Published as a conference paper at ICLR 2017

TRAINING COMPRESSED FULLY-CONNECTED NET-
WORKS WITH A DENSITY-DIVERSITY PENALTY

Shengjie Wang Haoran Cai Jeff Bilmes

Department of CSE Department of Statistics Department of EE, CSE
University of Washington University of Washington University of Washington
wangsj @cs.washington.edu haoran@uw.edu bilmes @uw.edu

William Noble

Department of GS, CSE
University of Washington
william-noble @u.washington.edu

ABSTRACT

Deep models have achieved great success on a variety of challenging tasks. How-
ever, the models that achieve great performance often have an enormous number
of parameters, leading to correspondingly great demands on both computational
and memory resources, especially for fully-connected layers. In this work, we
propose a new “density-diversity penalty” regularizer that can be applied to fully-
connected layers of neural networks during training. We show that using this
regularizer results in significantly fewer parameters (i.e., high sparsity), and also
significantly fewer distinct values (i.e., low diversity), so that the trained weight
matrices can be highly compressed without any appreciable loss in performance.
The resulting trained models can hence reside on computational platforms (e.g.,
portables, Internet-of-Things devices) where it otherwise would be prohibitive.

1 INTRODUCTION

Deep neural networks have achieved great success on a variety of challenging data science tasks
(Krizhevsky et al., 2012} Hinton et al., 2012;|Simonyan & Zisserman, 2014b;|Bahdanau et al.,[2014;
Mnih et al.,|2015;|S1lver et al., 2016; |Sutskever et al.,2014). However, the models that have achieved
this success have a very large number of parameters, a consequence of their wide and deep archi-
tectures. Although such models yield great performance benefits, the corresponding memory and
computational costs are high, making such models inaccessible to lightweight architectures (e.g.,
portable devices, Internet-of-Things devices, etc.). In such settings, the deployment of neural net-
works offers tremendous potential to produce novel applications, yet the modern top-performing
networks are often infeasible on these platforms.

Fully-connected layers and convolutional layers are the two most commonly used neural network
structures. While networks that consist of convolutional layers, are particularly good for vision
tasks, the fully-connected layers, even if they are in the minority, are responsible for the majority
of the parameters. For example, the VGG-16 network (Simonyan & Zisserman, 2014a) has 13
convolutional layers and 3 fully-connected layers, but the parameters for 13 convolutional layers
contain only ~ 1/9 of the parameters of the three fully-connected layers. Moreover, for general
tasks, convolutional layers may be not applicable (data might be one-dimensional, or there might
be no local correlation among data dimensions). Therefore, compression of fully-connected layers
is critical for reducing the memory and computational cost of neural networks in general.

We can use the characteristics of convolutional layers to reduce the memory and computational cost
of fully-connected layers. Convolution is a special form of matrix multiplication, where the weights
of the matrix are shared according to the convolution structure (low diversity), and most entries of
the weight matrix are zeros (high sparsity). Both of these properties greatly reduce the information
capacity of the weight matrix.

Published as a conference paper at ICLR 2017

In this paper, we propose a density-diversity penalty regularization, which encourages low diversity
and high sparsity on fully-connected layers. The method uses a pairwise L1 loss of weight matrices
to the training objective. Moreover, we propose a novel “sorting trick” to efficiently optimize the
density-diversity penalty, which would otherwise would be very difficult to optimize and would
slow down training significantly. When initializing the weights to have a small portion of them to be
zero, the density-diversity penalty effectively increases the sparsity of the trained weight matrices in
addition to reducing the diversity, generating highly compressible weight matrices.

On two separate tasks, computer vision and speech recognition, we demonstrate that the proposed
density-diversity penalty significantly reduces the diversity and increases the sparsity of the models,
while keeping the performance almost unchanged.

2 PREVIOUS RELATED WORK

For this paper, we focus on reducing the number of actual parameters in fully-connected layers by
using the density-diversity penalty to encourage sparsity and penalize diversity. Several previous
studies have focused on the task of reducing the complexity of deep neural network weights.

Nowlan & Hinton|(1992) introduced a regularization method to enforce weight sharing by modeling
the distribution of weight values as a Gaussian mixture model. This approach is in the same spirit
as our method, because both methods apply regularization during training to reduce the complexity
of weights. However, the Nowlan et al. approach focuses more on the generalization of the network
rather than the compression. Moreover, their approach involves explicitly clustering weights to
group them, while in our approach, weights are grouped by the regularizer directly.

