flexibly represent arbitrary relation-
 689 ships and enable information propagation along semantically meaningful pathways. This capability
 690 is particularly valuable for modeling intricate dependencies between modalities and their fusion
 691 outcomes, as graphs can encode relationships as edges while representing modal features as nodes.

701 Figure 6: Visualization of features before and after prompt learning.

702 Therefore, our design motivation centers on a dual-prompt learning framework combining historical
 703 experiential knowledge for global guidance with graph-based cross-modal reasoning for modality-
 704 specific understanding:

$$f_{used} = \mathbb{N}(IR, VIS, \mathbb{B}, \mathcal{G}; \Psi) \quad (20)$$

706 where \mathcal{G} represents graph-based cross-modal semantic reasoning, addressing both temporal learning
 707 from experience and structural modeling of complex cross-modal relationships for sophisticated
 708 adaptive fusion decisions.

709 Figure 6 presents the visualization of feature maps and fused images before and after prompt injec-
 710 tion. It is evident that with the introduction of prompts, the model is better able to capture comple-
 711 mentary feature representations from the source features, particularly enhancing the preservation
 712 of texture and salient features. Consequently, the fused images exhibit more discriminative feature
 713 representations, thereby improving their information content.

715 A.2 CLIP-BASED QUALITY EVALUATION

717 The fundamental challenge in unsupervised image fusion lies in establishing reliable quality assess-
 718 ment criteria without ground truth references. Traditional metrics such as entropy, mutual infor-
 719 mation, or gradient-based measures often fail to capture perceptual quality that aligns with human
 720 visual perception. To address this limitation, we leverage the robust cross-modal understanding
 721 capabilities of CLIP (Contrastive Language-Image Pre-training) to construct a semantically-aware
 722 quality evaluator that can assess fusion results from a human-centric perspective.

723 The motivation for employing CLIP stems from three key observations: i) CLIP’s large-scale pre-
 724 training on diverse image-text pairs enables it to understand high-level semantic concepts of im-
 725 age quality; ii) Its contrastive learning paradigm naturally supports comparative quality assessment
 726 through similarity computation; iii) The text-guided evaluation provides interpretable quality criteria
 727 that can be explicitly defined and adjusted.

728 **Quality Assessment Framework.** Our CLIP-based evaluator operates through a contrastive cat-
 729 egories of text-image matching paradigm. We design two complementary textual descriptions that
 730 capture the essential characteristics of high-quality and low-quality fusion results:

733 Algorithm 1 Training of the proposed M2PN

734 **Input:** $IR \& VIS$
 735 **Random initialization:** Siamese-DenseEncoder: $\mathbb{E}_{SD}(\cdot)$, Residual Encoder: $\mathbb{E}_R(\cdot)$, $CSGN(\cdot)$,
 736 $DMB(\cdot)$, $PGM(\cdot)$
 737 **Fixed Parameters:** $\lambda = 15$; Training epoch: K ; Batch size: 16; Initial learning rate: 0.001

738 1: **for** $n = 1$ **to** K_p **do**
 739 2: **while** not complete all iterations **do**
 740 3: % Feature Extraction
 741 4: $\Phi_{ir}, \Phi_{vi} \leftarrow \mathbb{E}_{SD}(IR, VIS); \Theta_M \leftarrow \mathbb{E}_R(IR - VIS)$
 742 5: $\Phi_f \leftarrow Cov(CAT(\Phi_{ir}, \Phi_{vi}))$
 743 6: $\mathcal{G}_{ir} \leftarrow CSGM(MLP(\Phi_{ir}), MLP(\Phi_f), \Theta_f)$
 744 7: $\mathcal{G}_{vi} \leftarrow CSGM(MLP(\Phi_{vi}), MLP(\Phi_f), \Theta_f)$
 745 8: % Generating modality-specific cues by building a graph of cross-modal features
 746 9: $\Theta_q \leftarrow DMB(\Theta_f)$ % Query the memory bank to provide current fusion clues
 747 10: **for** $it = 1$ **to** 3 **do**
 748 11: % Stepwise integration of fusion prompts for feature reconstruction guidance
 749 12: $\Phi_f = PGM(\Phi_f; MGF(\mathcal{G}_{ir}, \mathcal{G}_{vi}, \Theta_q))$
 750 13: **end for**
 751 14: **for** $i = 1$ **to** K **do**
 752 15: **fused** = $Tanh(\Phi_f)$; % Utilize $\mathcal{L}_{total} \leftarrow Eq.(10, 17)$ to update the all model
 753 16: **Quality** $\leftarrow CLIP(Fused)$
 754 17: % Employ positive and negative textual descriptors based on image texture, contrast, and
 755 18: % luminance characteristics to evaluate the quality of fused images and dynamically update
 19: % the memory bank with the assessment results
 20: **end for**
 21: **end while**
 22: **end for**

