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ABSTRACT

Real-valued word representations have transformed NLP applications; popular
examples are word2vec and GloVe, recognized for their ability to capture linguistic
regularities. In this paper, we demonstrate a very simple, and yet counter-intuitive,
postprocessing technique – eliminate the common mean vector and a few top
dominating directions from the word vectors – that renders off-the-shelf represen-
tations even stronger. The postprocessing is empirically validated on a variety of
lexical-level intrinsic tasks (word similarity, concept categorization, word analogy)
and sentence-level tasks (semantic textural similarity and text classification) on
multiple datasets and with a variety of representation methods and hyperparameter
choices in multiple languages; in each case, the processed representations are
consistently better than the original ones.

1 INTRODUCTION

Words and their interactions (as sentences) are the basic units of natural language. Although words
are readily modeled as discrete atomic units, this is unable to capture the relation between the
words. Recent distributional real-valued representations of words (examples: word2vec, GloVe) have
transformed the landscape of NLP applications – for instance, text classification (Socher et al., 2013b;
Maas et al., 2011; Kim, 2014), machine translation (Sutskever et al., 2014; Bahdanau et al., 2014) and
knowledge base completion (Bordes et al., 2013; Socher et al., 2013a). The success comes from the
geometry of the representations that efficiently captures linguistic regularities: the semantic similarity
of words is well captured by the similarity of the corresponding vector representations.

A variety of approaches have been proposed in recent years to learn the word representations:
Collobert et al. (2011); Turian et al. (2010) learn the representations via semi-supervised learning by
jointly training the language model and downstream applications; Bengio et al. (2003); Mikolov et al.
(2010); Huang et al. (2012) do so by fitting the data into a neural network language model; Mikolov
et al. (2013); Mnih & Hinton (2007) by log-linear models; and Dhillon et al. (2012); Pennington
et al. (2014); Levy & Goldberg (2014); Stratos et al. (2015); Arora et al. (2016) by producing a low-
dimensional representation of the cooccurrence statistics. Despite the wide disparity of algorithms to
induce word representations, the performance of several of the recent methods is roughly similar on a
variety of intrinsic and extrinsic evaluation testbeds.

In this paper, we find that a simple processing renders the off-the-shelf existing representations even
stronger. The proposed algorithm is motivated by the following observation.

Observation Every representation we tested, in many languages, has the following properties:

• The word representations have non-zero mean – indeed, word vectors share a large common
vector (with norm up to a half of the average norm of word vector).
• After removing the common mean vector, the representations are far from isotropic – indeed,

much of the energy of most word vectors is contained in a very low dimensional subspace
(say, 8 dimensions out of 300).

Implication Since all words share the same common vector and have the same dominating direc-
tions, and such vector and directions strongly influence the word representations in the same way, we
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propose to eliminate them by: (a) removing the nonzero mean vector from all word vectors, effec-
tively reducing the energy; (b) projecting the representations away from the dominating D directions,
effectively reducing the dimension. Experiments suggest that D depends on the representations (for
example, the dimension of the representation, the training methods and their specific hyperparameters,
the training corpus) and also depends on the downstream applications. Nevertheless, a rule of thumb
of choosing D around d/100, where d is the dimension of the word representations, works uniformly
well across multiple languages and multiple representations and multiple test scenarios.

We emphasize that the proposed postprocessing is counter intuitive – typically denoising by dimen-
sionality reduction is done by eliminating the weakest directions (in a singular value decomposition
of the stacked word vectors), and not the dominating ones. Yet, such postprocessing yields a “purified”
and more “isotropic” word representation as seen in our elaborate experiments.

Experiments By postprocessing the word representation by eliminating the common parts, we
find the processed word representations to capture stronger linguistic regularities. We demonstrate
this quantitatively, by comparing the performance of both the original word representations and the
processed ones on three canonical lexical-level tasks:

• word similarity task tests the extent to which the representations capture the similarity
between two words – the processed representations are consistently better on seven different
datasets, on average by 1.7%;
• concept categorization task tests the extent to which the clusters of word representations

capture the word semantics – the processed representations are consistently better on three
different datasets, by 2.8%, 4.5% and 4.3%;
• word analogy task tests the extent to which the difference of two representations captures

a latent linguistic relation – again, the performance is consistently improved (by 0.5%
on semantic analogies, 0.2% on syntactic analogies and 0.4% in total). Since part of the
dominant components are inherently canceled due to the subtraction operation while solving
the analogy, we posit that the performance improvement is not as pronounced as earlier.

Extrinsic evaluations provide a way to test the goodness of representations in specific downstream
tasks. We evaluate the effect of postprocessing on a standardized and important extrinsic evaluation
task on sentence modeling: semantic textual similarity task – where we represent a sentence by its
averaged word vectors and score the similarity between a pair of sentences by the cosine similarity
between the corresponding sentence representation. Postprocessing improves the performance
consistently and significantly over 21 different datasets (average improvement of 4%).

Word representations have been particularly successful in NLP applications involving supervised-
learning, especially in conjunction with neural network architecture. Indeed, we see the power
of postprocessing in an experiment on a standard text classification task using a well established
convoluntional neural network (CNN) classifier (Kim, 2014) and three RNN classifiers (with vanilla
RNN, GRU (Chung et al., 2015) and LSTM Greff et al. (2016) as recurrent units). Across two
different pre-trained word vectors, five datasets and four different architectures, the performance with
processing improves on a majority of instances (34 out of 40) by a good margin (2.85% on average),
and the two performances with and without processing are comparable in the remaining ones.

Related Work. Our work is directly related to word representation algorithms, most of which have
been elaborately cited.

Aspects similar to our postprocessing algorithm have appeared in specific NLP contexts very recently
in (Sahlgren et al., 2016) (centering the mean) and (Arora et al., 2017) (nulling away only the first
principal component). Although there is a superficial similarity between our work and (Arora et al.
2017), the nulling directions we take and the one they take are fundamentally different. Specifically,
in Arora et al. (2017), the first dominating vector is *dataset-specific*, i.e., they first compute the
sentence representation for the entire semantic textual similarity dataset, then extract the top direction
from those sentence representations and finally project the sentence representation away from it.
By doing so, the top direction will inherently encode the common information across the entire
dataset, the top direction for the "headlines" dataset may encode common information about news
articles while the top direction for "Twitter’15" may encode the common information about tweets.
In contrast, our dominating vectors are over the entire vocabulary of the language.
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More generally, the idea of removing the top principal components has been studied in the context of
positive-valued, high-dimensional data matrix analysis (Bullinaria & Levy, 2012; Price et al., 2006).
Bullinaria & Levy (2012) posits that the highest variance components of the cooccurrence matrix are
corrupted by information other than lexical semantics, thus heuristically justifying the removal of
the top principal components. A similar idea appears in the context of population matrix analysis
(Price et al., 2006), where the entries are also all positive. Our postprocessing operation is on dense
low-dimensional representations (with both positive and negative entries).

We posit that the postprocessing operation makes the representations more “isotropic” with stronger
self-normalization properties – discussed in detail in Section 2 and Appendix A. Our main point is
that this isotropy condition can be explicitly enforced to come up with new embedding algorithms (of
which our proposed post-processing is a simple and practical version).

2 POSTPROCESSING

We test our observations on various word representations: four publicly available word representations
(WORD2VEC1 (Mikolov et al., 2013) trained using Google News, GLOVE2 (Pennington et al., 2014)
trained using Common Crawl, RAND-WALK (Arora et al., 2016) trained using Wikipedia and
TSCCA3 trained using English Gigaword) and two self-trained word representations using CBOW
and Skip-gram (Mikolov et al., 2013) on the 2010 Wikipedia corpus from (Al-Rfou et al., 2013). The
detailed statistics for all representations are listed in Table 1. For completeness, we also consider the
representations on other languages: a detailed study is provided in Appendix C.2.

