
Under review as a conference paper at ICLR 2018

REWARD ESTIMATION VIA STATE PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning typically requires carefully designed reward functions in
order to learn the desired behavior. We present a novel reward estimation method
that is based on a finite sample of optimal state trajectories from expert demon-
strations and can be used for guiding an agent to mimic the expert behavior. The
optimal state trajectories are used to learn a generative or predictive model of the
“good” states distribution. The reward signal is computed by a function of the
difference between the actual next state acquired by the agent and the predicted
next state given by the learned generative or predictive model. With this inferred
reward function, we perform standard reinforcement learning in the inner loop to
guide the agent to learn the given task. Experimental evaluations across a range
of tasks demonstrate that the proposed method produces superior performance
compared to standard reinforcement learning with both complete or sparse hand
engineered rewards. Furthermore, we show that our method successfully enables
an agent to learn good actions directly from expert player video of games such as
the Super Mario Bros and Flappy Bird.

1 INTRODUCTION

Reinforcement learning (RL) deals with learning the desired behavior of an agent to accomplish a
given task. Typically, a scalar reward signal is used to guide the agent’s behavior and the agent learns
a control policy that maximizes the cumulative reward over a trajectory, based on observations. This
type of learning is referred to as ”model-free” RL since the agent does not know apriori or learn the
dynamics of the environment. Although the ideas of RL have been around for a long time (Sutton &
Barto (1998)), great achievements were obtained recently by successfully incorporating deep models
into them with the recent success of deep reinforcement learning. Some notable breakthroughs
amongst many recent works are, the work from Mnih et al. (2015) who approximated a Q-value
function using as a deep neural network and trained agents to play Atari games with discrete control;
Lillicrap et al. (2016) who successfully applied deep RL for continuous control agents achieving
state of the art; and Schulman et al. (2015) who formulated a method for optimizing control policies
with guaranteed monotonic improvement.

In most RL methods, it is very critical to choose a well-designed reward function to successfully
learn a good action policy for performing the task. However, there are cases where the reward func-
tion required for RL algorithms is not well-defined or is not available. Even for a task for which
a reward function initially seems to be easily defined, it is often the case that painful hand-tuning
of the reward function has to be done to make the agent converge on an optimal behavior. This
problem of RL defeats the benefits of automated learning. In contrast, humans often can imitate
instructor’s behaviors, at least to some extent, when accomplishing a certain task in the real world,
and can guess what actions or states are good for the eventual accomplishment, without being pro-
vided with the detailed reward at each step. For example, children can learn how to write letters
by imitating demonstrations provided by their teachers or other adults (experts). Taking inspiration
from such scenarios, various methods collectively referred to as imitation learning or learning from
experts’ demonstrations have been proposed (Schaal (1997)) as a relevant technical branch of RL.
Using these methods, expert demonstrations can be given as input to the learning algorithm. Inverse
reinforcement learning (Ng & Russell (2000); Abbeel & Ng (2004); Wulfmeier et al. (2015)), be-
havior cloning (Pomerleau (1991)), imitation learning (Ho & Ermon (2016); Duan et al. (2017)),
and curiosity-based exploration (Pathak et al. (2017)) are examples of research in this direction.

1

Under review as a conference paper at ICLR 2018

While most of the prior work using expert demonstrations assumes that the demonstration trajecto-
ries contain both the state and action information (τ = {(si0,ai0), (si1,ai1), ..., (sit,ait)}) to solve
the imitation learning problem, we, however, believe that there are many cases among real world en-
vironments where action information is not readily available. For example, a human teacher cannot
tell the student what amount of force to put on each of the fingers when writing a letter.

As such, in this work, we propose a reward estimation method that can estimate the underlying
reward based only on the expert demonstrations of state trajectories for accomplishing a given task.
The estimated reward function can be used in RL algorithms in order to learn a suitable policy for the
task. The proposed method has the advantage of training agents based only on visual observations
of experts performing the task. For this purpose, it uses a model of the distribution of the expert state
trajectories and defines the reward function in a way that it penalizes the agent’s behavior for actions
that cause it to deviate from the modeled distribution. We present two methods with this motivation;
a generative model and a temporal sequence prediction model. The latter defines the reward function
by the similarity between the state predicted by the temporal sequence model trained based on
the expert’s demonstrations and the currently observed state. We present experimental results of
the methods on multiple environments and with varied settings of input and output. The primary
contribution of this paper is in the estimation of the reward function based on state similarity to
expert demonstrations, that can be measured even from raw video input.

2 RELATED WORK

Model-free Reinforcement Learning (RL) methods learn a policy π(at|st) that produces an action
from the current observation. Mnih et al. (2015) showed that a q-value function q(st, at) can be
approximated with a deep neural network, which is trained using hand-engineered scalar reward
signals given to the agent based on its behavior. Similarly, actor-critic networks in Deep Deter-
ministic Policy Gradients (DDPG) can enable state of the art continuous control, e.g. in robotic
manipulation by minimizing the distance between the end effector and the target position. Since the
success with DDPG, other methods such as Trust Region Policy Optimization (TRPO) (Schulman
et al. (2015)) and Proximal Policy Optimization (PPO) (Schulman et al. (2017)) have been proposed
as further improvements for model-free RL in continuous control problems.