The “optimal brain damage” (LeCun et al., [1989) and “optimal brain surgeon” (Hassibi & Stork,
1993) methods are two approaches for pruning weight connections of neural networks based on
information about the second order derivatives. Interestingly, (Ciresan et al. (2011) showed that
dropplng weights randomly can lead to better performance. All three approaches focus more on
pruning unnecessary weights of the network (increasing sparsity) rather than grouping parameters
(decreasing diversity), while our approach addresses both tasks with a single regularizer.

Chen et al.| (2015b) proposed a hashing trick to randomly group connection weights into hash buck-
ets, so that the weight entries in the same hash bucket are tied to be a single parameter value. Such
approaches force low diversity among weight matrix entries, and the grouping of weight entries
are determined by the hash functions prior to training. In contrast, our method learns to tie the
parameters during training.

Han et al.| (2015b) first proposed a method to learn both weights and connections for neural net-
works by iteratively pruning out low-valued entries in the weight matrices. Based on that idea, they
proposed a three stage pipeline (Han et al.,|2015a): pruning low-valued weights, quantizing weights
through k-means clustering, and Huffman coding. The resulting networks are highly compressed
due to both sparsity (pruning) and diversity (quantization). The quantization of weights is applied to
well-trained models with pruned weights, whereas our method prunes and quantizes weights simul-
taneously during training. Our approach is most relevant to that of Han et al., and we achieve compa-
rable or better results. In some sense, it may be argued that our approach generalizes on that of Han
et al. because the hyperparameter controlling the strength of the density-diversity penalty can be
adaptively increased during training (although in the present paper, we keep it fixed during training).

3 DENSITY-DIVERSITY PENALTY

Suppose we are given a deep neural network of the following form:

Q_ m¢(m— 1¢((j)(WlfL'))), (1)

where W; represents the weight matrix of layer j, ¢ is a non-linear transfer function, x denotes the
input data, and y and ¢ denote the true and estimated labels for x, respectively. Suppose weight
matrix W has order (7}, ¢;).

Published as a conference paper at ICLR 2017

Let the objective of the deep neural network be min L(§,y), where L(-) is the loss function. We
propose the following optimization to encourage low density and low diversity in weight matrices:

min L(@,y) + Y A [Y. Y Wila,b) = Wi, 0) + W5l |)
=1 a=1lirj, o' = Ty,
’ b=1:c; b':ll:ci
where W (a, b) denotes the entry of W in the a' row and b™ column, A; > 0 is a hyperparameter,
and ||-||,, is a matrix p-norm (e.g., p = 2 gives the Frobenius norm, or p = 1is a sparsity encouraging
norm). We denote the density-diversity penalty for each W; as DP(W;).

In general, for weight matrix W, the proposed density-diversity penalty resembles the pairwise
L1 difference over all entries of W;. Intuitively, such regularization forces the entries of W; to
collapse into the same values, not just similar values. The regularizer thus reduces the diversity
of W; significantly. The diversity penalty, therefore, is a form of total variation penalty (Rudin
et al., |1992) but where the pattern on which total variation is measured is not between neighboring
elements (as in computer vision (Chambolle & Lions| [1997))) but rather globally among all pairs of
all elements in the matrix.

Though the hyperparameter A; can be tuned for each layer, in practice, we only tune one \; for layer
Jj, and for all layers j' # j, we set \j; = (T;;z;/)A;, because the magnitude of the density-diversity
penalty is directly correlated with the number of entries in the weight matrix.

3.1 EFFICIENTLY OPTIMIZING THE DENSITY-DIVERSITY PENALTY

While the gradient of the p-norm part of the density-diversity penalty is easy to calculate, computing
the gradient of the diversity part of the density-diversity penalty is expensive: naive evaluation costs
O(r3c?) for a weight matrix W; of order (7, ¢;). If we suppose r; = 2000 and ¢; = 2000, which
is common for modern deep neural networks, then the computational cost of the density-diversity

penalty becomes roughly (2000)* = 1.6 x 103, which is intractable even on modern GPUs.