Language Corpus dim vocab size avg. ‖v(w)‖2 ‖µ‖2
WORD2VEC English Google News 300 3,000,000 2.04 0.69
GLOVE English Common Crawl 300 2,196,017 8.30 3.15
RAND-WALK English Wikipedia 300 68, 430 2.27 0.70
CBOW English Wikipedia 300 1,028,961 1.14 0.29
Skip-Gram English Wikipedia 300 1,028,961 2.32 1.25

Table 1: A detailed description for the embeddings in this paper.
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Figure 1: The decay of the
normalized singular values of
word representation.

Let v(w) ∈ Rd be a word representation for a given word w in the
vocabulary V . We observe the following two phenomena in each of
the word representations listed above:

• {v(w) : w ∈ V} are not of zero-mean: i.e., all v(w) share a
non-zero common vector, v(w) = ṽ(w) + µ, where µ is the
average of all v(w)’s, i.e., µ = 1/|V|

∑
w∈V v(w). The norm of

µ is approximately 1/6 to 1/2 of the average norm of all v(w) (cf.
Table 1).

• {ṽ(w) : w ∈ V} are not isotropic: Let u1, ..., ud be the first to the
last components recovered by the principal component analysis
(PCA) of {ṽ(w) : w ∈ V}, and σ1, ..., σd be the corresponding
normalized variance ratio. Each ṽ(w) can be written as a linear
combinations of u: ṽ(w) =

∑d
i=1 αi(w)ui.As shown in Figure 1,

we observe that σi decays near exponentially for small values of
i and remains roughly constant over the later ones. This suggests

there exists D such that αi � αj for all i ≤ D and j � D; from Figure 1 one observes that D is
roughly 10 with dimension d = 300.

Angular Asymmetry of Representations A modern understanding of word representations in-
volves either PMI-based (including word2vec (Mikolov et al., 2010; Levy & Goldberg, 2014) and
GloVe (Pennington et al., 2014)) or CCA-based spectral factorization approaches. While CCA-based

1https://code.google.com/archive/p/word2vec/
2https://github.com/stanfordnlp/GloVe
3http://www.pdhillon.com/code.html

3

https://code.google.com/archive/p/word2vec/
https://github.com/stanfordnlp/GloVe
http://www.pdhillon.com/code.html


Published as a conference paper at ICLR 2018

spectral factorization methods have long been understood from a probabilistic (i.e., generative model)
view point (Browne, 1979; Hotelling, 1936) and recently in the NLP context (Stratos et al., 2015),
a corresponding effort for the PMI-based methods has only recently been conducted in an inspired
work (Arora et al., 2016).

Arora et al. (2016) propose a generative model (named RAND-WALK) of sentences, where every
word is parameterized by a d-dimensional vector. With a key postulate that the word vectors are
angularly uniform (“isotropic"), the family of PMI-based word representations can be explained
under the RAND-WALK model in terms of the maximum likelihood rule. Our observation that word
vectors learnt through PMI-based approaches are not of zero-mean and are not isotropic (c.f. Section
2) contradicts with this postulate. The isotropy conditions are relaxed in Section 2.2 of (Arora et al.,
2016), but the match with the spectral properties observed in Figure 1 is not immediate.

This contradiction is explicitly resloved by relaxing the constraints on the word vectors to directly fit
the observed spectral properties. The relaxed conditions are: the word vectors should be isotropic
around a point (whose distance to the origin is a small fraction of the average norm of word vectors)
lying on a low dimensional subspace. Our main result is to show that even with this enlarged
parameter-space, the maximum likelihood rule continues to be close to the PMI-based spectral
factorization methods. A brief summary of RAND-WALK, and the mathematical connection between
our work and theirs, are explored in detail in Appendix A.

2.1 ALGORITHM

Since all word representations share the same common vector µ and have the same dominating
directions and such vector and directions strongly influence the word representations in the same way,
we propose to eliminate them, as formally achieved as Algorithm 1.

Algorithm 1: Postprocessing algorithm on word representations.
Input :Word representations {v(w), w ∈ V}, a threshold parameter D,

1 Compute the mean of {v(w), w ∈ V}, µ← 1
|V|
∑

w∈V v(w), ṽ(w)← v(w)− µ
2 Compute the PCA components: u1, ..., ud ← PCA({ṽ(w), w ∈ V}).
3 Preprocess the representations: v′(w)← ṽ(w)−

∑D
i=1

(
u>i v(w)

)
ui

Output :Processed representations v′(w).

Significance of Nulled Vectors Consider the representation of the words as viewed in terms of
the top D PCA coefficients α`(w), for 1 ≤ ` ≤ D. We find that these few coefficients encode
the frequency of the word to a significant degree; Figure 2 illustrates the relation between the
(α1(w), α2(w)) and the unigram probabilty p(w), where the correlation is geometrically visible.

Figure 2: The top two PCA directions (i.e, α1(w) and α2(w)) encode frequency.

Discussion In our proposed processing algorithm, the number of components to be nulled, D, is
the only hyperparameter that needs to be tuned. We find that a good rule of thumb is to choose D
approximately to be d/100, where d is the dimension of a word representation. This is empirically
justified in the experiments of the following section where d = 300 is standard for published word
representations. We trained word representations for higher values of d using the WORD2VEC and
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GLOVE algorithms and repeated these experiments; we see corresponding consistent improvements
due to postprocessing in Appendix C.

2.2 POSTPROCESSING AS A “ROUNDING” TOWARDS ISOTROPY

The idea of isotropy comes from the partition function defined in (Arora et al., 2016),

Z(c) =
∑
w∈V

exp
(
c>v(w)

)
,

where Z(c) should approximately be a constant with any unit vector c (c.f. Lemma 2.1 in (Arora
et al., 2016)). Hence, we mathematically define a measure of isotropy as follows,

I({v(w)}) =
min‖c‖=1 Z(c)

max‖c‖=1 Z(c)
, (1)

where I({v(w)}) ranges from 0 to 1, and I({v(w)}) closer to 1 indicates that {v(w)} is more
isotropic. The intuition behind our postprocessing algorithm can also be motivated by letting
I({v(w)})→ 1.

Let V be the matrix stacked by all word vectors, where the rows correspond to word vectors, and
1|V| be the |V|-dimensional vectors with all entries equal to one, Z(c) can be equivalently defined as
follows,

Z(c) = |V|+ 1|V|>V c+
1

2
c>V >V c+

∞∑
k=3

1

k!

∑
w∈V

(c>v(w))k.

I({v(w)}) is, therefore, can be very coarsely approximated by,

• A first order approximation:

I({v(w)}) ≈
|V|+ min‖c‖=1 1>|V|V c

|V|+ max‖c‖=1 1>|V|V c
=
|V| − ‖1>|V|V ‖
|V|+ ‖1>|V|V ‖

.

Letting I({v(w)}) = 1 yields ‖1>|V|V ‖ = 0, which is equivalent to
∑

w∈V v(w) = 0. The
intuition behind the first order approximation matches with the first step of the proposed
algorithm, where we enforce v(w) to have a zero mean.

• A second order approximation:

I({v(w)}) ≈
|V|+ min‖c‖=1 1>|V|V c+ min‖c‖=1

1
2c
>V >V c

|V|+ max‖c‖=1 1>|V|V c+ max‖c‖=1
1
2c
>V >V c

=
|V| − ‖1>|V|V ‖+ 1

2σ
2
min

|V|+ ‖1>|V|V ‖+ 1
2σ

2
max

,

where σmin and σmax are the smallest and largest singular value of V , respectively. Letting
I({v(w)}) = 1 yields ‖1>|V|V ‖ = 0 and σmin = σmax. The fact that σmin = σmax suggests
the spectrum of v(w)’s should be flat. The second step of the proposed algorithm removes
the highest singular values, and therefore explicitly flatten the spectrum of V .

Empirical Verification Indeed, we empirically validate the effect of postprocessing of on
I({v(w)}). Since there is no closed-form solution for arg max‖c‖=1 Z(c) or arg min‖c‖=1 Z(c),
and it is impossible to enumerate all c’s, we estimate the measure by,

I({v(w)}) ≈ minc∈C Z(c)

maxc∈C Z(c)
,

where C is the set of eigenvectors of V >V . The value of I({v(w)}) for the original vectors and
processed ones are reported in Table 2, where we can observe that the degree of isotropy vastly
increases in terms of this measure.
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before after
WORD2VEC 0.7 0.95

GLOVE 0.065 0.6

Table 2: Before-After on the measure of isotropy.