Although RL enables an agent to learn an optimal policy without supervised training data, in the
standard case, it requires a difficult task of hand-tuning good reward functions for each environ-
ment. This has been pointed out previously in the literature (Abbeel & Ng (2004)). Several kinds
of approaches have been proposed to workaround or tackle this problem. An approach that does
not require reward hand-tuning is behavior cloning based on supervised learning instead of RL. It
learns the conditional distribution of actions given states in a supervised manner. Although it has an
advantage of fast convergence (Duan et al. (2017)) (as behavior cloning learns a single action from
states in each step), it typically results in compounding of errors in the future states.

An alternate approach is Inverse Reinforcement Learning (IRL) proposed in the seminal work by Ng
& Russell (2000). In this work, the authors try to recover the optimal reward function as a best de-
scription behind the given expert demonstrations from humans or other expert agents, using linear
programming methods. It is based on the assumption that expert demonstrations are solutions to a
Markov Decision Process (MDP) defined with a hidden reward function (Ng & Russell (2000)). It
demonstrated successful estimation of the reward function in case of relatively simple environments
such as the grid world and the mountain car problem. Another use of the expert demonstrations
is initializing the value function; this was described by Wiewiora (2003). Extending the work by
Ng & Russell (2000), entropy-based methods that compute the suitable reward function by maxi-
mizing the entropy of the expert demonstrations have been proposed by Ziebart et al. (2008). In
the work by Abbeel & Ng (2004), a method was proposed for recovering the cost function based
on expected feature matching between observed policy and the agent behavior. Furthermore, they
showed this to be the necessary and sufficient condition for the agent to imitate the expert behavior.
More recently, there was some work that extended this framework using deep neural networks as
non-linear function approximator for both policy and the reward functions (Wulfmeier et al. (2015)).
In other relevant work by Ho & Ermon (2016), the imitation learning problem was formulated as
a two-players competitive game where a discriminator network tries to distinguish between expert
trajectories and agent-generated trajectories. The discriminator is used as a surrogate cost function

2

Under review as a conference paper at ICLR 2018

which guides the agent’s behavior in each step to imitate the expert behavior by updating policy
parameters based on Trust Region Policy Optimization (TRPO) (Schulman et al. (2015)). Related
recent works also include model-based imitation learning (Baram et al. (2017)) and robust imita-
tion learning (Wang et al. (2017)) using generative adversarial networks. All the above-mentioned
methods, however, rely on both state and action information provided by expert demonstrations.
Contrarily, we learn only from expert state trajectories in this work.

A recent line of work aims at learning useful policies for agents even in the absence of expert demon-
strations. In this regard, Pathak et al. (2017) trained an agent with a combination of reward inferred
with intrinsic curiosity and a hand-engineered, complete or even very sparse scalar reward signal.
The curiosity-based reward is designed to have a high value when the agent encounters unseen states
and a low value when it is in a state similar to the previously explored states. The work reported
successful navigation in games like Mario and Doom without any expert demonstrations. In this pa-
per, we compare our proposed methods with the curiosity-based approach and show the advantage
over it in terms of the learned behaviors. However, our methods assumed state demonstrations are
available as expert data while the curiosity-based method did not use any demonstration data.

3 REWARD ESTIMATION METHOD

3.1 PROBLEM STATEMENT

We consider an incomplete Markov Decision Process (MDP), consisting of states S and action space
A, where the reward signal r : S×A → R, is unknown. An agent can act in an environment defined
by this MDP following a policy π(at|st). Here, we assume that we have knowledge of a finite set
of optimal or expert state trajectories τ = {S0,S1, ...,Sn}. Where, Si = {si0, si1, ..., sim}, with
i ∈ {1, 2, .., n}. These trajectories can represent joints angles, raw images or any other information
depicting the state of the environment.

Since the reward signal is unknown, our primary goal is to find a reward signal that enables the
agent to learn a policy π, that can maximize the likelihood of these set of expert trajectories τ . In
this paper, we assume that the reward signal can be inferred entirely based on the current state and
next state information, r : S × S → R. More formally, we would like to find a reward function that
maximizes the following objective:

r∗ = argmax
r

Ep(st+1|st)r(st+1|st) (1)

where r(st+1|st) is the reward function of the next state given the current state and p(st+1|st)
is the transition probability. We assume the performing to maximize the likelihood of next step
prediction in equation 1 will be leading the maximizing the future reward when the task is determin-
istic. Because this likelihood is based on similarity with demonstrations which are obtained while
an expert agent is performing by maximizing the future reward. Therefore we assume the agent
will be maximizing future reward when it takes the action that gets the similar next step to expert
demonstration trajectory data τ .

3.2 PROPOSED METHODS

Let, τ = {sit}i=1:M,t=1:N be the optimal states visited by the expert agent, where M is the number
of demonstration episodes, and N is the number of steps within each episode. We estimate an
appropriate reward signal based on the expert state trajectories τ , which in turn is used to guide a
reinforcement learning algorithm and learn a suitable policy.

We evaluate two approaches to implement this idea. A straightforward approach is to first train a
generative model using the expert trajectories τ . Rewards can then be estimated based on similarity
measures between a reconstructed state value and the actual currently experienced state value of the
agent. This method constrains exploration to the states that have been demonstrated by an expert and
enables learning a policy that closely matches the expert. However, in this approach, the temporal
order of states are ignored or not readily accounted for. This temporal order of the next state in
the sequence is important for estimating the state transition probability function. As such, the next
approach we take is to consider a temporal sequence prediction model that can be trained to predict

3

Under review as a conference paper at ICLR 2018

the next state value given current state, based on the expert trajectories. Once again the reward value
can be estimated as a function of the similarity measure between the predicted next state and the one
actually visited by the agent. The following sub-sections describes both these approaches in detail.