For simplicity, suppose we assign the subgradient of each L1 term at zero to be zero, which is
typical in certain widely-used neural network toolkits such as Theano (Theano Development Team,
2016) and mxnet (Chen et al., 2015a). With a sorting trick, shown in Alg|l} we can greatly reduce
the computational cost of calculating the gradients of density-diversity penalty from O(rjz c?) down

to only O(r;c;(logr; +logc;)).

input . Wj, Aj, Tj, Cj
. ODP(Wj)
output: —ow,
W; = flatten(W;) ;
I; = sort_index (W) ;
I} = num_greater(/;);
OB = reshape(\; (I} — 1), (5, ¢;));
dDP(W;)
aw;
Algorithm 1: Sorting Trick for Efficiently Calculating the Gradient of Density-

Diversity Penalty on Weight Matrix W :%

return

In the algorithm, flatten(1/;) transforms the matrix W, which is of order (r;,c;), into a vector
of length r; * ¢;, and sort_index(-) outputs the sorted indices (in ascending order) of the input
vector, e.g. sort.index((3,2,1,2,3,4)) = (3,1,0,1,3,5). In other words, entry ¢ in the sorted
indices is the number of entries in the original vector smaller than the ith entry. Also note that
the entries with the same value have the same sorted index. Correspondingly, num_greater(-) out-
puts the number of elements greater than a certain entry based on the sorted index. For example,
num_greater((3,1,0,1,3,5)) = (1, 3,5, 3,1, 0). Finally, reshape(-) transforms the input vector into
a matrix of the given shape.

The computational cost of the sorting trick is dominated by the sorting step I; = sort_index(W;),
which is of complexity O(r;c;(logr; + logc;)). We show that the sorting trick outputs the correct

Published as a conference paper at ICLR 2017

gradient in the following equation:

6DP(WJ) _ aZa’:l:rj,b’:I:(:j |Wj(a7 b) - Wj (Cl/, b/)|
8Wj (a7 b) - 6WJ (a, b)
_ 3 9|Wj(a,b) — Wj(a’,b')] n 3 I|Wj(a,b) — W;(a’, V)|
W (a,b)>W;(a’,b") aWJ (a’ b) W, (a,b)<W;(a/,b) aWJ (a” b)
= > 1+ > -1
W, (a,b)>W;(a’,b) W, (a,b)<W;(a’,b)
= Ii(ar; +b) — I;(ar; +b), (3)

where I;(ar; + b) corresponds to the (ar; + b)th entry of I;, which is the ath row and bth column
of the matrix formed by reshaping I; into (5, ¢;).

Intuitively, % requires counting the number of entries in W; with values greater than
J)

W;(a,b), and the number of entries less than W (a, b). By sorting entries of W;, we get I;(ar; +b)
and I} (ar; + b) for all pairs of (a, b) collectively; therefore, we can easily calculate the gradient for
the density-diversity penalty.

Although the sorting trick is efficient for calculating the gradient for the density-diversity penalty,
depending on the size of each weight matrix, the computational cost can still be high. In practice, to
further reduce computational cost, for every mini-batch, we only apply the density-diversity penalty
with a certain small probability (e.g. 1% to 5%). This approach still effectively forces the values
of weight matrices to collapse, while the increase in the training time is not significant. For our
implementation, to accelerate collapsing of weight entries, we truncate the weight matrix entries to
have a limited number of decimal digits (e.g. 6), in which case entries with very small differences
(e.g. 1e — 6) are considered to be the same value.

3.2 ENCOURAGING SPARSITY

The density-diversity penalty forces entries of a weight matrix to collapse into the same value,
yet sparsity is not explicitly enforced. To encourage sparsity in the weight matrices, we randomly
initialize every weight matrix with 10% sparsity (i.e., 90% of weight matrix entries are non-zero).
Thereafter, every time we apply density-diversity penalty, we subsequently set the weight matrix
value corresponding to the modal value to be zero. Because the value zero is almost always the
most frequent value in the weight matrix (owing to the p-norm), weights are encouraged to stay at
zero when using this method, because the density-diversity penalty encourages weights to collapse
into same values. Our sparse initialization approach thus complements any sparsity-encouraging
property of the p-norm part of the density-diversity penalty.