A formal way to verify the isotropy property is to
directly check if the “self-normalization" property
(i.e., Z(c) is a constant, independent of c (Andreas
& Klein, 2015)) holds more strongly. Such a vali-
dation is seen diagrammatically in Figure 3 where
we randomly sampled 1,000 c’s as (Arora et al.,
2016).
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Figure 3: The histogram of Z(c) for 1,000 randomly sampled vectors c of unit norm, where x-axis is
normalized by the mean of all values and D = 2 for GLOVE and D = 3 for WORD2VEC.

3 EXPERIMENTS

Given the popularity and widespread use of WORD2VEC (Mikolov et al., 2013) and GLOVE
(Pennington et al., 2014), we use their publicly available pre-trained reprepsentations in the following
experiments. We choose D = 3 for WORD2VEC and D = 2 for GLOVE. The key underlying
principle behind word representations is that similar words should have similar representations.
Following the tradition of evaluating word representations (Schnabel et al., 2015; Baroni et al.,
2014), we perform three canonical lexical-level tasks: (a) word similarity; (b) concept categorization;
(c) word analogy; and one sentence-level task: (d) semantic textual similarity. The processed
representations consistently improve performance on all three of them, and especially strongly on the
first two.

WORD2VEC GLOVE
orig. proc. orig. proc.

RG65 76.08 78.34 76.96 74.36
WS 68.29 69.05 73.79 76.79
RW 53.74 54.33 46.41 52.04

MEN 78.20 79.08 80.49 81.78
MTurk 68.23 69.35 69.29 70.85

SimLex 44.20 45.10 40 83 44.97
SimVerb 36.35 36.50 28.33 32.23

Table 3: Before-After results (x100) on word
similarity task on seven datasets.

Word Similarity The word similarity task is as
follows: given a pair of words, the algorithm as-
signs a “similarity" score – if the pair of words
are highly related then the score should also be
high and vice versa. The algorithm is evaluated in
terms of Spearman’s rank correlation compared to
(a gold set of) human judgements.

For this experiment, we use seven standard
datasets: the first published RG65 dataset (Ruben-
stein & Goodenough, 1965); the widely used
WordSim-353 (WS) dataset (Finkelstein et al.,
2001) which contains 353 pairs of commonly used
verbs and nouns; the rare-words (RW) dataset (Lu-

ong et al., 2013) composed of rarely used words; the MEN dataset (Bruni et al., 2014) where the 3000
pairs of words are rated by crowdsourced participants; the MTurk dataset (Radinsky et al., 2011)
where the 287 pairs of words are rated in terms of relatedness; the SimLex-999 (SimLex) dataset (Hill
et al., 2016) where the score measures “genuine" similarity; and lastly the SimVerb-3500 (SimVerb)
dataset (Gerz et al., 2016), a newly released large dataset focusing on similarity of verbs.

In our experiment, the algorithm scores the similarity between two words by the cosine similarity
between the two corresponding word vectors (CosSim(v1, v2) = v>1 v2/‖v1‖‖v2‖). The detailed
performance on the seven datasets is reported in Table 3, where we see a consistent and signifi-
cant performance improvement due to postprocessing, across all seven datasets. These statistics
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(average improvement of 2.3%) suggest that by removing the common parts, the remaining word
representations are able to capture stronger semantic relatedness/similarity between words.

WORD2VEC GLOVE
orig. proc. orig. proc.

ap 54.43 57.72 64 .18 65.42
esslli 75.00 84.09 81.82 81.82
battig 71.97 81.71 86.59 86.59

Table 4: Before-After results (x100) on the
categorization task.

Concept Categorization This task is an indirect
evaluation of the similarity principle: given a set of
concepts, the algorithm needs to group them into
different categories (for example, “bear” and “cat”
are both animals and “city” and “country” are both
related to districts). The clustering performance is
then evaluated in terms of purity (Manning et al.,
2008) – the fraction of the total number of the objects
that were classified correctly.

We conduct this task on three different datasets: the Almuhareb-Poesio (ap) dataset (Almuhareb,
2006) contains 402 concepts which fall into 21 categories; the ESSLLI 2008 Distributional Semantic
Workshop shared-task dataset (Baroni et al., 2008) that contains 44 concepts in 6 categories; and the
Battig test set (Baroni & Lenci, 2010) that contains 83 words in 10 categories.

Here we follow the setting and the proposed algorithm in (Baroni et al., 2014; Schnabel et al., 2015)
– we cluster words (via their representations) using the classical k-Means algorithm (with fixed
k). Again, the processed vectors perform consistently better on all three datasets (with average
improvement of 2.5%); the full details are in Table 4.

WORD2VEC GLOVE
orig. proc. orig. proc.

syntax 73.46 73.50 74.95 75.40
semantics 72.28 73.36 79.22 79.25

all 72.93 73.44 76.89 77.15

Table 5: Before-After results (x100) on the word
analogy task.

Word Analogy The analogy task tests to what
extent the word representations can encode latent
linguistic relations between a pair of words. Given
three words w1, w2, and w3, the analogy task re-
quires the algorithm to find the word w4 such that
w4 is to w3 as w2 is to w1.

We use the analogy dataset introduced in (Mikolov
et al., 2013). The dataset can be divided into two
parts: (a) the semantic part containing around 9k

questions, focusing on the latent semantic relation between pairs of words (for example, what is
to Chicago as Texas is to Houston); and (b) the syntatic one containing roughly 10.5k questions,
focusing on the latent syntatic relation between pairs of words (for example, what is to “amazing” as
“apprently” is to “apparent”).

In our setting, we use the original algorithm introduced in (Mikolov et al., 2013) to solve this problem,
i.e., w4 is the word that maximize the cosine similarity between v(w4) and v(w2)− v(w1) + v(w3).
The average performance on the analogy task is provided in Table 5 (with a detailed performance
provided in Table 19 in Appendix D). It can be noticed that while postprocessing continues to improve
the performance, the improvement is not as pronounced as earlier. We hypothesize that this is because
the mean and some dominant components get canceled during the subtraction of v(w2) from v(w1),
and therefore the effect of postprocessing is less relevant.

WORD2VEC GLOVE
orig. proc. orig. proc.

2012 57.22 57.67 48.27 54.06
2013 56.81 57.98 44.83 57.71
2014 62.89 63.30 51.11 59.23
2015 62.74 63.35 47.23 57.29

SICK 70.10 70 20 65.14 67.85
all 60.88 61.45 49.19 56.76

Table 6: Before-After results (x100) on the
semantic textual similarity tasks.

Semantic Textual Similarity Extrinsic evalua-
tions measure the contribution of a word representa-
tion to specific downstream tasks; below, we study
the effect of postprocessing on a standard sentence
modeling task – semantic textual similarity (STS)
which aims at testing the degree to which the algo-
rithm can capture the semantic equivalence between
two sentences. For each pair of sentences, the algo-
rithm needs to measure how similar the two sentences
are. The degree to which the measure matches with
human judgment (in terms of Pearson correlation) is
an index of the algorithm’s performance. We test the
word representations on 20 textual similarity datasets
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from the 2012-2015 SemEval STS tasks (Agirre et al., 2012; 2013; 2014; 2015), and the 2012
SemEval Semantic Related task (SICK) (Marelli et al., 2014).

Representing sentences by the average of their constituent word representations is surprisingly
effective in encoding the semantic information of sentences (Wieting et al., 2015; Adi et al., 2016)
and close to the state-of-the-art in these datasets. We follow this rubric and represent a sentence
s based on its averaged word representation, i.e., v(s) = 1

|s|
∑

w∈s v(w), and then compute the
similarity between two sentences via the cosine similarity between the two representations. The
average performance of the original and processed representations is itemized in Table 6 (with a
detailed performance in Table 20 in Appendix E) – we see a consistent and significant improvement
in performance because of postprocessing (on average 4% improvement).