3.2.1 GENERATIVE MODELING

We train a deep generative model (three-layered fully connected auto-encoder) using the state values
sit for each step number t, sampled from the expert agent trajectories τ . The generative model is
trained to minimize the following reconstruction loss (maximize the likelihood of the training data):

θ∗g = argmin
θg

[
−

M∑
j=1

N∑
t=1

log p(sit;θg)
]
, (2)

where θ∗g represents the optimum parameters of the generative model. Following typical settings,
we assume p(sit;θg) to be a Gaussian distribution, such that equation (2) leads to minimizing the
mean square error, ‖sit − g(sit;θg)‖2, between the actual state sit and the generated state g(sit;θg).

The reward value is estimated as a function of the difference between the actual state value st+1 and
the generated output g(sit;θg),

rgt = ψ
(
− ‖st+1 − g(st+1;θg)‖2

)
, (3)

where st is the current state value, and ψ can be a linear or nonlinear function, typically hyperbolic
tangent or gaussian function. In this formulation, if the current state is similar to the reconstructed
state value, i.e. g(st;θg), the estimated reward value will be higher. However, if the current state
is not similar to the generated state, the reward value will be estimated to be low. Moreover, as
a reward value is estimated at each time step, this approach can be used even in problems which
originally had a highly sparse engineered reward structure.

3.2.2 TEMPORAL SEQUENCE PREDICTION

In this approach, we learn a temporal sequence prediction model (the specific networks used are
mentioned in the corresponding experiments sections) such that we can maximize the likelihood of
the next state given the current state. As such the network is trained using the following objective
function,

θ∗h = argmin
θh

[
−

M∑
j=1

N∑
t=1

log p(sit+1|sit;θh)
]
, (4)

where θ∗h represents the optimal parameters of the prediction model. We also assume the probability
of the next state given the previous state value, p(sit+1|sit;θh) to be a Gaussian distribution. As such
the objective function can be seen to be minimizing the mean square error, ‖sit+1 − h(sit;θh)‖2,
between the actual next state sit+1, and the predicted next state h(sit;θh).

Thus, the reward function is,

rht = ψ
(
− ‖st+1 − h(st;θh)‖2

)
. (5)

The estimated reward here, can also be interpreted akin to the generative model case. Here, if the
agent’s policy takes an action that changes the environment towards states far away from the expert
trajectories, the corresponding estimated reward value is low. If the actions of agent bring it close to
the expert demonstrated trajectories, thereby making the predicted next state match with the actual
visited state value, the reward is estimated to be high. This process of reward shaping or guidance
can enable the agent to learn a policy that is optimized based on the expert demonstration trajectories.

Algorithm 1 explains the step by step flow of the proposed methods.

4

Under review as a conference paper at ICLR 2018

Algorithm 1 Reinforcement Learning with Reward Estimation via State Prediction

1: procedure TRAINING DEMONSTRATIONS
2: Given trajectories τ from expert agent
3: for sit, sit+1 ∈ τ do

4: θ∗ ← argminθg

[
−
∑

i,t log p(s
i
t;θg)

]
or argminθh

[
−
∑

i,t log p(s
i
t+1|sit;θh)

]
5: end for
6: end procedure
7: procedure REINFORCEMENT LEARNING
8: for t = 1, 2, 3, ... do
9: Observe state st

10: Select/execute action at, and observe state st+1

11: rt ← ψ
(
− ‖st+1 − g(st+1;θg)‖2

)
or ψ

(
− ‖st+1 − h(st;θh)‖2

)
12: Update the deep reinforcement learning network using the tuple (st,at, rt, st+1)
13: end for
14: end procedure

4 EXPERIMENTS

In order to evaluate our reward estimation methods, we conducted experiments across a range of
environments. We consider five different tasks, namely: robot arm reaching task (reacher) to a
fixed target position, robot arm reaching task to a random target position, controlling a point agent
for reaching a target while avoiding an obstacle, learning an agent for longest duration of flight in
the Flappy Bird video game, and learning an agent for maximizing the traveling distance in Super
Mario Bros video game. Table 1 summarizes the primary differences between the five experimental
settings.

Environment Input Action RL method

Reacher (fixed target) Joint angles & distance to target Continuous DDPG

Reacher (random target) Joint angles Continuous DDPG

Mover with avoiding obstacle Positon & distance to target Continuous DDPG

Flappy Bird Image & bird position Discrete DQN

Super Mario Bros. Image Discrete A3C

Table 1: Table comparing the different enviornments

4.1 REACHER

We consider a 2-DoF robot arm in the x-y plane that has to learn to reach with the end-effector a
point target. The first arm of the robot is a rigidly linked (0, 0) point, with the second arm linked
to its edge. It has two joint values θ = (θ1, θ2), θ1 ∈ (−∞,+∞), θ2 ∈ [−π,+π] and the lengths
of arms are 0.1 and 0.11 units, respectively. The robot arm was initialized by random joint values
at the initial step for each episode. In the following experiments, we have two settings: fixed point
target, and a random target. The applied continuous action values at is used to control the joint
angles, such that, θ̇ = θt − θt−1 = 0.05 at. Each action value has been clipped the range [−1, 1].
The reacher task is enabled using the physics engine within the roboschool environment (Brockman
et al. (2016); OpenAI (2017)). Figure 1 describes the roboshool environment. The robot arms are in
blue, the blue-green point is the end-effector, and the pink dot is the desired target location.