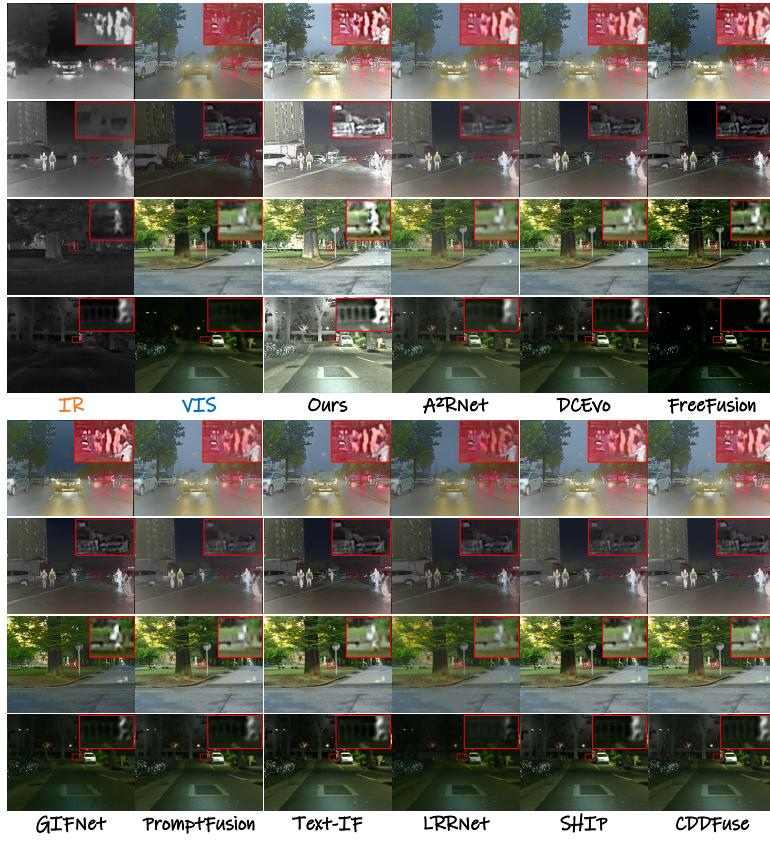


Figure 7: Visualization of the high-level vision task results.

Positive Quality Prompt (T_{pso}): "A high-quality image with clear contrast, sharp details, proper brightness, clean composition without noise or artifacts."; "An excellent image showing sharp details, accurate tones, optimal lighting, and no noise or artifacts."; "A clear, well-defined image with precise textures, natural brightness, and flawless composition without imperfections."

Negative Quality Prompt (T_{neg}): "Low-quality image with poor contrast, blurry details, improper brightness, significant noise and visible artifacts."; "An excellent image showing sharp details, accurate tones, optimal lighting, and no noise or artifacts."; "A clear, well-defined image with precise textures, natural brightness, and flawless composition without imperfections."; "An unclear image with blurred edges, poor exposure, and visible grain or compression artifacts."; "Distorted image with dull contrast, missing details, uneven brightness, and distracting noise patterns."

These prompts encapsulate multiple dimensions of perceptual quality including contrast preservation, detail clarity, brightness appropriateness, compositional coherence, and artifact suppression, all critical aspects for evaluating fusion effectiveness.

A.3 EXPERIMENT SETUP

Implementation Details: Our M2PN is implemented on a single NVIDIA 2080Ti GPU with 11 GB memory, running at 3.0 GHz with an Intel i7-9700 CPU. We employ the Adam optimizer with a batch size of 16 and an initial learning rate of 0.001, utilizing thermal decay for model training. To align the input data modalities, we utilize the YCbCr color space to separate the luminance and chrominance components of *VIS*, and restore the *VIS* chrominance of the fused image after fusion. The overall training strategy can be found in Algorithm 1.