4 POSTPROCESSING AND SUPERVISED CLASSIFICATION

Supervised downstream NLP applications have greatly improved their performances in recent years
by combining the discriminative learning powers of neural networks in conjunction with the word
representations. We evaluate the performance of a variety of neural network architectures on a standard
and important NLP application: text classification, with sentiment analysis being a particularly
important and popular example. The task is defined as follows: given a sentence, the algorithm needs
to decide which category it falls into. The categories can be either binary (e.g., positive/negative) or
can be more fine-grained (e.g. very positive, positive, neutral, negative, and very negative).

We evaluate the word representations (with and without postprocessing) using four different neural
network architectures (CNN, vanilla-RNN, GRU-RNN and LSTM-RNN) on five benchmarks: (a) the
movie review (MR) dataset (Pang & Lee, 2005); (b) the subjectivity (SUBJ) dataset (Pang & Lee,
2004); (c) the TREC question dataset (Li & Roth, 2002); (d) the IMDb dataset (Maas et al., 2011);
(e) the stanford sentiment treebank (SST) dataset (Socher et al., 2013a). A detailed description of
these standard datasets, their training/test parameters and the cross validation methods adopted is
in Appendix F. Specifically, we allow the parameter D (i.e., the number of nulled components) to
vary between 0 and 4, and the best performance of the four neural network architectures with the
now-standard CNN-based text classification algorithm (Kim, 2014) (implemented using tensorflow4)
is itemized in Table 7. The key observation is that the performance of postprocessing is better in a
majority (34 out of 40) of the instances by 2.32% on average, and in the rest the instances the two
performances (with and without postprocessing) are comparable.

CNN vanilla-RNN GRU-RNN LSTM-RNN
WORD2VEC GLOVE WORD2VEC GLOVE WORD2VEC GLOVE WORD2VEC GLOVE
orig. proc. orig. proc. orig. proc. orig. proc. orig. proc. orig. proc. orig. proc. orig. proc.

MR 70.80 71.27 71.01 71.11 74.95 74.01 71.14 72.56 77.86 78.26 74.98 75.13 75.69 77.34 72.02 71.84
SUBJ 87.14 87.33 86.98 87.25 82.85 87.60 81.45 87.37 90.96 91.10 91.16 91.85 90.23 90.54 90.74 90.82
TREC 87.80 89.00 87.60 89.00 80.60 89.20 85.20 89.00 91.60 92.40 91.60 93.00 88.00 91.20 85.80 91.20

SST 38.46 38.33 38.82 37.83 42.08 39.91 41.45 41.90 41.86 45.02 36.52 37.69 43.08 42.08 37.51 38.05
IMDb 86.68 87.12 87.27 87.10 50.15 53.14 52.76 76.07 82.96 83.47 81.50 82.44 81.29 82.60 79.10 81.33

Table 7: Before-After results (x100) on the text classification task using CNN (Kim, 2014) and vanilla
RNN, GRU-RNN and LSTM-RNN.

A further validation of the postprocessing operation in a variety of downstream applications (eg:
named entity recognition, syntactic parsers, machine translation) and classification methods (eg:
random forests, neural network architectures) is of active research interest. Of particular interest is
the impact of the postprocessing on the rate of convergence and generalization capabilities of the
classifiers. Such a systematic study would entail a concerted and large-scale effort by the research
community and is left to future research.

Discussion All neural network architectures, ranging from feedforward to recurrent (either vanilla
or GRU or LSTM), implement at least linear processing of hidden/input state vectors at each of their
nodes; thus the postprocessing operation suggested in this paper can in principle be automatically
“learnt” by the neural network, if such internal learning is in-line with the end-to-end training examples.
Yet, in practice this is complicated due to limitations of optimization procedures (SGD) and sample

4https://github.com/dennybritz/cnn-text-classification-tf
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noise. We conduct a preliminary experiment in Appendix B and show that subtracting the mean (i.e.,
the first step of postprocessing) is “effectively learnt" by neural networks within their nodes.

5 CONCLUSION

We present a simple postprocessing operation that renders word representations even stronger, by
eliminating the top principal components of all words. Such an simple operation could be used for
word embeddings in downstream tasks or as intializations for training task-specific embeddings. Due
to their popularity, we have used the published representations of WORD2VEC and GLOVE in En-
glish in the main text of this paper; postprocessing continues to be successful for other representations
and in multilingual settings – the detailed empirical results are tabulated in Appendix C.
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Appendix: All-but-the-Top: Simple and Effective postprocessing for
Word Representations

A ANGULAR ASYMMETRY OF REPRESENTATIONS

A modern understanding of word representations involves either PMI-based (including word2vec
(Mikolov et al., 2010; Levy & Goldberg, 2014) and GloVe (Pennington et al., 2014)) or CCA-based
spectral factorization approaches. While CCA-based spectral factorization methods have long been
understood from a probabilistic (i.e., generative model) view point (Browne, 1979; Hotelling, 1936)
and recently in the NLP context (Stratos et al., 2015), a corresponding effort for the PMI-based
methods has only recently been conducted in an inspired work (Arora et al., 2016).

(Arora et al., 2016) propose a generative model (named RAND-WALK) of sentences, where every
word is parameterized by a d-dimensional vector. With a key postulate that the word vectors are
angularly uniform (“isotropic"), the family of PMI-based word representations can be explained
under the RAND-WALK model in terms of the maximum likelihood rule. Our observation that word
vectors learnt through PMI-based approaches are not of zero-mean and are not isotropic (c.f. Section
2) contradicts with this postulate. The isotropy conditions are relaxed in Section 2.2 of (Arora et al.,
2016), but the match with the spectral properties observed in Figure 1 is not immediate.

In this section, we resolve this by explicitly relaxing the constraints on the word vectors to directly fit
the observed spectral properties. The relaxed conditions are: the word vectors should be isotropic
around a point (whose distance to the origin is a small fraction of the average norm of word vectors)
lying on a low dimensional subspace. Our main result is to show that even with this enlarged
parameter-space, the maximum likelihood rule continues to be close to the PMI-based spectral
factorization methods. Formally, the model, the original constraints of (Arora et al., 2016) and the
enlarged constraints on the word vectors are listed below:

• A generative model of sentences: the word at time t, denoted by wt, is generated via a
log-linear model with a latent discourse variable ct (Arora et al., 2016), i.e.,

p(wt|ct) =
1

Z(ct)
exp

(
c>t v(wt)

)
, (2)

where v(w) ∈ Rd is the vector representation for a word w in the vocabulary V , ct is the
latent variable which forms a “slowly moving" random walk, and the partition function:
Z(c) =

∑
w∈V exp

(
c>v(w)

)
.

• Constraints on the word vectors: (Arora et al., 2016) suppose that there is a Bayesian
priori on the word vectors:

The ensemble of word vectors consists of i.i.d. draws generated by v = s · v̂,
where v̂ is from the spherical Gaussian distribution, and s is a scalar random
variable.

A deterministic version of this prior is discussed in Section 2.2 of (Arora et al., 2016), but
part of these (relaxed) conditions on the word vectors are specifically meant for Theorem 4.1
and not the main theorem (Theorem 2.2). The geometry of the word representations is only
evaluated via the ratio of the quadratic mean of the singular values to the smallest one being
small enough. This meets the relaxed conditions, but not sufficient to validate the proof
approach of the main result (Theorem 2.2); what would be needed is that the ratio of the
largest singular value to the smallest one be small.
• Revised conditions: We revise the Bayesian prior postulate (and in a deterministic fashion)

formally as follows: there is a mean vector µ, D orthonormal vectors u1, . . . , uD (that are
orthogonal and of unit norm), such that every word vector v(w) can be represented by,

v(w) = µ+

D∑
i=1

αi(w)ui + ṽ(w), (3)

where µ is bounded, αi is bounded by A, D is bounded by DA2 = o(d), ṽ(w) are
statistically isotropic. By statistical isotropy, we mean: for high-dimensional rectangles R,

13
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1
|V|
∑

w∈V 1(ṽ(w) ∈ R)→
∫
R
f(ṽ)dṽ, as |V| → ∞, where f is an angle-independent pdf,

i.e., f(ṽ) is a function of ‖ṽ‖.