5

Under review as a conference paper at ICLR 2018

4.1.1 REACHER TO FIXED POINT

In this experiment, the target point ptgt is always fixed at (0.1, 0.1). The state vector st consists of
the following values: absolute end position of first arm (p2), joint value of elbow (θ2), velocities of
the joints (θ̇1, θ̇2), absolute target position (ptgt), and the relative end-effector position from target
(pee − ptgt). We used DDPG (Lillicrap et al. (2016)) for this task, with the number of steps for
each episode being 500 in this experiment 1. The reward functions used in this task were as follows:

Dense reward : rt = −‖pee − ptgt‖2 + renvt , (6)
Sparse reward : rt = − tanh(α‖pee − ptgt‖2) + renvt , (7)

Generative Model (GM) : rt = − tanh(β‖st+1 − g(st+1;θ2k)‖2), (8)
GM with renvt : rt = − tanh(β‖st+1 − g(st+1;θ2k)‖2) + renvt , (9)

GM (1000 episodes) : rt = − tanh(β‖st+1 − g(st+1;θ1k)‖2) + renvt , (10)
GM with action : rt = − tanh(β‖[st+1, at]− g([st+1, at];θ2k,+a)‖2) + renvt , (11)

where renvt is the environment specific reward, which is calculated based on the cost for current
action, −‖at‖2. This regularization is required for finding the shortest path to reach the target. As
this cost is critical for fast convergence, we use this in all cases. The dense reward is a distance
between end-effector and the target, and the sparse reward is based on a bonus for reaching. The
generative model parameters θ2k is trained by τ2k trajectories that contains only states of 2000
episodes from an agent trained during 1k episodes with dense reward. The generative network
has 400, 300 and 400 units fully-connected layers, respectively. They also have ReLU activation
function, with the batch size being 16, and number of epochs being 50. θ1k is trained from τ1k

trajectories that is randomly picked 1000 episodes from τ2k. The GM with action uses a generative
model θ2k,+a that is trained pairs of state and action for 2000 episodes for same agents as τ2k. We
use a tanh nonlinear function for the estimated reward in order to keep a bounded value. The α, β
change sensitiveness of distance or reward, were both set to 100 2. Here, we also compare our results
with behavior cloning (BC) method Pomerleau (1991) where the trained actor networks directly use
obtained pairs of states and actions.

!"#$%&

'()*%++%,&-#

!"

!#
$%&%

$"

$''

Figure 1: The environ-
ment of reacher task.
The reacher has two
arms, and objective of
agent is reaching end-
effector (green) to target
point (red).

-140

-120

-100

-80

-60

-40

-20

 0

0 250 500 750 1000

E
v
a
lu

a
ti

o
n
 s

co
re

Training episode

Dense (6)
Sparse (7)
GM (8)
GM (9)
GM [1000] (10)
GM [state, action] (11)
BC [state, action]

(a) Fixed target

-140

-120

-100

-80

-60

-40

0 250 500 750 1000

E
v
a
lu

a
ti

o
n
 s

co
re

Training episode

Dense (12)
Sparse (13)
GM (14)
NS (15)
LSTM (16)
FM [state, action] (17)
BC [state, action]

(b) Random target

Figure 2: Performance of RL for reacher. The dash lines are results using
the human designed reward, solid lines are results using the estimated
reward based on demonstration data. The evaluation scores (y-axis) are
normalized based on max and min reward. The corresponding equation
numbers are referred to within bracket.

Figure 2a shows the difference in performance by using the different reward functions 3. All methods
are evaluated by a score (y-axis), which was normalized to a minimum (0) and a maximum (1) value.
The proposed method, especially “GM with renvt ”, manages to achieve a score nearing that of the
dense reward, with the performance being much better as compared to the sparse reward setting.

1Network details are in appendix (see 6.1).
2We tried {1,10,100}, and then selected the best for each
3BC doesn’t have an update of actor, hence it is straight line.

6

Under review as a conference paper at ICLR 2018

−0.2 −0.1 0.0 0.1 0.2
x

−0.2

−0.1

0.0

0.1

0.2

y

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

(a) Dense reward

−0.2 −0.1 0.0 0.1 0.2
x

−0.2

−0.1

0.0

0.1

0.2

y

(b) Sparse reward

−0.2 −0.1 0.0 0.1 0.2
x

−0.2

−0.1

0.0

0.1

0.2

y

(c) GM reward by τ1k

−0.2 −0.1 0.0 0.1 0.2
x

−0.2

−0.1

0.0

0.1

0.2

y

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

(d) GM reward by τ2k

Figure 3: These show the reward values (blue) for each end-effector position, and target posi-
tion (red). The GM rewards are dependent on state value st+1. Therefore, these are average values
taken over 1000 different states values for the same end-effector position. Color bars for panels (b),
(c) and (d) are the same.

Moreover, the learning curves based on the rewards estimated with the generative model show a
faster convergence rate.

However, the result without environment specific reward, i.e. with the additional action regulariza-
tion term, takes a longer time to converge. This is primarily because of the fact that GM reward is
reflective of the distance between target and end-effector, and cannot directly account for the action
regularization. The GM reward based on τ1k underperforms as compared with GM reward based on
τ2k because of the lack of demonstration data. Figure 3 shows the reward value of each end-effector
point. GM estimated reward using τ2k has better reward map as compared to GM estimated reward
using τ1k. However, these demonstrations data (Figure 8) are biased by the robot trajectories. Thus,
a method of generating demonstration data that normalizes or avoids such bias will further improve
the reward structure.