Benchmark Datasets: We randomly crop the RoadScene dataset into 8,000 pairs of 128×128 patches for training, with 40 image pairs selected as the validation set. We randomly select 40 image

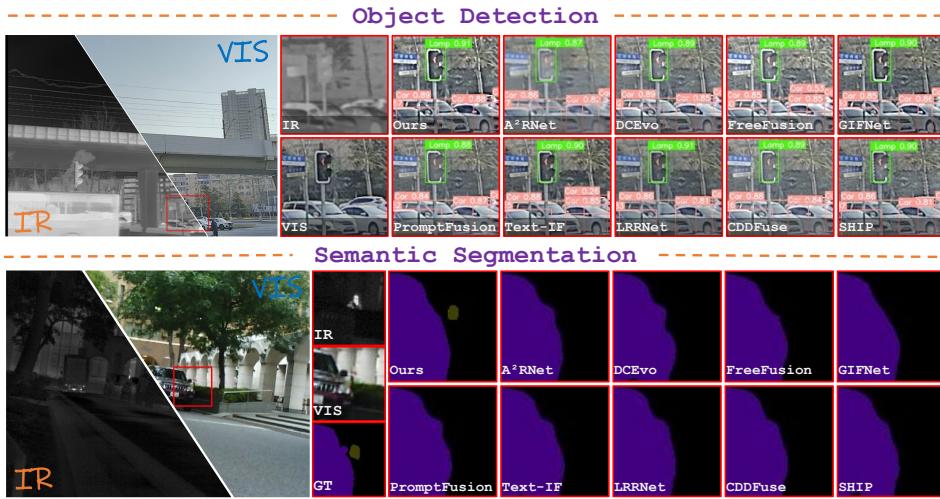


Figure 8: More visualizations of fused results on the test dataset.

pairs from the TNO dataset for testing. For the M³FD dataset, we adopt the “*independent scene for fusion*” subset as the test dataset. Regarding the MSRS dataset, we randomly select 361 image pairs as the test dataset. We construct a test dataset of 24 scene pairs by randomly sampling frames from the ADD sequence dataset.

For the object detection task, we utilize the “*for fusion, detection and fused-based detection*” subset from M³FD, constructing training, validation, and test sets in a 6:2:2 ratio, and select YOLOv5 as the detector.

In the semantic segmentation task, we used the training set provided by MSRS to retrain the segmentation network (Cao et al., 2023) to explore the performance of M2PN.

A.4 MORE RESULTS

Additional Results on test dataset: Figure 7 presents comprehensive fusion results, clearly demonstrating that our method achieves superior visual performance, particularly excelling in small target detection. Notably, our M2PN effectively emphasizes the source feature information, with this enhancement becoming more pronounced in nighttime scenarios. We attribute this phenomenon primarily to our text prompts that specifically emphasize texture, contrast, and brightness. Consequently, after coupling modal-specific representations, these prompts effectively drive the model to highlight crucial source feature information. In comparison, Text-IF, despite being driven by prompt learning, exhibits relatively poor performance due to limitations inherent in CLIP’s knowledge structure. While PromptFusion employs learnable prompts to better adapt to open environments, it lacks modal-specific self-prompting mechanisms. This deficiency results in mutual suppression between modal feature representations, leading to conflicting performance outcomes.

High-level Vision Task: Figure 8 demonstrates the qualitative results of our proposed method on object detection and semantic segmentation tasks. Guided by historical experience and modality-specific information, our M2PN can effectively identify and perceive salient representations within source features. Consequently, it provides fine-grained scene information for high-level vision tasks, maintaining robust performance even in challenging scenarios involving small targets or dense regions, such as vehicle detection and the detection of pedestrians behind vehicles—capabilities that other methods struggle to achieve.

CMGN Performance Visualization: To validate the effectiveness of CMSG components, we conducted comprehensive ablation experiments. As illustrated in Figure 9, the t-SNE visualization demonstrates the facilitating effects of components Θ_f & Θ_M on modality-specific learning. The experimental results reveal that components Θ_f & Θ_M significantly enhance the model’s capacity

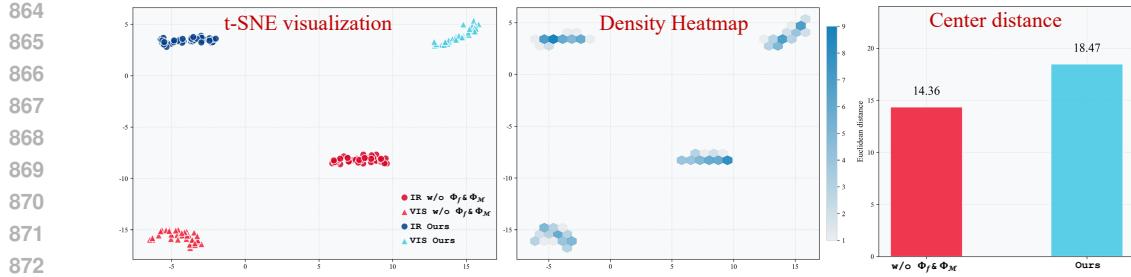


Figure 9: Visualization of features before and after prompt learning.