The revised postulate differs from the original one in two ways: (a) it imposes a formal deterministic
constraint on the word vectors; (b) the revised postulate allows the word vectors to be angularly
asymmetric: as long as the energy in the direction of u1,. . . ,uD is bounded, there is no constraint on
the coefficients. Indeed, note that there is no constraint on ṽ(w) to be orthogonal to u1, . . . uD.

Empirical Validation We can verify that the enlarged conditions are met by the existing word
representations. Specifically, the natural choice for µ is the mean of the word representations and
u1 . . . uD are the singular vectors associated with the top D singular values of the matrix of word
vectors. We pick D = 20 for WORD2VEC and D = 10 for GLOVE, and the corresponding value of
DA2 for WORD2VEC and GLOVE vectors are both roughly 40, respectively; both values are small
compared to d = 300.
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Figure 4: Spectrum of the published WORD2VEC and GLOVE and random Gaussian matrices,
ignoring the top D components; D = 10 for GLOVE and D = 20 for WORD2VEC.

This leaves us to check the statistical isotropy of the “remaining" vectors ṽ(w) for words w in the
vocabulary. We do this by plotting the remaining spectrum (i.e. the (D + 1)-th, ..., 300th singular
values) for the published WORD2VEC and GLOVE vectors in Figure 4. As a comparison, the
empirical spectrum of a random Gaussian matrix is also plotted in Figure 4. We see that both
spectra are flat (since the vocabulary size is much larger than the dimension d = 300). Thus the
postprocessing operation can also be viewed as a way of making the vectors “more isotropic”.

Mathematical Contribution Under the revised postulate, we show that the main theorem in (Arora
et al., 2016) (c.f. Theorem 2.2) still holds. Formally:

Theorem A.1 Suppose the word vectors satisfy the constraints. Then

PMI(w1, w2)
def
= log

p(w1, w2)

p(w1)p(w2)
→ v(w1)>v(w2)

d
, as |V| → ∞, (4)

where p(w) is the unigram distribution induced from the model (2), and p(w1, w2) is the probability
that two words w1 and w2 occur with each other within distance q.

The proof is in Appendix G. Theorem A.1 suggests that the RAND-WALK generative model and its
properties proposed by (Arora et al., 2016) can be generalized to a broader setting (with a relaxed
restriction on the geometry of word representations) – relevantly, this relaxation on the geometry of
word representations is empirically satisfied by the vectors learnt as part of the maximum likelihood
rule.

B NEURAL NETWORKS LEARN TO POSTPROCESS

Every neural network family posseses the ability to conduct linear processing inside their nodes; this
includes feedforward and recurrent and convolutional neural network models. Thus, in principle,
the postprocessing operation can be “learnt and implemented" within the parameters of the neural
network. On the other hand, due to the large number of parameters within the neural network, it
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is unclear how to verify such a process, even if it were learnt (only one of the layers might be
implementing the postprocessing operation or via a combination of multiple effects).

To address this issue, we have adopted a comparative approach in the rest of this section. The
comparative approach involves adding an extra layer interposed in between the inputs (which are
word vectors) and the rest of the neural network. This extra layer involves only linear processing.
Next we compare the results of the final parameters of the extra layer (trained jointly with the
rest of tne neural network parameters, using the end-to-end training examples) with and without
preprocessing of the word vectors. Such a comparative approach allows us to separate the effect of
the postprocessing operation on the word vectors from the complicated “semantics” of the neural
network parameters.

softmax

nonlinear	
unit

nonlinear	
unit

nonlinear	
unit

linear	bias

v(w1) v(w2) v(wT )

…

…

v(w1)� b v(w2)� b v(wT )� b

h1 h2 hT

Figure 5: Time-expanded RNN architecture with
an appended layer involving linear bias.

vanilla GRU LSTM
W. G. W. G. W. G.

MR 82.07 49.23 81.35 47.63 77.95 44.92
SUBJ 84.02 49.94 83.15 50.60 83.39 48.95
TREC 81.68 52.99 82.68 50.42 80.80 46.77

SST 79.64 46.59 78.06 43.21 77.72 42.82
IMDb 93.48 66.37 94.49 55.24 87.27 46.74

Figure 6: The cosine similarity (x100) between
bproc. + µ and borig., where W. and G. stand for
WORD2VEC and GLOVE respectively.

Experiment We construct a modified neural network by explicitly adding a “postprocessing unit"
as the first layer of the RNN architecture (as in Figure 5, where the appended layer is used to test the
first step (i.e., remove the mean vector)) of the postprocessing algorithm.

In the modified neural network, the input word vectors are now v(w) − b instead of v(w). Here
b is a bias vector trained jointly with the rest of the neural network parameters. Note that this is
only a relabeling of the parameters from the perspective of the RNN architecture: the nonlinear
activation function of the node is now operated on A(v(w)− b) + b′ = Av(w) + (b′ −Ab) instead
of the previous Av(w) + b′. Let bproc. and borig. be the inferred biases when using the processed and
original word representations, respectively.

We itemize the cosine similarity between bproc. + µ and borig. in Table 6 for the 5 different datasets
and 3 different neural network architectures. In each case, the cosine similarity is remarkably large
(on average 0.66, in 300 dimensions) – in other words, trained neural networks implicitly postprocess
the word vectors nearly exactly as we proposed. This agenda is successfully implemented in the
context of verifying the removal of the mean vector.

The second step of our postprocessing algorithm (i.e., nulling away from the top principal components)
is equivalent to applying a projection matrix P = I −

∑D
i=1 uiu

>
i on the word vectors, where ui is

the i-th principal component and D is the number of the removed directions. A comparative analysis
effort for the second step (nulling the dominant PCA directions) is the following. Instead of applying
a bias term b, we multiply by a matrix Q to simulate the projection operation. The input word
vectors are now Qorig.v(w) instead of v(w) for the original word vectors, and Qproc.Pv(w) instead
of Pv(w) for the processed vectors. Testing the similarity between Qorig.P and Qproc., allows us to
verify if the neural network learns to conduct the projection operation as proposed.

In our experiment, we found that such a result cannot be inferred. One possibility is that there are too
many parameters in both Qproc. and Qorig., which adds randomness to the experiment. Alternatively,
the neural network weights may not be able to learn the second step of the postprocessing operation
(indeed, in our experiments postprocessing significantly boosted end-performance of neural network
architectures). A more careful experimental setup to test whether the second step of the postprocessing
operation is learnt is left as a future research direction.
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C EXPERIMENTS ON VARIOUS REPRESENTATIONS

In the main text, we have reported empirical results for two published word representations:
WORD2VEC and GLOVE, each in 300 dimensions. In this section, we report the results of the same
experiments in a variety of other settings to show the generalization capability of the postprocessing
operation: representations trained via WORD2VEC and GLOVE algorithms in dimensions other
than 300, other representations algorithms (specifically TSCCA and RAND-WALK) and in multiple
languages.

C.1 STATISTICS OF MULTILINGUAL WORD REPRESENTATIONS

We use the publicly available TSCCA representations (Dhillon et al., 2012) on German, French,
Spanish, Italian, Dutch and Chinese. The detailed statistics can be found in Table 8 and the decay of
their singular values are plotted in Figure 7.

Language Corpus dim vocab size avg. ‖v(w)‖2 ‖µ‖2
TSCCA-En English Gigawords 200 300,000 4.38 0.78
TSCCA-De German Newswire 200 300,000 4.52 0.79
TSCCA-Fr French Gigaword 200 300,000 4.34 0.81
TSCCA-Es Spanish Gigaword 200 300,000 4.17 0.79
TSCCA-It Italian Newswire+Wiki 200 300,000 4.34 0.79
TSCCA-Nl Dutch Newswire+Wiki 200 300,000 4.46 0.72
TSCCA-Zh Chinese Gigaword 200 300,000 4.51 0.89

Table 8: A detailed description for the TSCCA embeddings in this paper.
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Figure 7: The decay of the normalized singular values of multilingual word representation.

