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ABSTRACT

It is well known that it is challenging to train deep neural networks and recur-
rent neural networks for tasks that exhibit long term dependencies. The vanishing
or exploding gradient problem is a well known issue associated with these chal-
lenges. One approach to addressing vanishing and exploding gradients is to use
either soft or hard constraints on weight matrices so as to encourage or enforce or-
thogonality. Orthogonal matrices preserve gradient norm during backpropagation
and can therefore be a desirable property; however, we find that hard constraints
on orthogonality can negatively affect the speed of convergence and model per-
formance. This paper explores the issues of optimization convergence, speed and
gradient stability using a variety of different methods for encouraging or enforcing
orthogonality. In particular we propose a weight matrix factorization and parame-
terization strategy through which we can bound matrix norms and therein control
the degree of expansivity induced during backpropagation.

1 INTRODUCTION

The depth of deep neural networks confers representational power, but also makes model optimiza-
tion more challenging. Training deep networks with gradient descent based methods is known to be
difficult as a consequence of the vanishing and exploding gradient problem (Hochreiter & Schmid-
huber, 1997). Typically, exploding gradients are avoided by clipping large gradients (Pascanu et al.,
2013) or introducing an L2 or L1 weight norm penalty. The latter has the effect of bounding the
spectral radius of the linear transformations, thus limiting the maximal gain across the transforma-
tion. Krueger & Memisevic (2015) attempt to stabilize the norm of propagating signals directly
by penalizing differences in successive norm pairs in the forward pass and Pascanu et al. (2013)
propose to penalize successive gradient norm pairs in the backward pass. These regularizers affect
the network parameterization with respect to the data instead of penalizing weights directly.

Both expansivity and contractivity of linear transformations can also be limited by more tightly
bounding their spectra. By limiting the transformations to be orthogonal, their singular spectra are
limited to unitary gain causing the transformations to be norm-preserving. Le et al. (2015) and
Henaff et al. (2016) have respectively shown that identity initialization and orthogonal initialization
can be beneficial. Arjovsky et al. (2015) have gone beyond initialization, building unitary recurrent
neural network (RNN) models with transformations that are unitary by construction which they
achieved by composing multiple basic unitary transformations. The resulting transformations, for
some n-dimensional input, cover only some subset of possible n × n unitary matrices but appear
to perform well on simple tasks and have the benefit of having low complexity in memory and
computation.

The entire set of possible unitary or orthogonal parameterizations forms the Stiefel manifold. At a
much higher computational cost, gradient descent optimization directly along this manifold can be
done via geodesic steps (Nishimori, 2005; Tagare, 2011). Recent work (Wisdom et al., 2016) has
proposed the optimization of unitary matrices along the Stiefel manifold using geodesic gradient
descent. To produce a full-capacity parameterization for unitary matrices they use some insights
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from Tagare (2011), combining the use of a canonical inner products and Cayley transformations.
Their experimental work indicates that full capacity unitary RNN models can solve the copy memory
problem whereas both LSTM networks and restricted capacity unitary RNN models having similar
complexity appear unable to solve the task for a longer sequence length (T = 2000).

In contrast, here we explore the optimization of real valued matrices within a configurable margin
about the Stiefel manifold. We suspect that a strong constraint of orthogonality limits the model’s
representational power, hindering its performance, and may make optimization more difficult. We
explore this hypothesis empirically by employing a factorization technique that allows us to limit the
degree of deviation from the Stiefel manifold. While we use geodesic gradient descent, we simulta-
neously update the singular spectra of our matrices along Euclidean steps, allowing optimization to
step away from the manifold while still curving about it.

1.1 VANISHING AND EXPLODING GRADIENTS

The issue of vanishing and exploding gradients as it pertains to the parameterization of neural net-
works can be illuminated by looking at the gradient back-propagation chain through a network.