3.3 COMPRESSION WITH LOW DIVERSITY AND HIGH SPARSITY

Low diversity and high sparsity both can significantly reduce the number of bits required to encode
the weight matrices of the trained network. Specifically, for low diversity, considering the weight
matrix with d distinct entries, we only need [logad| bits to encode each entry, in contrast to 32-bit
floating point values for the original, uncompressed model. High sparsity facilitates encoding the
weight matrices in a standard, sparse matrix representation using value and position pairs. Therefore,
for a weight matrix in which s entries are not equal to the modal value of the matrix, 2s+min(r;, ¢;)
entries are required for encoding, where the min(r;, ¢;) part is for indicating the row or column
index, depending on whether compressed sparse row or column form is used. We note that further
compression is possible: e.g., by encoding sparsity with values and increments in positions instead
of absolute positions, so that the increments are often small values which require less bits to encode.
Huffman Coding can also further be applied in the final step, as is done in (Han et al.,|2015a), but
we do not report this method in our results.

3.4 TYING THE WEIGHTS

Because the density-diversity penalty collapses weight matrix entries into same values, we tie the
weights together so that for every distinct value v of weight matrix W, the entries that are equal to
v are updated with the average of their gradients.

Published as a conference paper at ICLR 2017

In practice, we design the training procedure to alternate between learning with the density-diversity
penalty and learning with tied weights. During the phase of learning with the density-diversity
penalty, we apply the density-diversity penalty with untied weights. This approach greatly reduces
the diversity of the weight matrix entries. However, the performance of the resulting model could
be inferior to that of the original model because this approach does not optimize the loss function
directly. Therefore, for the phase of learning with tied weights, we train the network without the
density-diversity penalty, but we tie the entries of the weight matrices according to the pattern
learned from the previous phase. In this way, the network’s performance improves while the
diversity patterns of the weight matrices are unchanged. We also note that during the phase of
learning with tied weights, the sparsity pattern is also fixed, because it was learned in the previous
density-diversity pattern learning phase. We show the full procedure of model training with the
density-diversity penalty in Figure[T]

7’ ~
’ \
1 / \ \
] 1
1]
1 1
1 1
1 1
1 1
i Train without i
P . H rain wi H
Ircl;i:vagzz::;:h | Diversity Penalty but |
parsity i with tied Weights |
i i
‘\Improved Compression Keep Performance the Samg,’

-’

__

Repeat Until Convergence or Early Stopping Criteria met

Figure 1: Pipeline for compressing networks using the density-diversity penalty. Initialization
with low sparsity encourages the weights to collapse, as enforced by the density-diversity penalty.
Training with the density-diversity penalty greatly compresses the network by increasing sparsity
and decreasing diversity, but the resulting performance can be suboptimal. Training with the tied
weights boosts the performance so that we obtain a highly compressed model with the same perfor-
mance as the original model.

An alternative approach would be to train the model with tied weights and use the density-diversity
penalty simultaneously. However, because the diversity pattern, which controls the tying of the
weights, changes rapidly across mini-batches, the weights would need to be re-tied frequently
based on the latest diversity pattern. This approach would therefore be computationally expensive.
Instead, we choose to alternate between applying the density-diversity penalty and training tied
weights. In practice, we train each phase for 5 to 10 epochs.

We note that the three key components of our algorithm, namely the sparse initialization, the regular-
ization, and the weight tying, contribute to highly compressed network only when they are applied
jointly. Independently applying any of the key component would result in inferior results (we stated
developing our approach without the sparse initialization and weight tying and got worse compres-
sion results) as a good compression requires low diversity, which is achieved by applying the density-
diversity penalty, high sparsity, which is achieved by applying both the density-diversity penalty and
the sparse initialization, and no loss of performance, which is achieved by training with weight tying.

4 RESULTS

We apply the density-diversity penalty (with p = 2 for now) to the fully-connected layers of the
models on both the MNIST (computer vision) and TIMIT (speech recognition) datasets, and get
significantly sparser and less diverse layer weights. This approach yields dramatic compression
of models, whose original sizes are already quite conservative, while keeping the performance un-
changed. For our implementation, we start with the mxnet (Chen et al.},[2015a) package, which we
modified by changing the weight updating code to include our density-diversity penalty.