C.2 MULTILINGUAL GENERALIZATION

In this section, we perform the word similarity task with the original and the processed TSCCA word
representations in German and Spanish on three German similarity datasets (GUR65 – a German
version of the RG65 dataset, GUR350, and ZG222 in terms of relatedness) (Zesch & Gurevych, 2006)
and the Spanish version of RG65 dataset (Camacho-Collados et al., 2015). The choice of D is 2 for
both German and Spanish.

The experiment setup and the similarity scoring algorithm are the same as those in Section 3. The
detailed experiment results are provided in Table 9, from which we observe that the processed repre-
sentations are consistently better than the original ones. This provides evidence to the generalization
capabilities of the postprocessing operation to multiple languages (similarity datasets in Spanish and
German were the only ones we could locate).

C.3 GENERALIZATION TO DIFFERENT REPRESENTATION ALGORITHMS

Given the popularity and widespread use of WORD2VEC (Mikolov et al., 2013) and GLOVE
(Pennington et al., 2014), the main text has solely focused on their published publicly avalable

16



Published as a conference paper at ICLR 2018

language TSCCA
orig. proc.

RG65 Spanish 60.33 60.37
GUR65 German 61.75 64.39

GUR350 German 44.91 46.59
ZG222 German 30.37 32.92

Table 9: Before-After results (x100) on the word similarity task in multiple languages.

300-dimension representations. In this section, we show that the proposed postprocessing algorithm
generalizes to other representation methods. Specifically, we demonstrate this on RAND-WALK
(obtained via personal communication) and TSCCA (publicly available) on all the experiments of
Section 3. The choice of D is 2 for both RAND-WALK and TSCCA.

In summary, the performance improvements on the similarity task, the concept categorization task,
the analogy task, and the semantic textual similarity dataset are on average 2.23%, 2.39%, 0.11% and
0.61%, respectively. The detailed statistics are provided in Table 10, Table 11, Table 12 and Table 13,
respectively. These results are a testament to the generalization capabilities of the postprocessing
algorithm to other representation algorithms.

RAND-WALK TSCCA
orig. proc. orig. proc.

RG65 80.66 82.96 47.53 47.67
WS 65.89 74.37 54.21 54.35
RW 45.11 51.23 43.96 43.72

MEN 73.56 77.22 65.48 65.62
MTurk 64.35 66.11 59.65 60.03

SimLex 34.05 36.55 34.86 34.91
SimVerb 16.05 21.84 23.79 23.83

Table 10: Before-After results (x100) on the word similarity task on seven datasets.

RAND-WALK TSCCA
orig. proc. orig. proc.

ap 59.83 62.36 60.00 63.42
esslli 72.73 72.73 68.18 70.45
battig 75.73 81.82 70.73 70.73

Table 11: Before-After results (x100) on the categorization task.

RAND-WALK TSCCA
orig. proc. orig. proc.

syn. 60.39 60.48 37.72 37.80
sem. 83.55 83.82 14.54 14.55

all 70.50 70.67 27.30 27.35

Table 12: Before-After results (x100) on the word analogy task.

C.4 ROLE OF DIMENSIONS

The main text has focused on the dimension choice of d = 300, due to its popularity. In this section
we explore the role of the dimension in terms of both choice of D and the performance of the
postprocessing operation – we do this by using skip-gram model on the 2010 snapshot of Wikipedia
corpus (Al-Rfou et al., 2013) to train word representations. We first observe that the two phenomena
of Section 2 continue to hold:

• From Table 14 we observe that the ratio between the norm of µ and the norm average of all
v(w) spans from 1/3 to 1/4;
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RAND-WALK TSCCA
orig. proc. orig. proc.

2012 38.03 37.66 44.51 44.63
2013 37.47 36.85 43.21 42.74
2014 46.06 48.32 52.85 52.87
2015 47.82 51.76 56.22 56.14

SICK 51.58 51.76 56.15 56.11
all 43.48 44.67 50.01 50.23

Table 13: Before-After results (x100) on the semantic textual similarity tasks.

dim 300 400 500 600 700 800 900 1000
avg. ‖v(w)‖2 4.51 5.17 5.91 6.22 6.49 6.73 6.95 7.15
‖µ‖2 1.74 1.76 1.77 1.78 1.79 1.80 1.81 1.83

Table 14: Statistics on word representation of dimensions 300, 400, ..., and 1000 using the skip-gram
model.

• From Figure 8 we observe that the decay of the variance ratios σi is near exponential for
small values of i and remains roughly constant over the later ones.
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Figure 8: The decay of the normalized singular values of word representations.

A rule of thumb choice of D is around d/100. We validate this claim empirically by performing the
tasks in Section 3 on word representations of higher dimensions, ranging from 300 to 1000, where
we set the parameter D = d/100. In summary, the performance improvement on the four itemized
tasks of Section 3 are 2.27%, 3.37%, 0.01 and 1.92% respectively; the detailed results can be found
in Table 15, Table 16, Table 17, and Table 18. Again, note that the improvement for analogy tasks is
marginal. These experimental results justify the rule-of-thumb setting of D = d/100, although we
emphasize that the improvements can be further accentuated by tuning the choice of D based on the
specific setting.

D EXPERIMENTS ON WORD ANALOGY TASK

The detailed performance on the analogy task is provided in Table 19.

E EXPERIMENTS ON SEMANTIC TEXTUAL SIMILARITY TASK

The detailed performance on the semantic textual similarity is provided in Table 20.
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Dim 300 400 500 600
orig. proc. orig. proc. orig. proc. orig. proc.

RG65 73.57 74.72 75.64 79.87 77.72 81.97 77.59 80.7
WS 70.25 71.95 70.8 72.88 70.39 72.73 71.64 74.04
RW 46.25 49.11 45.97 47.63 46.6 48.59 45.7 47.81

MEN 75.66 77.59 76.07 77.89 75.9 78.15 75.88 78.15
Mturk 75.66 77.59 67.68 68.11 66.89 68.25 67.6 67.87

SimLex 34.02 36.19 35.17 37.1 35.73 37.65 35.76 38.04
SimVerb 22.22 24.98 22.91 25.32 23.03 25.82 23.35 25.97

Dim 700 800 900 1000
orig. proc. orig. proc. orig. proc. orig. proc.

RG65 77.3 81.07 77.52 81.07 79.75 82.34 78.18 79.07
WS 70.31 73.02 71.52 74.65 71.19 73.06 71.5 74.78
RW 45.86 48.4 44.96 49 44.44 49.22 44.5 49.03

MEN 75.84 78.21 75.84 77.96 76.16 78.35 76.72 78.1
Mturk 67.47 67.79 67.67 68 67.98 68.87 68.34 69.44

SimLex 35.3 37.59 36.54 37.85 36.62 38.44 36.67 38.58
SimVerb 22.81 25.6 23.48 25.57 23.68 25.76 23.24 26.58

Table 15: Before-After results (x100) on word similarity task on seven datasets.

Dim 300 400 500 600
orig. proc. orig. proc. orig. proc. orig. proc.

ap 46.1 48.61 42.57 45.34 46.85 50.88 40.3 45.84
esslli 68.18 72.73 64.2 82.72 64.2 65.43 65.91 72.73
battig 71.6 77.78 68.18 75 68.18 70.45 46.91 66.67

Dim 700 800 900 1000
orig. proc. orig. proc. orig. proc. orig. proc.

ap 38.04 41.31 34.76 39.8 34.76 27.46 27.96 28.21
esslli 54.55 54.55 68.18 56.82 72.73 72.73 52.27 52.27
battig 62.96 66.67 67.9 69.14 49.38 59.26 51.85 46.91

Table 16: Before-After results (x100) on the categorization task.