A neural network with n hidden layers has pre-activations

ai(hi−1) = Wi hi−1 + bi, i ∈ {2, · · · , n} (1)

For notational convenience, we combine parameters Wi and bi to form an affine matrix θ. We can
see that for some loss function L at layer n , the derivative with respect to parameters θi is:

∂L

∂θi
=
∂an+1

∂θi

∂L

∂an+1
(2)

The partial derivatives for the pre-activations can be decomposed as follows:

∂ai+1

∂θi
=
∂ai
∂θi

∂hi

∂ai

∂ai+1

∂hi

=
∂ai
∂θi

DiWi+1 →
∂ai+1

∂ai
= DiWi+1,

(3)

where Di is the Jacobian corresponding to the activation function, containing partial derivatives of
the hidden units at layer i + 1 with respect to the pre-activation inputs. Typically, D is diagonal.
Following the above, the gradient in equation 2 can be fully decomposed into a recursive chain of
matrix products:

∂L

∂θi
=
∂ai
∂θi

n∏
j=i

(DjWj+1)
∂L

∂an+1
(4)

In (Pascanu et al., 2013), it is shown that the 2-norm of
∂ai+1

∂ai
is bounded by the product of the

norms of the non-linearity’s Jacobian and transition matrix at time t (layer i ), as follows:∣∣∣∣∣∣∣∣∂at+1

∂at

∣∣∣∣∣∣∣∣ ≤ ||Dt|| ||Wt|| ≤ λDt
λWt

= ηt,

λDt
, λWt

∈ R.
(5)

where λDt
and λWt

are the largest singular values of the non-linearity’s Jacobian Dt and the tran-
sition matrix Wt . In RNNs, Wt is shared across time and can be simply denoted as W.

Equation 5 shows that the gradient can grow or shrink at each layer depending on the gain of each
layer’s linear transformation W and the gain of the Jacobian D. The gain caused by each layer
is magnified across all time steps or layers. It is easy to have extreme amplification in a recurrent
neural network where W is shared across time steps and a non-unitary gain in W is amplified
exponentially. The phenomena of extreme growth or contraction of the gradient across time steps or
layers are known as the exploding and the vanishing gradient problems, respectively. It is sufficient
for RNNs to have ηt ≤ 1 at each time t to enable the possibility of vanishing gradients, typically
for some large number of time steps T . The rate at which a gradient (or forward signal) vanishes
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depends on both the parameterization of the model and on the input data. The parameterization
may be conditioned by placing appropriate constraints on W. It is worth keeping in mind that the
Jacobian D is typically contractive, thus tending to be norm-reducing) and is also data-dependent,
whereas W can vary from being contractive to norm-preserving, to expansive and applies the same
gain on the forward signal as on the back-propagated gradient signal.

2 OUR APPROACH

Vanishing and exploding gradients can be controlled to a large extent by controlling the maximum
and minimum gain of W. The maximum gain of a matrix W is given by the spectral norm which
is given by

||W||2 = max

[
||Wx||
||x||

]
. (6)

By keeping our weight matrix W close to orthogonal, one can ensure that it is close to a norm-
preserving transformation (where the spectral norm is equal to one, but the minimum gain is also
one). One way to achieve this is via a simple soft constraint or regularization term of the form:

λ
∑
i

||WT
i Wi − I||2. (7)

However, it is possible to formulate a more direct parameterization or factorization for W which per-
mits hard bounds on the amount of expansion and contraction induced by W. This can be achieved
by simply parameterizing W according to its singular value decomposition, which consists of the
composition of orthogonal basis matrices U and V with a diagonal spectral matrix S containing the
singular values which are real and positive by definition. We have

W = USVT . (8)

Since the spectral norm or maximum gain of a matrix is equal to its largest singular value, this
decomposition allows us to control the maximum gain or expansivity of the weight matrix by con-
trolling the magnitude of the largest singular value. Similarly, the minimum gain or contractivity of
a matrix can be obtained from the minimum singular value.

We can keep the bases U and V orthogonal via geodesic gradient descent along the set of weights
that satisfy UTU = I and VTV = I respectively. The submanifolds that satisfy these constraints
are called Stiefel manifolds. We discuss how this is achieved in more detail below, then discuss our
construction for bounding the singular values.