If the demonstrations contain the action information in addition to state information, behavior
cloning achieves good performance. Surprisingly, however, when using both state and action infor-
mation in the generative model, ”GM [state, action]”, the performance of the agent is comparatively
poor.

4.1.2 REACHER TO RANDOM POINT

In this experiment, the target point ptgt is initialized by a random uniform distribution of
[−0.27,+0.27], that includes points outside of the reaching range of the robot arms. Furthermore,
we removed the relative position of the target from the input state information. This makes the
task more difficult. The state vector st has the following values: p2, θ2, θ̇1, θ̇2, ptgt. In the pre-
vious experiment, the distribution of states in expert trajectories is expected to be similar to the
reward structure due to a fixed target location. However, when the target position changes ran-
domly, this distribution is not fixed. We, therefore, evaluate with the temporal sequence prediction
model h(st;θh) in this experiment. The RL setting is same as the previous experiment, however
we changed the total number of steps within each episode to 400. The reward functions used in this
experiment were calculated as follows:

Dense reward : rt = −‖pee − ptgt‖2 + renvt , (12)
Sparse reward : rt = tanh(−α‖pee − ptgt‖2) + renvt , (13)

GM reward : rt = tanh(−β‖st+1 − g(st+1;θg)‖2) + renvt , (14)
Next State (NS) reward : rt = tanh(−γ‖st+1 − h(st;θh)‖2) + renvt , (15)

LSTM reward : rt = tanh(−γ‖st+1 − h(st:t-n;θlstm)‖2) + renvt , (16)
Forward Model (FM) reward : rt = tanh(−γ‖st+1 − f(st,at;θ+a)‖2) + renvt . (17)

The expert demonstrations τ were obtained using the states of 2000 episodes running a trained
agent with dense hand-engineered reward. The GM estimated reward uses the same setting as in
the previous experiment. NS is a model that predicts the next state given current state, and was
trained using demonstration data τ 4. The LSTM model uses Long short-term memory (Hochreiter

4The hidden layers are same as GM model.

7

Under review as a conference paper at ICLR 2018

& Schmidhuber (1997)) as a temporal sequence prediction model. The state in reacher task does
not contain time sequence data, hence we use a finite state history as input. LSTM model has three
layers 5 and one fully- connected layer with 40 ReLU activation units. The forward model based
reward estimation is based on predicting the next state given both the current state and action 6.
Here, we also compared with the baseline behavior cloning method. In this experiment, α is 100, β
is 1, and γ is 10.

Figure 2b shows the performance of the trained agent using the different reward functions. In all
cases using estimated rewards performances significantly better than the sparse reward case. The
LSTM based prediction method gives the best results, reaching close to the performance obtained
with dense hand engineered reward function. As expected, the GM based reward estimation fails to
work well in this relatively complex experimental setting. The NS model estimated reward, which
predicts next state given only the current state information, has comparable performance with LSTM
based prediction model during the initial episodes. The FM based reward function also performs
poorly in this experiment. Comparatively, the direct BC works relatively well. This indicates that it
is better to use behavior cloning than reward prediction when both state and action information are
available from demonstration data.

4.2 REACHER WITH OBSTACLE

Starting with this experiment, we evaluate using only the temporal sequence prediction method. As
such, here we use a finite history of the state values in order to predict the next state value. We
assume that predicting a part of the state that is related to a given action allows the model to make a
better estimate of the reward function. Former work by Pathak et al. (2017) predicts a function of the
next state, φ(st+1) rather than predicting the raw value st+1, as in this paper. In this experiment,
we also changed the non-linear function ψ in the proposed prediction method to a Gaussian function
(as compared to the hyperbolic tangent function used in previous experiments). This allows us
to compare the robustness of our proposed method for reward estimation to different non-linear
functions.

We develop a new environment that adds an obstacle to the reaching task. This reacher is a two-
dimensional point (x, y) that uses position control. In Figure 4 we show the modified environment
setup. The agent’s goal is to reach the target while avoiding the obstacle in this case. The initial
position of agent, the target position, and an obstacle position were initialized randomly. The state
value contains the agent absolute position (pt), current velocity of the agent (ṗt), a target absolute
position (ptgt), an obstacle absolute position (pobs), and the relative location of target and obstacle
with respect to the agent (pt−ptgt,pt−pobs). Once again the RL algorithm used in this experiment
was DDPG (Lillicrap et al. (2016)) for continuous control 7. The number of steps for each episode
set to 500. Here, we used the following reward functions:

Dense reward : rt = −‖pt − ptgt‖2 + ‖pt − pobs‖2, (18)

LSTM reward : rt = exp(−‖st+1 − h(st:t-n;θlstm)‖2/2σ2
1), (19)

LSTM (state-selected) reward : rt = exp(−‖s′t+1 − h′(st:t-n;θlstm)‖2/2σ2
2), (20)

where h′(st:t-n;θlstm) is a network that predicts a selected part of state values given a finite history
of state information. The dense reward is composed of both, the target distance cost and the obstacle
distance bonus. The optimal state trajectories τ contains 800 “human guided” demonstration data.
In this case, the LSTM network consisted of two layers, each with 256 units with ReLU activations.
In this experiment, σ1 is 0.005, and σ2 is 0.002 8.

Figure 5 shows the performance with the different estimated or hand-engineered reward settings.
The LSTM based prediction method learns to reach the target faster than the dense reward, while
LSTM (s′) has the best overall performance by learning with human-guided demonstration data.