Dim 300 400 500 600
orig. proc. orig. proc. orig. proc. orig. proc.

syn. 60.48 60.52 61.61 61.45 60.93 60.84 61.66 61.57
sem. 74.51 74.54 77.11 77.36 76.39 76.89 77.28 77.61

all. 66.86 66.87 68.66 68.69 67.88 68.11 68.77 68.81

Dim 700 800 900 1000
orig. proc. orig. proc. orig. proc. orig. proc.

syn. 60.94 61.02 68.38 68.34 60.47 60.30 67.56 67.30
sem. 77.24 77.26 77.24 77.35 76.76 76.90 76.71 76.51

all. 68.36 68.41 68.38 68.50 67.91 67.67 67.56 67.30

Table 17: Before-After results (x100) on the word analogy task.

F STATISTICS OF TEXT CLASSIFICATION DATASETS

We evaluate the word representations (with and without postprocessing) using four different neural
network architectures (CNN, vanilla-RNN, GRU-RNN and LSTM-RNN) on five benchmarks:

• the movie review (MR) dataset (Pang & Lee, 2005) where each review is composed by only
one sentence;

• the subjectivity (SUBJ) dataset (Pang & Lee, 2004) where the algorithm needs to decide
whether a sentence is subjective or objective;
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Dim 300 400 500 600
orig. proc. orig. proc. orig. proc. orig. proc.

2012 54.51 54.95 54.31 54.57 55.13 56.23 55.35 56.03
2013 56.58 57.89 56.35 57.35 57.55 59.38 57.43 59.00
2014 59.6 61.92 59.57 61.62 61.19 64.38 61.10 63.86
2015 59.65 61.48 59.69 61.19 61.63 64.77 61.42 64.04

SICK 68.89 70.79 60.6 70.27 68.63 71.00 68.58 70.57
all 58.32 59.91 58.25 59.55 59.61 62.02 59.57 61.55

Dim 700 800 900 1000
orig. proc. orig. proc. orig. proc. orig. proc.

2012 55.52 56.49 54.47 54.85 54.69 55.18 54.34 54.78
2013 57.61 59.31 56.75 57.62 56.98 58.26 56.78 57.73
2014 61.57 64.77 60.51 62.83 60.89 63.34 60.78 63.03
2015 62.05 65.45 60.74 62.84 61.09 63.48 60.92 63.03

SICK 68.38 70.63 67.94 69.59 67.86 69.5 67.58 69.16
all 59.96 62.34 58.87 60.39 59.16 60.88 58.94 60.48

Table 18: Before-After results (x100) on the semantic textual similarity tasks.

WORD2VEC GLOVE
orig. proc. orig. proc.

capital-common-countries 82.01 83.60 95.06 95.96
capital-world 78.38 80.08 91.89 92.31

city-in-state 69.56 69.88 69.56 70.45
currency 32.43 32.92 21.59 21.36

family 84.98 84.59 95.84 95.65
gram1-adjective-to-adverb 28.02 27.72 40.42 39.21

gram2-opposite 40.14 40.51 31.65 30.91
gram3-comparative 89.19 89.26 86.93 87.09

gram4-superlative 82.71 83.33 90.46 90.59
gram5-present-participle 79.36 79.64 82.95 82.76

gram6-nationality-adjective 90.24 90.36 90.24 90.24
gram7-past-tense 66.03 66.53 63.91 64.87

gram8-plural 91.07 90.61 95.27 95.36
gram9-plural-verbs 68.74 67.58 67.24 68.05

Table 19: Before-After results (x100) on the word analogy task.

• the TREC question dataset (Li & Roth, 2002) where all the questions in this dataset has to
be partitioned into six categories;

• the IMDb dataset (Maas et al., 2011) – each review consists of several sentences;

• the Stanford sentiment treebank (SST) dataset (Socher et al., 2013a), where we only use the
full sentences as the training data.

In TREC, SST and IMDb, the datasets have already been split into train/test sets. Otherwise we use
10-fold cross validation in the remaining datasets (i.e., MR and SUBJ). Detailed statistics of various
features of each of the datasets are provided in Table 21.

G PROOF OF THEOREM A.1

Given the similarity between the setup in Theorem 2.2 in (Arora et al., 2016) and Theorem A.1,
many parts of the original proof can be reused except one key aspect – the concentration of Z(c). We
summarize this part in the following lemma:
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WORD2VEC GLOVE
orig. proc. orig. proc.

2012.MSRpar 42.12 43.85 44.54 44.09
2012.MSRvid 72.07 72.16 64.47 68.05

2012.OnWN 69.38 69.48 53.07 65.67
2012.SMTeuroparl 53.15 54.32 41.74 45.28

2012.SMTnews 49.37 48.53 37.54 47.22
2013.FNWN 40.70 41.96 37.54 39.34
2013.OnWN 67.87 68.17 47.22 58.60

2013.headlines 61.88 63.81 49.73 57.20
2014.OnWN 74.61 74.78 57.41 67.56

2014.deft-forum 32.19 33.26 21.55 29.39
2014.deft-news 66.83 65.96 65.14 71.45
2014.headlines 58.01 59.58 47.05 52.60

2014.images 73.75 74.17 57.22 68.28
2014.tweet-news 71.92 72.07 58.32 66.13

2015.answers-forum 46.35 46.80 30.02 39.86
2015.answers-students 68.07 67.99 49.20 62.38

2015.belief 59.72 60.42 44.05 57.68
2015.headlines 61.47 63.45 46.22 53.31

2015.images 78.09 78.08 66.63 73.20
SICK 70.10 70.20 65.14 67.85

Table 20: Before-After results (x100) on the semantic textual similarity tasks.

c l Train Test
MR 2 20 10,662 10-fold cross validation

SUBJ 2 23 10,000 10-fold cross validation
TREC 6 10 5,952 500

SST 5 18 11,855 2,210
IMDb 2 100 25,000 25,000

Table 21: Statistics for the five datasets after tokenization: c represents the number of classes; l
represents the average sentence length; Train represents the size of the training set; and Test represent
the size of the test set.

Lemma G.1 Let c be a random variable uniformly distributed over the unit sphere, we prove that
with high probability, Z(c)/|V| converges to a constant Z:

p((1− εz)Z ≤ Z(c) ≤ (1 + εz)Z) ≥ 1− δ,

where εz = Ω((D + 1)/|V|) and δ = Ω((DA2 + ‖µ‖2)/d).

Our proof differs from the one in (Arora et al., 2016) in two ways: (a) we treat v(w) as deterministic
parameters instead of random variables and prove the Lemma by showing a certain concentration of
measure; (b) the asymmetric parts µ and u1,...,uD, (which did not exist in the original proof), need to
be carefully addressed to complete the proof.
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G.1 PROOF OF LEMMA G.1

Given the constraints on the word vectors (3), the partition function Z(c) can be rewritten as,

Z(c) =
∑
v∈V

exp(c>v(w))

=
∑
v∈V

exp

(
c>

(
µ+

D∑
i=1

αi(w)ui + ṽ(w)

))

=
∑
v∈V

exp(c>µ)

[
D∏
i=1

exp(αi(w)c>ui)

]
exp

(
c>ṽ(w)

)
.

The equation above suggests that we can divide the proof into five parts.

Step 1: for every unit vector c, one has,

1

|V|
∑
w∈V

exp
(
c>ṽ(w)

)
→ Ef

(
exp

(
c>ṽ

))
, as |V| → ∞. (5)

Proof Let M,N be a positive integer, and let AM ⊂ Rd such that,

AM,N =

{
ṽ ∈ Rd :

M − 1

N
< exp(c>ṽ) ≤ M

N

}
.

Since AM,N can be represented by a union of countable disjoint rectangles, we know that for every
M,N ∈ N+,

1

|V|
∑
w∈V

1(ṽ(w) ∈ AM,N ) =

∫
AM,N

f(ṽ)dṽ.

Further, since AM,N are disjoint for different M ’s and Rd = ∪∞M=1AM,N , one has,

1

|V|
∑
w∈V

exp
(
c>ṽ(w)

)
=

∞∑
M=1

1

|V|
∑
w∈V

1(ṽ(w) ∈ AM,N ) exp(c>ṽ(w))

≤
∞∑

M=1

1

|V|
∑
w∈V

1(ṽ(w) ∈ AM,N )
M

N

→
∞∑

M=1

M

N

∫
AM,N

f(ṽ)dṽ.