To evaluate the effectiveness of the density-diversity penalty, we report the diversity and sparsity of
the trained weight matrices. We define “diversity” to be number of distinct values divided by the
total number of entries in the weight matrix , “sparsity” to be number of entries with the modal value
divided by the total number of entries, and “density” to be 1 — sparsity. Based on the observed diver-

Published as a conference paper at ICLR 2017

Layer | # Weights | DP Density | DC Density | DP Diversity | DC Diversity
fcl 235K 0.025 0.08 0.0031 0.0003
fc2 30K 0.11 0.09 0.017 0.0021
fc3 1K 0.8 0.26 0.77 0.064

Overall 266K 0.037 0.08 0.018 0.0007

Table 1: Compression for LeNet-300-100 on MNIST, comparing model trained with density-

diversity penalty (DP) and “deep compression” method (DC).

Layer # Weights | DP Density | DC Density | DP Diversity | DC Diversity
convl 0.5K 1.0 0.66 1.0 0.51
conv2 25K 1.0 0.12 1.0 0.010
fcl 400K 0.0034 0.08 0.0017 0.0002
fc2 5K 0.048 0.19 0.042 0.013
Overall FC 405K 0.0039 0.08 0.0022 0.0003
Overall 431K 0.063 0.08 0.061 0.0014

Table 2: Compression for LeNet-5 on MNIST, comparing model trained with density-diversity
penalty (DP) and “deep compression” method (DC). The Overall FC row reports the overall statistics
for the fully-connected layers only, where density-diversity penalty is applied.

sity and sparsity, we can estimate the compression rate of the model. For weight matrix W;, suppose
ke = [logs(diversity (W;) * r; + ¢;)], and k" = [logs(min(r;, c;))], which represent the
bits required to encode the value and position, respectively, in the sparse matrix representation.
Thus, we have

— TiCiP
- (1—sparsity(Wj))rjcj(k;’“lue—l-k;"dem)—l—diversity(Wj)rjcjp—l—min(rj,cj)’

4)

CompressRate(W;)

where p is the number of bits required to encode the weight matrix entries used in the original model,
and we choose p = 32 as used in most modern neural networks.

4.1 MNIST DATASET

The MNIST dataset consists of hand-written digits, containing 60000 training data points and 10000
test data points. We further sequester 10000 data points from the training data to be used as the
validation set for parameter tuning. Each data point is of size 28 x 28 = 784 dimensions, and there
are 10 classes of labels.

We choose LeNet (LeCun et al., [1998) as the model to compress, because LeNet performs well
on MNIST while having a restricted size, which makes compression hard. Specifically, we test on
LeNet-300-100, which consists of two hidden layers, with 300 and 100 hidden units respectively,
as well as LeNet-5, which contains two convolutional layers and two fully connected layers. Note
that for LeNet-5, we only apply the density-diversity penalty on the fully connected layers. For
optimization, we use SGD with momentum.

We report the diversity and sparsity of each layer of the LeNet-300-100 model trained with the
diversity penalty in Table[I] The overall compression rate for the LeNet-300-100 model is 32.43X,
using 10 bits to encode both value and index of the sparse matrix representation (the number of
bits are based on the number of distinct values in the trained weight matrices). The error rate
of the compressed model is 1.62%, while the error rate of the original model is 1.64%; thus, we
obtain a highly compressed model without loss of performance. Compared to the state-of-the-art
“deep compression” result (Han et al., 2015b), which achieves roughly 32 times compression rate
(without applying Huffman Coding in the end), our method overall achieves a better compression
rate. We also note that “deep compression” uses a more complex sparsity matrix representation, so
that indices of values are encoded with many fewer bits.

In Table[2] we show the per-layer diversity and sparsity of the LeNet-5 convolutional model applied
with the density-diversity penalty. For such a model, the overall compression rate is 15.78X. When
considering only the fully-connected layers of the model, where most parameters reside and the

Published as a conference paper at ICLR 2017

Layer | # Weights | DP Density | DC Density | DP Diversity | DC Diversity
fcl 3778K 0.037 0.12 0.0004 1.6e-5
fc2 4194K 0.064 0.13 0.0003 1.5e-5
fc3 4194K 0.080 0.14 0.0004 1.5e-5
fc4 251K 0.35 0.25 0.012 0.0002

Overall | 12417K 0.0947 0.1936 0.0007 1.9e-5

Table 3: Compression statistics for 3-2048 fully-connected network on TIMIT dataset, comparing
model trained with density-diversity penalty (DP) and “deep compression” method (DC).

density-diversity penalty applies, the compression rate is 226.32X, using 9 bits for both value and
index for sparse matrix representation. The error rate for the compressed model is 0.93%, which
is comparable to the 0.88% error rate of the original model. Compared to the “deep compression”
method (without Huffman Coding), which gives 33 times compression for the entire model, and 36
times compression for the fully-connected layers only, our approach achieves better results on the
fully-connected layers.