5Two LSTM layers with 128 units, 30% dropout, and tanh activation function.
6Hidden layers structure is same as the GM model.
7Network details are in appendix (see 6.3 section)
8We tried {0.002, 0.005}, and then selected the best for each.

8

Under review as a conference paper at ICLR 2018

!"#$%!
!"#"

"$%&!
!"

'()!"*+%
!$%&

!"#$%&$'

($)%*+,- .)/

Figure 4: The environment
of reacher with an obstacle.
The agent (green) will move
to reach the target (red), while
avoiding the obstacle (pink).

-12000

-10000

-8000

-6000

-4000

-2000

 0

 2000

0 100 200 300 400 500

E
v
a
lu

a
ti

o
n
 s

co
re

Training episode

Dense (18)
LSTM (19)
LSTM [s'] (20)

Figure 5: The performance for reacher with obstacle environ-
ment.

4.3 FLAPPY BIRD

We use a re-implementation (Lau (2017)) of Android game, “Flappy Bird”, in python (pygame).
The objective of this game is to pass through the maximum number of pipes without collision. The
control is a single discrete command of whether to flap the bird wings or not. The state has four
consecutive gray frames (4 x 80 x 80). The RL is trained by DQN (Mnih et al. (2015)) 9, and the
update frequency of deep network is 100 steps. The used rewards are,

Dense reward : rt =


+0.1 if alive;
+1 if pass through a pipe;
−1 if collide to a pipe.

(21)

LSTM reward : rt = exp(−‖s′t+1 − h′(st;θlstm)‖2/2σ2), (22)

which s′t+1 is an absolute position of the bird, which can be given from simulator or it could be
processed by pattern matching or CNN from raw images, h′(st;θlstm) is a predicted the absolute
position. Hence, LSTM is trained for predicting absolute position of bird location given images.
The τ of this experiment is 10 episodes data from a trained agent in the repository by Lau (2017).
Also, we also compared with the baseline behavior cloning method. In this experiment, σ is 0.02.

 0

 10

 20

 30

 40

 50

 60

 70

0 500 1000 1500

Fi
n
a
l
b

ir
d

 h
o
ri

zo
n
ta

l
p

o
si

ti
o
n

Training step [k]

Dense (21)
LSTM (22)
BC

Figure 6: The performance for
Flappy Bird.

 0

 200

 400

 600

 800

 1000

0 50 100 150 200 250

Fi
n
a
l
M

a
ri

o
 h

o
ri

zo
n
ta

l
p

o
si

ti
o
n

Training step [k]

Zero (23)
Distance (24)
Score (25)
Curiosity (26)
3D-CNN naive (27)
3D-CNN (28)

Figure 7: The performance for Super Mario Bros.

Figure 6 shows the result of LSTM reward is better than normal “hand-crafted” reward. The reason
for this situation is, the normal dense reward just describes the traveling distance, but our LSTM
reward will teach which absolute transition of bird is good. Also, LSTM has better convergence
than BC result; the reason is the number of demonstrations is not enough for behavior cloning
method.

9Network details are in appendix (see 6.4 section)

9

Under review as a conference paper at ICLR 2018

4.4 MARIO

In the final task, we consider a more complex environment in order to evaluate our proposed reward
estimation method using only state information. Here we use the Super Mario Bros classic Nintendo
video game environment (Paquette (2017)). Our proposed method estimates reward values based on
expert gameplay video data (using only the state information in the form of image frames).

In this experiment, we also benchmarked against the recently proposed curiosity-based
method (Pathak et al. (2017)) using the implementation provided by the same authors (Pathak
(2017)). This was used as the baseline reinforcement learning technique. Unlike in the actual game,
here we always initialize Mario to the starting position rather than a previously saved checkpoint.
This is a discrete control setup, where, Mario can make 14 types of actions 10. The state information
consists of sequential input of four 42 x 42 gray image frames 11. Here we used the A3C RL algo-
rithm (Mnih et al. (2016)). We used gameplay of stage “1-1” for this experiment, with the objective
of the agent being to travel as far as possible and achieve as high a score as possible.

The rewards functions used in this experiment were as follows:

Zero : rt = 0, (23)
Distance : rt = positiont − positiont−1, (24)

Score : rt = scoret, (25)
Curiosity (Pathak et al. (2017)) : rt = η‖φ(st+1)− f(φ(st),at; θF)‖2, (26)

3D-CNN (naı̈ve) : rt = 1− ‖st+1 − h(st; θ)‖2, (27)
3D-CNN : rt = max(0, ζ − ‖st+1 − h(st; θ)‖2), (28)

where positiont is the current position of Mario at time t, scoret is the current score value at time t,
and st are screen images from the Mario game at time t. The position and score information are ob-
tained using the Mario game emulator. In this experiment, we use a three-dimensional convolutional
neural network (Ji et al. (2013)) (3D-CNN) for our temporal sequence prediction method. In order
to capture expert demonstration data, we took 15 game playing videos by five different people 12. In
total, the demonstration data consisted of 25000 frames. The length of skipped frames in input to the
temporal sequence prediction model was 36, as humans cannot play as fast as an RL agent; however,
we did not change the skip frame rate for the RL agent. The 3D-CNN consisted of 4 layers13 and
a final layer to reconstruct the image. The agent was trained using 50 epochs with a batch size of
8. We implemented two prediction methods for reward estimation. In the naı̈ve method the Mario
agent will end up getting positive rewards if it sits in a fixed place without moving. This is because it
can avoid dying by just not moving. However, this is clearly a trivial suboptimal policy. Hence, we
implemented the alternate reward function based on the same temporal sequence prediction model,
but we apply a threshold value that prevents the agent from converging onto such a trivial solution.
Here, the value of ζ is 0.025, which was calculated based on the reward value obtained by just
staying fixed at the initial position.