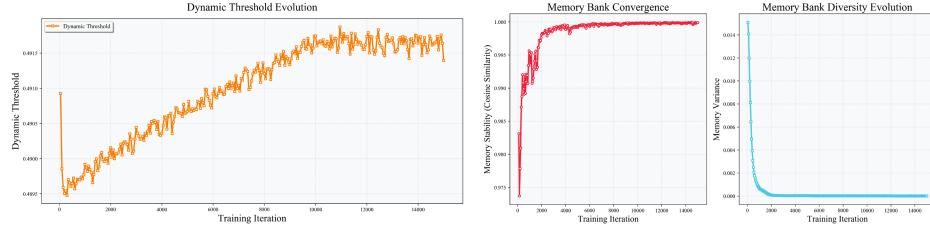


Figure 10: Visualization of dynamic thresholds and status of the DMB.

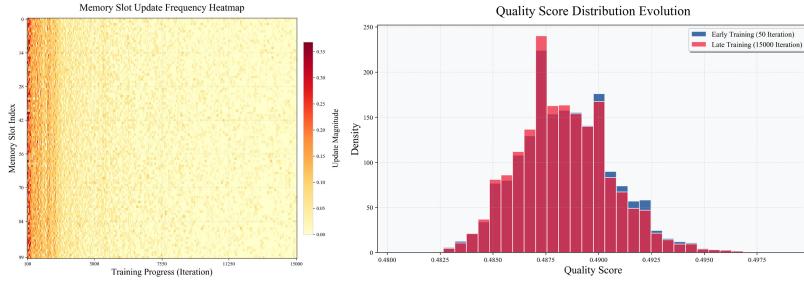


Figure 11: Visualization of DMB internal feature responses before and after training.

to perceive distinct modality attributes, resulting in more compact intra-class clustering and more pronounced inter-class separation in the visualization space, thereby confirming the efficacy of the proposed M2PN.

DMB Performance Visualization: Regarding the design effectiveness of the DMB, we conducted systematic ablation studies to investigate its validity. Figures 10 and 11 present the complete learning evolution process of DMB features. Experimental observations reveal that the designed memory bank mechanism exhibits a beneficial evolutionary trajectory from unstable to stable states throughout the training process: (i) The dynamic threshold demonstrates progressive convergence characteristics during iterative training, ensuring the rationality and consistency of the sample selection strategy; (ii) The similarity metrics within the memory bank rapidly improve and eventually stabilize, reflecting the mechanism's favorable convergence properties; (iii) Feature diversity gradually decreases as training progresses, forming more compact and discriminative feature representations; (iii) The slot update frequency transitions from frequent adjustments in early training phases to balanced fine-tuning in later stages, while the quality distribution evolves

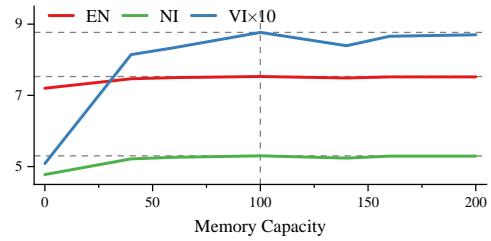


Figure 12: Effect of memory bank capacity on model performance.