During optimization, in order to maintain the orthogonality of an orthogonally-initialized matrix
M, i.e. where M = U, M = V or M = W if so desired, we employ a Cayley transformation
of the update step onto the Stiefel manifold of (semi-)orthogonal matrices, as in Nishimori (2005)
and Tagare (2011). Given an orthogonally-initialized parameter matrix M and its Jacobian, G with
respect to the objective function, an update is performed as follows:

A = GMT −MGT

Mnew = M+ (I+
η

2
A)−1(I− η

2
A),

(9)

where A is a skew-symmetric matrix (that depends on the Jacobian and on the parameter matrix)
which is mapped to an orthogonal matrix via a Cayley transform and η is the learning rate.

While the update rule in (9) allows us to maintain an orthogonal hidden to hidden transition matrix
W if desired, we are interested in exploring the effect of stepping away from the Stiefel manifold. As
such, we parameterize the transition matrix W in factorized form, as a singular value decomposition
with orthogonal bases U and V updated by geodesic gradient descent using the Cayley transform
approach above.

If W is an orthogonal matrix, the singular values in the diagonal matrix S are all equal to one.
However, in our formulation we allow these singular values to deviate from one and employ a
sigmoidal parameterization to apply a hard constraint on the maximum and minimum amount of
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deviation. Specifically, we define a margin m around 1 within which the singular values must lie.
This is achieved with the parameterization

si = 2m(σ(pi)− 0.5) + 1, si ∈ {diag(S)}, m ∈ [0, 1]. (10)

The singular values are thus restricted to the range [1−m, 1 +m] and the underlying parameters
pi are updated freely via stochastic gradient descent. Note that this parameterization strategy also
has implications on the step sizes that gradient descent based optimization will take when updating
the singular values – they tend to be smaller compared to models with no margin constraining their
values. Specifically, a singular value’s progression toward a margin is slowed the closer it is to the
margin. The sigmoidal parameterization can also impart another effect on the step size along the
spectrum which needs to be accounted for. Considering 10, the gradient backpropagation of some
loss L toward parameters pi is found as

dL

dpi
=
dsi
dpi

dL

dsi
= 2m

dσ(pi)

dpi

dL

dsi
. (11)

From (11), it can be seen that the magnitude of the update step for pi is scaled by the margin
hyperparameter m . This means for example that for margins less than one, the effective learning
rate for the spectrum is reduced in proportion to the margin. Consequently, we adjust the learning
rate along the spectrum to be independent of the margin by renormalizing it by 2m .

This margin formulation both guarantees singular values lie within a well defined range and slows
deviation from orthogonality. Alternatively, one could enforce the orthogonality of U and V and
impose a regularization term corresponding to a mean one Gaussian prior on these singular values.
This encourages the weight matrix W to be norm preserving with a controllable strength equivalent
to the variance of the Gaussian. We also explore this approach further below.

3 EXPERIMENTS

In this section, we explore hard and soft orthogonality constraints on factorized weight matrices
for recurrent neural network hidden to hidden transitions. With hard orthogonality constraints on
U and V, we investigate the effect of widening the spectral margin or bounds on convergence
and performance. Loosening these bounds allows increasingly larger margins within which the
transition matrix W can deviate from orthogonality. We confirm that orthogonal initialization is
useful as noted in Henaff et al. (2016), and we show that although strict orthogonality guarantees
stable gradient norm, loosening orthogonality constraints can increase the rate of gradient descent
convergence. We begin our analyses on tasks that are designed to stress memory: a sequence copying
task and a basic addition task (Hochreiter & Schmidhuber, 1997). We then move on to tasks on real
data that require models to capture long-range dependencies: digit classification based on sequential
and permuted MNIST vectors (Le et al., 2015; LeCun et al., 1998). Finally, we look at a basic
language modeling task using the Penn Treebank dataset (Marcus et al., 1993).

The copy and adding tasks, introduced by Hochreiter & Schmidhuber (1997), are synthetic bench-
marks with pathologically hard long distance dependencies that require long-term memory in mod-
els. The copy task consists of an input sequence that must be remembered by the network, followed
by a series of blank inputs terminated by a delimiter that denotes the point at which the network must
begin to output a copy of the initial sequence. We use an input sequence of T + 20 elements that
begins with a sub-sequence of 10 elements to copy, each containing a symbol ai ∈ {a1 , ..., ap} out
of p = 8 possible symbols. This sub-sequence is followed by T − 1 elements of the blank category
a0 which is terminated at step T by a delimiter symbol ap+1 and 10 more elements of the blank
category. The network must learn to remember the initial 10 element sequence for T time steps and
output it after receiving the delimiter symbol.