Figure 7 shows the performance with the different reward functions. Here, the graphs directly show
the average results over multiple trials. As observed, the agent was unable to reach large distances
even while using “hand-crafted” dense rewards and did not converge to the goal every time 14;
this behavior was also observed by Pathak et al. (2017) for their reward case. As observed from the
average curves of Figure 7, the proposed 3D-CNN method learns relatively faster as compared to the
curiosity-based agent (Pathak et al. (2017)). As expected the 3D-CNN (naı̈ve) method converged to
a solution of remaining fixed at the initial state. As future work, we hope to improve the performance
in this game setting using deeper RL networks, as well as large input image sizes. Overall estimating
reward from φ(st) without the need of action data, allows an agent to learn suitable policy directly
from raw video data. The abundance of visual data creates ample opportunity for this type of reward
estimation method to be explored further in different video game settings.

10A single action is repeated for six consecutive frames. Please refer to (Pathak et al. (2017)) for details.
11Every next six frames were skipped.
12All videos consisted of games where the player succeeded in clearing the stage.
13Two layers with (2 x 5 x 5), two layers with (2 x 3 x 3) kernels, all have 32 filters, and every two layers

with (2, 1, 1) stride.
14By our experiment, even if it trained long steps, such as 3.0M; it just reached around 600 - 700 averagely.

10

Under review as a conference paper at ICLR 2018

5 CONCLUSION

In this paper, we proposed two variations of a reward estimation method via state prediction by
using state-only trajectories of the expert; one based on an autoencoder-based generative model
and one based on temporal sequence prediction using LSTM. Both the models were for calculating
similarities between actual states and predicted states. We compared the methods with conventional
reinforcement learning methods in five various environments. As overall trends, we found that the
proposed method converged faster than using hand-crafted reward in many cases, especially when
the expert trajectories were given by humans, and also that the temporal sequence prediction model
had better results than the generative model. It was also shown that the method could be applied to
the case where the demonstration was given by videos. However, detailed trends were different for
the different environments depending on the complexity of the tasks. Neither model of our proposed
method was versatile enough to be applicable to every environment without any changes of the
reward definition. As we saw in the necessity of the energy term of the reward for the reacher task
and in the necessity of special handling of the initial position of Mario, the proposed method has
a room of improvements especially in modeling global temporal characteristics of trajectories. We
would like to tackle these problems as future work.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the Twenty-first International Conference on Machine Learning, ICML ’04, pp.
1–, New York, NY, USA, 2004. ACM. ISBN 1-58113-838-5. doi: 10.1145/1015330.1015430.
URL http://doi.acm.org/10.1145/1015330.1015430.

Nir Baram, Oron Anschel, Itai Caspi, and Shie Mannor. End-to-end differentiable adversarial imi-
tation learning. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
390–399, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. URL
http://proceedings.mlr.press/v70/baram17a.html.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/
abs/1606.01540.

Franois Chollet. keras. https://github.com/fchollet/keras, 2015.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, Jonathan Ho, Jonas Schneider, Ilya Sutskever,
Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. arXiv preprint
arXiv:1703.07326, 2017.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems, pp. 4565–4573, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–
1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL http://dx.
doi.org/10.1162/neco.1997.9.8.1735.

Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for human action
recognition. IEEE transactions on pattern analysis and machine intelligence, 35(1):221–231,
2013.

11

http://tensorflow.org/
http://doi.acm.org/10.1145/1015330.1015430
http://proceedings.mlr.press/v70/baram17a.html
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://github.com/fchollet/keras
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735

Under review as a conference paper at ICLR 2018

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Ben Lau. Keras-flappybird. https://github.com/yanpanlau/Keras-FlappyBird,
2017.

Timothy Lillicrap, Jonathan Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In The Inter-
national Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2016. URL
http://arxiv.org/abs/1509.02971.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, Feb 2015. ISSN 0028-0836.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928–1937, 2016.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann ma-
chines. In Johannes Frnkranz and Thorsten Joachims (eds.), Proceedings of the 27th Inter-
national Conference on Machine Learning (ICML-10), pp. 807–814. Omnipress, 2010. URL
http://www.icml2010.org/papers/432.pdf.

Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In Proceedings
of the Seventeenth International Conference on Machine Learning, ICML ’00, pp. 663–670, San
Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1-55860-707-2. URL
http://dl.acm.org/citation.cfm?id=645529.657801.

OpenAI. Roboschool. https://github.com/openai/roboschool, 2017.

Philip Paquette. gym-super-mario. https://github.com/ppaquette/
gym-super-mario, 2017.

Deepak Pathak. noreward-rl. https://github.com/pathak22/noreward-rl, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning (ICML), 2017.

Matthias Plappert. keras-rl. https://github.com/matthiasplappert/keras-rl,
2016.

D. A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neural
Computation, 3(1):88–97, March 1991. ISSN 0899-7667. doi: 10.1162/neco.1991.3.1.88.