4.2 TIMIT DATASET

The TIMIT dataset is for a speech recognition task. The dataset consists of a 462 speaker training
set, a 50 speaker validation set, and a 24 speaker test set. Fifteen frames are grouped together as
inputs, where each frame contains 40 log mel filterbank coefficients plus energy, along with their
first and second temporal derivatives (Mohamed et al., 2012). Overall, there are 1.1M training data
samples, 120k validation samples, and 50k test samples. We use a window of size 15 £ 7 of each
frame, so that each data point has 1845 dimensions. Each dimension is normalized by subtracting
the mean and dividing by the standard deviation. The label vector has 183 dimensions, consisting of
three states for each of the 61 phonemes. For decoding, we use a bigram language model (Mohamed
et al.,|2012)), and the 61 phonemes are mapped to 39 classes as done in (Lee & Honl |1989) and as is
quite standard.

We choose the model used in (Mohamed et al.| |2012) and (Ba & Caruana, 2014) as the target for
compression. In particular, the model contains three hidden fully-connected layers, each of which
has 2048 hidden units. We choose ReLLU as the activation function and AdaGrad (Duchi et al.,
2011) for optimization, which performs the best on the original models without the density-diversity
penalty.

Table [3] shows the per-layer diversity and sparsity for both the density-diversity penalty and “deep
compression” applied to the 3-2048 fully-connected model on TIMIT dataset. We train the original,
uncompressed model and observe a 23.30% phone error rate on the core test set. With our best
effort of tuning parameters for the “deep compression” method, we get 23.35% phone error rate
and a compression rate of 19.47X, using 64 cluster centers for the k-means quantization step. For
our density-diversity penalty regularization, we get 21.45X compression and 23.25% phone error
rate with 11 digits for value encoding and 11 digits for position encoding for the sparse matrix
representation.

We visualize a part of the weight matrix either trained with or without the density-diversity penalty
in Figure 2] We clearly observe that the weight matrix trained with the density-diversity penalty
has significantly more commonality amongst entry values. In addition, the histogram of the entry
values comparing the two weight matrices (Figure |3)) shows that the weight matrix trained with
density-diversity penalty has much less variance in the entry values. Both figures show that density-
diversity penalty effectively makes the weight matrix extremely compressed.

5 DISCUSSION

On both the MNIST and TIMIT datasets, compared to the “deep compression” method (Han et al.,
2015b), the density-diversity penalty achieves comparable or even better compression rates on fully-
connected layers. Another advantage offered by the density-diversity penalty approach is that, rather
than learning the sparsity pattern and diversity pattern separately as done in the “deep compression”
method, the density-diversity penalty enforces high sparsity and low diversity simultaneously, which
greatly reduces the effort involved in tuning parameters.

Published as a conference paper at ICLR 2017

0.16
0 100 200 300 400 500 0 100 200 300 400 500| |g3,
0 0 c .
0.12 Sk L3 Ny
: G 0.24
100 0.08 SR
; g 0.16
0.04 : : e i
200 : ; 0.08
0.00 . ;
= = S 0.00
300 -0.04 o e
: i -0.08
-0.08 s : %
400 -0.16
-0.12 CRa
: s g -0.24
500 - —0.16 500 5 e
input input ~0.32

Figure 2: Visualization of the first 500 rows and 500 columns of the first layer weight matrix (shape
2048 X 1845) of the TIMIT 3-2048 model, comparing training either with (left) or without density-
diversity penalty (right).

output
output

0.16 0.06

0.14

0.12

°
S

frequency
°
N
3

frequency

values values

Figure 3: Histogram of the entries of the first layer weight matrix (shape 2048 X 1845) of the
TIMIT 3-2048 model with zero entries removed, comparing training either with (left) or without
density-diversity penalty (right).