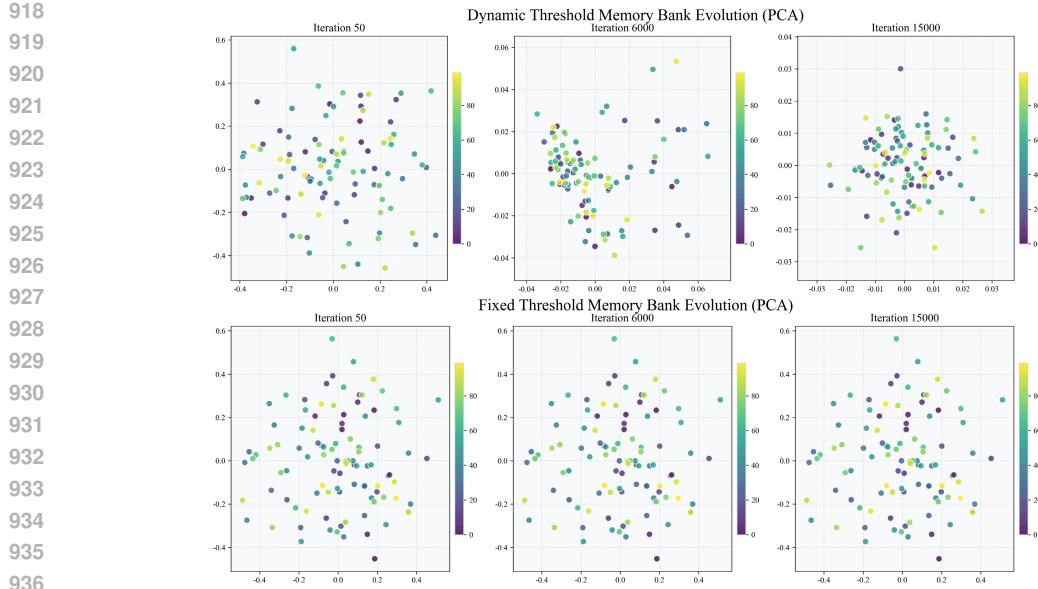


Figure 13: Visualization of the effectiveness of dynamic thresholding on DMB.

Table 4: Comparison with different text prompts. The best results are highlighted in **bold**.

Method	EN	SF	SD	AG	NI	VI
<i>Definition of fusion.</i>	7.522	8.104	10.395	7.758	5.298	0.868
<i>Text prompt for Text-IF.</i>	7.525	8.146	10.392	7.804	5.297	0.864
Ours	7.530	8.249	10.381	7.941	5.303	0.877

from an initially scattered state to convergence within high-quality intervals. These experimental findings collectively demonstrate that the proposed mechanism can effectively establish a stable and high-quality feature storage system. In Figure 12, we further examine the effect of memory bank capacity on the model. Intuitively, setting the capacity to 100 yields near-optimal performance, and larger capacities only fluctuate around this optimum. Therefore, considering efficiency and performance trade-offs, we set the memory bank capacity to 100.

Furthermore, we specifically investigated the effectiveness of the dynamic threshold design. As shown in Figure 13, the experimental results demonstrate that introducing the dynamic threshold strategy significantly optimizes the evolutionary trajectory of the memory bank, enabling faster convergence to stable states during training while facilitating the storage of more discriminative, high-quality feature representations. This further validates both the necessity and effectiveness of the proposed design.

Text prompt analysis. To evaluate the impact of fusion text versus quality text on model performance, we conducted comparative experiments, with results presented in Table 4. We employed a typical fusion definition text: *"This image effectively integrates the thermal radiation information from the*

Table 5: Computational efficiency of SOTA methods on the validation dataset. The best results are highlighted in **bold**.

Method	Para. (M)	FLOPS (G)	FPS	EN
A ² RNet	10.61	36.5	0.16	7.30
DCEvo	2.01	195	1.43	7.18
FreeFusion	5.67	96.7	6.54	7.12
GIFNet	0.82	39.0	2.10	7.35
PromptFusion	7.78	-	3.15	7.41
Text-IF	336.8	215	2.78	7.38
LRRNet	0.05	3.3	8.19	7.14
CDDFuse	1.19	32.8	3.60	7.45
SHIP	0.55	35.2	2.08	7.16
Ours	0.97	15.6	25.6	7.53

972 *infrared image and the texture details from the visible light image,”* and compared it with the fusion
973 text used by Text-IF: *“This is the infrared and visible light image fusion task.”* As discussed in
974 the previous section, fusion definitions are relatively abstract for CLIP models due to their inherent
975 knowledge structure. In contrast, our approach can more effectively guide the model to generate
976 high-quality images by explicitly defining fusion quality criteria.
977

978 **Performance on the validation dataset:** We conducted a comprehensive evaluation of M2PN’s
979 computational efficiency on the validation dataset, encompassing key metrics including learnable
980 parameters (Para), floating-point operations (FLOPs) at 256×256 resolution, frames per second
981 (FPS), and EN. As presented in Table 5, our method demonstrates a compelling trade-off between
982 computational efficiency and performance quality. While M2PN exhibits higher parameter count
983 and FLOPs compared to the algorithm-unrolling based LRRNet, it achieves superior FPS and EN
984 scores, establishing a solid foundation for practical deployment. Moreover, when compared to text-
985 prompt-based approaches such as Text-IF and PromptFusion, our method leverages historical ex-
986 perience and modality-specific prompt learning to achieve enhanced performance with significantly
987 reduced computational overhead. This efficiency gain validates the effectiveness of our design phi-
988 losophy, which prioritizes intelligent prompt construction over brute-force parameter scaling.
989

990 ACKNOWLEDGMENTS

991 The authors acknowledge the assistance of *Claude* in the preparation of this manuscript. *Claude* was
992 utilized specifically for language editing, including grammar correction, logical structure refinement,
993 and proofreading. All scientific content, methodology, analysis, and conclusions remain entirely the
994 work of the authors.
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025