Stefan Schaal. Learning from demonstration. In M. C. Mozer, M. I. Jordan, and T. Petsche (eds.),
Advances in Neural Information Processing Systems 9, pp. 1040–1046. MIT Press, 1997. URL
http://papers.nips.cc/paper/1224-learning-from-demonstration.
pdf.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In David Blei and Francis Bach (eds.), Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML-15), pp. 1889–1897. JMLR Workshop and
Conference Proceedings, 2015. URL http://jmlr.org/proceedings/papers/v37/
schulman15.pdf.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

12

http://arxiv.org/abs/1412.6980
https://github.com/yanpanlau/Keras-FlappyBird
http://arxiv.org/abs/1509.02971
http://www.icml2010.org/papers/432.pdf
http://dl.acm.org/citation.cfm?id=645529.657801
https://github.com/openai/roboschool
https://github.com/ppaquette/gym-super-mario
https://github.com/ppaquette/gym-super-mario
https://github.com/pathak22/noreward-rl
https://github.com/matthiasplappert/keras-rl
http://papers.nips.cc/paper/1224-learning-from-demonstration.pdf
http://papers.nips.cc/paper/1224-learning-from-demonstration.pdf
http://jmlr.org/proceedings/papers/v37/schulman15.pdf
http://jmlr.org/proceedings/papers/v37/schulman15.pdf

Under review as a conference paper at ICLR 2018

G. E. Uhlenbeck and L. S. Ornstein. On the theory of the brownian motion. Phys. Rev., 36:823–841,
Sep 1930. doi: 10.1103/PhysRev.36.823. URL https://link.aps.org/doi/10.1103/
PhysRev.36.823.

Ziyu Wang, Josh Merel, Scott E. Reed, Greg Wayne, Nando de Freitas, and Nicolas Heess. Robust
imitation of diverse behaviors. CoRR, abs/1707.02747, 2017. URL http://arxiv.org/
abs/1707.02747.

Eric Wiewiora. Potential-based shaping and q-value initialization are equivalent. J. Artif. Int. Res., 19
(1):205–208, September 2003. ISSN 1076-9757. URL http://dl.acm.org/citation.
cfm?id=1622434.1622441.

Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep inverse reinforce-
ment learning. arXiv preprint arXiv:1507.04888, 2015.

Brian D. Ziebart, Andrew Maas, J. Andrew (Drew) Bagnell, and Anind Dey. Maximum entropy
inverse reinforcement learning. In Proceeding of AAAI 2008, Pittsburgh, PA, July 2008.

6 APPENDIX

6.1 NETWORK DETAIL FOR REACHER

The DDPG’s actor network has 400 and 300 unites fully-connected (fc) layers, the critic network
has also 400 and 300 fully-connected layers, and each layer has a ReLU (Nair & Hinton (2010))
activation function. We put the tanh activation function at the final layer of actor network. Without
this modification, the normal RL takes a long time to converge. Also, initial weights will be set
from a uniform distribution U(−0.003, 0.003). The exploration policy is Ornstein-Uhlenbeck pro-
cess (Uhlenbeck & Ornstein (1930)) (θ = 0.15, µ = 0, σ = 0.01), size of reply memory is 1M, and
optimizer is Adam (Kingma & Ba (2014)). We implemented these experiments by Keras-rl (Plappert
(2016)), Keras (Chollet (2015)), and Tensorflow (Abadi et al. (2015)) libraries.

6.2 DEMONSTRATION DATA FOR REACHER TO FIXED TARGET

(a) τ500 (b) τ1k (c) τ2k

Figure 8: These are scatter-plots of end-effector positions (blue) for each state of captured demon-
stration τ500, τ1k, τ2k, each point is drawn by α is 0.01. And the fixed target position is also plot-
ted (red). Notes that this is just plotting end-effector position, there is more variation in other state
values. For example, even if the end-effector position were same, arms’ pose (joint values) might be
different. Note that τ500 is not used in the experiment.

6.3 NETWORK DETAILS FOR REACHER WITH OBSTACLE

The DDPG’s actor network has 64 and 64 unites fully-connected layers, the critic network has also
64 and 64 fully-connected layers, and each layer has a ReLU activation function. Initial weights will
be set from a uniform distribution U(−0.003, 0.003). The exploration policy is Ornstein-Uhlenbeck
process (Uhlenbeck & Ornstein (1930)) (θ = 0.15, µ = 0, σ = 0.01), size of reply memory is 500k,
and optimizer is Adam.

13

https://link.aps.org/doi/10.1103/PhysRev.36.823
https://link.aps.org/doi/10.1103/PhysRev.36.823
http://arxiv.org/abs/1707.02747
http://arxiv.org/abs/1707.02747
http://dl.acm.org/citation.cfm?id=1622434.1622441
http://dl.acm.org/citation.cfm?id=1622434.1622441

Under review as a conference paper at ICLR 2018

6.4 NETWORK DETAILS FOR FLAPPY BIRD

The DQN has three convolutional (kernel size are 8x8, 4x4, and 3x3, filter num are 32, 64, and 64,
and stride num are 4, 2, and 1), one fc layer (512), and final layer. The ReLU activation function is
inserted after each layer. It uses the Adam optimizer, and mean square loss. Replay memory size is
2M, batch size is 256, and other parameters have been followed the repository (Lau (2017)).

14

	Introduction
	Related work
	Reward Estimation Method
	Problem Statement
	Proposed Methods
	Generative modeling
	Temporal sequence prediction

	Experiments
	Reacher
	Reacher to fixed point
	Reacher to random point

	Reacher with obstacle
	Flappy Bird
	Mario

	Conclusion
	APPENDIX
	Network detail for reacher
	Demonstration data for reacher to fixed target
	Network details for reacher with obstacle
	Network details for Flappy Bird