Specifically, comparing the diversity and sparsity of the trained matrices using the two compression
methods, we find that the density-diversity penalty achieves higher sparsity but more diversity than
the “deep compression” method. The “deep compression” method has two separate phases, where
for the first phase, the sparsity pattern is learned by pruning away low value entries, and for the
second phase, k-means clustering is applied to quantize the matrix entries into a chosen number of
clusters (e.g., 64), thus generating weight matrices with very low diversity. In contrast, the density-
diversity penalty acts as a regularizer, enforcing low diversity and high sparsity simultaneously and
during training, so that the diversity and sparsity of the trained matrices are more balanced.

6 CONCLUSION

In this work, we introduce density-diversity penalty as a regularization on the fully-connected lay-
ers of deep neural networks to encourage high sparsity and low diversity pattern in the trained
weight matrices. To efficiently optimize the density-diversity penalty, we propose a “sorting trick”
to make the density-diversity penalty computationally feasible. On the MNIST and TIMIT datasets,
networks trained with the density-diversity penalty achieve 20X to 200X compression rate on fully-
connected layers, while keeping the performance comparable to that of the original model.

In future work, we plan to apply the density-diversity penalty to recurrent models, extend the density-
diversity penalty to convolutional layers, and test other values of p. Moreover, besides pairwise L1
loss for the diversity portion of the density-diversity penalty, we will investigate other forms of
regularizations to reduce the diversity of the trained weight matrices (e.g., other forms of structured
convex norms). Throughout this work, we have focused on the compression task, but the learned
sparsity/diversity pattern of the trained weight matrices is also worth exploring further. For image
and speech data, we know that we can use the convolutional structure to improve performance,
whereas for other very different forms of data, where we have no prior knowledge about the structure
(i.e., patterns of locality), the density-diversity penalty may be applied to discover the underlying
hidden pattern of the data and to achieve improved results.

Published as a conference paper at ICLR 2017

REFERENCES

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in neural informa-
tion processing systems, pp. 2654-2662, 2014.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Antonin Chambolle and Pierre-Louis Lions. Image recovery via total variation minimization and
related problems. Numerische Mathematik, 76(2):167-188, 1997.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015a.

Wenlin Chen, James T Wilson, Stephen Tyree, Kilian Q Weinberger, and Yixin Chen. Compressing
neural networks with the hashing trick. CoRR, abs/1504.04788, 2015b.

Dan C Ciresan, Ueli Meier, Jonathan Masci, Luca M Gambardella, and Jiirgen Schmidhuber. High-
performance neural networks for visual object classification. arXiv preprint arXiv:1102.0183,
2011.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121-2159, 2011.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149, 2, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for

efficient neural network. In Advances in Neural Information Processing Systems, pp. 1135-1143,
2015b.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Morgan Kaufmann, 1993.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research groups. Signal
Processing Magazine, IEEE, 29(6):82-97, 2012.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097-1105,
2012.

Yann LeCun, John S Denker, Sara A Solla, Richard E Howard, and Lawrence D Jackel. Optimal
brain damage. In NIPs, volume 2, pp. 598-605, 1989.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

K-F Lee and H-W Hon. Speaker-independent phone recognition using hidden markov models. /IEEE
Transactions on Acoustics, Speech, and Signal Processing, 37(11):1641-1648, 1989.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

Abdel-rahman Mohamed, George E Dahl, and Geoffrey Hinton. Acoustic modeling using deep
belief networks. IEEE Transactions on Audio, Speech, and Language Processing, 20(1):14-22,
2012.

Steven J Nowlan and Geoffrey E Hinton. Simplifying neural networks by soft weight-sharing.
Neural computation, 4(4):473-493, 1992.

Published as a conference paper at ICLR 2017

Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 60(1):259-268, 1992.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484—489, 2016.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. CoRR, abs/1409.1556, 2014a.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014b.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104-3112, 2014.

Theano Development Team. Theano: A Python framework for fast computation of mathematical
expressions. arXiv e-prints, abs/1605.02688, May 2016. URL http://arxiv.org/abs/
1605.02688.

10

http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688

	Introduction
	Previous Related Work
	Density-Diversity Penalty
	Efficiently Optimizing the Density-Diversity Penalty
	Encouraging Sparsity
	Compression with Low Diversity and High Sparsity
	Tying the Weights

	Results
	MNIST Dataset
	TIMIT Dataset

	Discussion
	Conclusion