The goal of the adding task is to add two numbers together after a long delay. Each number is
randomly picked at a unique position in a sequence of length T . The sequence is composed of
T values sampled from a uniform distribution in the range [0, 1), with each value paired with an
indicator value that identifies the value as one of the two numbers to remember (marked 1) or as a
value to ignore (marked 0). The two numbers are positioned randomly in the sequence, the first in
the range [0, T2 − 1] and the second in the range [T2 , T − 1], where 0 marks the first element. The
network must learn to identify and remember the two numbers and output their sum.
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The sequential MNIST task from Le et al. (2015), MNIST digits are flattened into vectors that can
be traversed sequentially by a recurrent neural network. The goal is to classify the digit based on
the sequential input of pixels. The simple variant of this task is with a simple flattening of the image
matrices; the harder variant of this task includes a random permutation of the pixels in the input
vector that is determined once for an experiment. The latter formulation introduces longer distance
dependencies between pixels that must be interpreted by the classification model.

The English Penn Treebank (PTB) dataset from Marcus et al. (1993) is an annotated corpus of En-
glish sentences, commonly used for benchmarking language models. We employ a sequential char-
acter prediction task: given a sentence, a recurrent neural network must predict the next character at
each step, from left to right. We use input sequences of variable length, with each sequence contain-
ing one sentence. We model 49 characters including lowercase letters (all strings are in lowercase),
numbers, common punctuation, and an unknown character placeholder. In our experiments on two
subsets of the data: in the first, we first use 23% of the data with strings with up to 75 characters and
in the second we include over 99% of the dataset, picking strings with up to 300 characters.

3.1 LOOSENING HARD ORTHOGONALITY CONSTRAINTS

In this section, we experimentally explore the effect of loosening hard orthogonality constraints
through loosening the spectral margin defined above for the hidden to hidden transition matrix.

In all experiments, we employed RMSprop (Tieleman & Hinton, 2012) when not using geodesic
gradient descent. We used minibatches of size 50 and for generated data (the copy and adding
tasks), we assumed an epoch length of 100 minibatches. We cautiously introduced gradient clipping
at magnitude 100 (unless stated otherwise) in all of our RNN experiments although it may not be
required and we consistently applied a small weight decay of 0.0001. Unless otherwise specified,
we trained all simple recurrent neural networks with the hidden to hidden matrix factorization as
in (8) using geodesic gradient descent on the bases (learning rate 10−6) and RMSprop on the other
parameters (learning rate 0.0001), using a tanh transition nonlinearity, and clipping gradients of 100
magnitude. The neural network code was built on the Theano framework (Theano Development
Team, 2016). When parameterizing a matrix in factorized form, we apply the weight decay on the
composite matrix rather than on the factors in order to be consistent across experiments. For MNIST
and PTB, test set metrics were computed based on the parameterization that gave the best validation
set accuracy.

3.1.1 CONVERGENCE ON SYNTHETIC MEMORY TASKS

For different sequence lengths T of the copy and adding tasks, we trained a factorized RNN with 128
hidden units and various spectral margins m . For the copy task, we used Elman networks without
a transition non-linearity as in Henaff et al. (2016). We discuss our investigations into the use of a
non-linearity on the copy task in the Appendix.

As shown in Figure 1 we see an increase in the rate of convergence as we increase the spectral
margin. This observation generally holds across the tested sequence lengths (T = 200, T = 500,
T = 1000, T = 10000); however, large spectral margins hinder convergence on extremely long
sequence lengths. At sequence length T = 10000, parameterizations with spectral margins larger
than 0.001 converge slower than when using a margin of 0.001. In addition, the experiment without
a margin failed to converge on the longest sequence length. This follows the expected pattern where
stepping away from the Stiefel manifold may help with gradient descent optimization but loosening
orthogonality constraints can reduce the stability of signal propagation through the network.