The above statement holds for every N . Let N →∞, by definition of integration, one has,

lim
N→∞

∞∑
M=1

M

N

∫
AM,N

f(ṽ)dṽ = Ef

(
exp

(
c>ṽ

))
,

which yields,

1

|V|
∑
w∈V

exp
(
c>ṽ(w)

)
≤ Ef

(
exp

(
c>ṽ

))
, as |V| → ∞. (6)

Similarly, one has,

1

|V|
∑
w∈V

exp
(
c>ṽ(w)

)
≥ lim

N→∞

∞∑
M=1

M − 1

N

∫
AM,N

f(ṽ)dṽ

= Ef

(
exp

(
c>ṽ

))
, as |V| → ∞. (7)

Putting (6) and (7) proves (5).
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Step 2: the expected value, Ef

(
exp

(
c>ṽ

))
is a constant independent of c:

Ef

(
exp

(
c>ṽ

))
= Z0. (8)

Proof Let Q ∈ Rd×d be a orthonormal matrix such that Q>c0 = c where c0 = (1, 0, ..., 0)> and
det(Q) = 1, then we have f(ṽ) = f(Qṽ), and,

Ef

(
exp

(
c>0 ṽ

))
=

∫
ṽ

f(ṽ) exp
(
c>0 ṽ

)
dṽ

=

∫
ṽ

f(Qṽ) exp
(
c>Qṽ

)
det(Q)dṽ

=

∫
ṽ′
f(ṽ′) exp

(
c>ṽ′

)
dṽ′ = Ef

(
exp

(
c>ṽ

))
,

which proves (8).

Step 3: for any vector µ, one has the following concentration property,

p
(
| exp

(
c>µ

)
− 1| > k

)
≤ 2

[
exp

(
−1

4

)
+
‖µ‖2

d− 1

1

log2(1− k)

]
(9)

Proof Let c1,...,cd be i.i.d.N (0, 1), and let C =
∑d

i=1 c
2
i , then c = (c1, ..., cd)/

√
C is uniform over

unit sphere. Since c is uniform, then without loss of generality we can consider µ = (‖µ‖, 0, ..., 0).
Thus it suffices to bound exp

(
‖µ‖c1/

√
C
)

. We divide the proof into the following steps:

• C follows chi-square distribution with the degree of freedom of d, thus C can be bounded
by (Laurent & Massart, 2000),

p(C ≥ d+ 2
√
dx+ 2x) ≤ exp(−x),∀x > 0. (10)

p(C ≤ d− 2
√
dx) ≤ exp(−x),∀x > 0. (11)

• Therefore for any x > 0, one has,

p
(
|C − d| ≥ 2

√
dx
)
≤ exp(−x)

Let x = 1/4d, one has,

p(C > d+ 1) ≤ exp

(
− 1

4d

)
,

p(C < d− 1) ≤ exp

(
− 1

4d

)
.

• Since c1 is a Gaussian random variable with variance 1, by Chebyshev’s inequality, one has,

p (yci ≥ k) ≤ y2

k2
, p (yci ≤ −k) ≤ y2

k2
,∀k > 0

and therefore thus,

p(exp(yci)− 1 > k) ≤ y2

log2(1 + k)
,

p(exp(yci)− 1 < −k) ≤ y2

log(1− k)2
, ∀k > 0.
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• Therefore we can bound exp
(
‖µ‖c1/

√
C
)

by,

p

(
exp

(
‖µ‖c1√
C

)
− 1 > k

)
≤p (C > d+ 1)

+ p

(
exp

(
‖µ‖c1√
C

)
− 1 > k

∣∣∣∣C < d+ 1

)
p (C < d+ 1)

≤ exp

(
− 1

4d

)
+ p

(
exp

(
‖µ‖c1√
d+ 1

)
− 1 > k

)
= exp

(
− 1

4d

)
+
‖µ‖2

d+ 1

1

log(1− k)2
.

p

(
exp

(
‖µ‖c1√
C

)
− 1 < −k

)
≤ exp

(
− 1

4d

)
+
‖µ‖2

d− 1

1

log2(1 + k)
.

Combining the two inequalities above, one has (9) proved.

Step 4: We are now ready to prove convergence of Z(c). With (9), let C ⊂ Rd such that,

C =
{
c :
∣∣exp(c>µ)− 1

∣∣ < k,
∣∣exp(Ac>ui)− 1

∣∣ < k,
∣∣exp(−Ac>ui)− 1

∣∣ < k ∀i = 1, ..., D
}

Then we can bound the probability on C by,

p(C) ≥ p
(∣∣exp(c>µ)− 1

∣∣ < k
)

+

D∑
i=1

p(
∣∣exp(Ac>ui)− 1

∣∣ < k)− 2D

≥ 1− (2D + 1) exp

(
− 1

4d

)
− 2DA2

d− 1

1

log2(1− k)
− ‖µ‖

2

d− 1

1

log2(1− k)
.

Next, we need to show that for every w, the corresponding C(w), i.e.,

C(w) =
{
c :
∣∣exp(c>µ)− 1

∣∣ < k,
∣∣exp(αi(w)c>ui)− 1

∣∣ < k, ∀i = 1, ..., D
}

We observe that αi(w) is bounded by A, therefore for any c that,

min(exp(−Ac>ui), exp(Ac>ui)) ≤ exp(αic
>ui) ≤ max(exp(−Ac>ui), exp(Ac>ui)),

and thus,

min(exp(−Ac>ui), exp(Ac>ui))− 1 ≤ exp(αic
>ui)− 1 ≤ max(exp(−Ac>ui), exp(Ac>ui))− 1,

which yields,

| exp(αic
>ui)− 1| ≤ max(| exp(−Ac>ui)− 1|, | exp(Ac>ui)− 1|) < k.

Therefore we prove C(w) ⊃ C. Assembling everything together, one has,

p

(∣∣∣∣∣exp(c>µ)

D∏
i=1

exp(αi(w)c>ui)− 1

∣∣∣∣∣ > (D + 1)k, ∀i = 1, ..., D,∀w ∈ V

)
≤ p(C̄)

≤ (2D + 1) exp(− 1

4d
) +

2DA2

d− 1

1

log2(1− k)
+
‖µ‖2

d− 1

1

log2(1− k)

For every c ∈ C, one has,

1

|V|
|Z(c)− Z0| ≤

(D + 1)k

|V|
Z0.

Let Z = |V|Z0, one can conclude that,

p((1− εz)Z ≤ Z(c) ≤ (1 + εz)Z) ≥ 1− δ,

where εz = Ω((D + 1)/|V|) and δ = Ω(DA2/d).
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G.2 PROOF OF THEOREM A.1

Having Lemma G.1 ready, we can follow the same proof as in (Arora et al., 2016) that both p(w) and
p(w,w′) are correlated with ‖v(w)‖, formally

log p(w)→ ‖v(w)‖2

2d
− logZ, as |V| → ∞, (12)

log p(w,w′)→ ‖v(w) + v(w′)‖2

2d
− logZ, as |V| → ∞. (13)

Therefore, the inference presented in (Arora et al., 2016) (i.e., (4)) is obvious by assembling (12) and
(13) together:

PMI(w,w′)→ v(w)>v(w′)

d
, as |V| → ∞.

25


	Introduction
	Postprocessing
	Algorithm
	Postprocessing as a ``Rounding'' towards Isotropy

	Experiments
	Postprocessing and Supervised Classification
	Conclusion
	Angular Asymmetry of Representations
	Neural Networks Learn to Postprocess
	Experiments on Various Representations
	Statistics of Multilingual Word Representations
	Multilingual Generalization 
	Generalization to Different Representation Algorithms
	Role of Dimensions

	Experiments on Word Analogy Task
	Experiments on Semantic Textual Similarity Task
	Statistics of Text Classification Datasets
	Proof of Theorem A.1
	Proof of Lemma G.1
	Proof of Theorem A.1