For the adding task, we trained a factorized RNN on T = 1000 length sequences, using a ReLU
activation function on the hidden to hidden transition matrix. The mean squared error (MSE) is
shown for different spectral margins in Figure 5 in the Appendix. Testing spectral margins m = 0,
m = 1, m = 10, m = 100, and no margin, we find that the models with the purely orthogonal
(m = 0) and the unconstrained (no margin) transition matrices failed to begin converging beyond
baseline MSE within 2000 epochs.
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Figure 1: Accuracy curves on the copy task for sequence lengths of (from left to right) T=200,
T=500, T=1000, T=10000 given different spectral margins. Convergence speed increases with mar-
gin size; however, large margin sizes are ineffective at longer sequence lengths (T=10000, right).

margin initialization accuracy
0 orthogonal 77.18

0.001 orthogonal 79.26
0.01 orthogonal 85.47
0.1 orthogonal 94.10
1 orthogonal 93.84

none orthogonal 93.24
none Glorot normal 66.71
none identity 53.53

LSTM 97.30

Table 1: Ordered sequential MNIST classifica-
tion with different margin sizes and an LSTM.

margin initialization accuracy
0 orthogonal 83.56

0.001 orthogonal 84.59
0.01 orthogonal 89.63
0.1 orthogonal 91.44
1 orthogonal 90.83

none orthogonal 90.51
none Glorot normal 79.33
none identity 42.72

LSTM 92.62

Table 2: Permuted sequential MNIST classifica-
tion with different margin sizes and an LSTM.

3.1.2 PERFORMANCE ON REAL DATA

Having confirmed that an orthogonality constraint can negatively impact convergence rate, we seek
to investigate the effect on model performance for tasks on real data. We show the results of experi-
ments on permuted sequential MNIST in Table 2 and ordered sequential MNIST in Table 1. The loss
curves are shown in Figure 6 in the Appendix and reveal an increased convergence rate for larger
spectral margins. We trained the factorized RNN models with 128 hidden units for 120 epochs. We
also trained an LSTM with 128 hidden units on both tasks for 150 epochs, configured with peep-
hole connections, orthogonally initialized (and forget gate bias initialized to one), and trained with
RMSprop (learning rate 0.0001, clipping gradients of magnitude 1).

We show the results of experiments on PTB character prediction, in terms of bits per character (bpc)
and prediction accuracy, for a subset of short sequences (up to 75 characters; 23% of data) in Table
3 and for a subset of long sequences (up to 300 characters; 99% of data) in Table 4. We trained
factorized RNN models with 512 hidden units for 200 epochs with geodesic gradient descent on the
bases (learning rate 10−6) and RMSprop on the other parameters (learning rate 0.001), using a tanh
transition nonlinearity, and clipping gradients of 30 magnitude.

Interestingly, for both the ordered and permuted sequential MNIST tasks, models with a non-zero
margin significantly outperform those that are constrained to have purely orthogonal transition matri-

margin initialization bpc accuracy
0 orthogonal 2.16 55.31

0.01 orthogonal 2.16 55.33
0.1 orthogonal 2.12 55.37
1 orthogonal 2.06 57.07

100 orthogonal 2.04 57.51
none orthogonal 2.06 57.38
none Glorot normal 2.08 57.37
none identity 2.25 53.83

Table 3: Character prediction on PTB sentences
of to 75 characters, using different margins.

margin initialization bpc accuracy
0 orthogonal 2.20 54.88

0.01 orthogonal 2.20 54.83
0.1 orthogonal 2.24 54.10
1 orthogonal 2.36 51.12

100 orthogonal 2.36 51.20
none orthogonal 2.34 51.30
none Glorot normal 2.34 51.04
none identity 2.68 45.35

Table 4: Character prediction on PTB sentences
of up to 300 characters, using different margins.
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ces (margin of zero). The best results on both the ordered and sequential MNIST tasks were yielded
by models with a spectral margin of 0.1, at 94.10% accuracy and 91.44% accuracy, respectively. An
LSTM outperformed the RNNs in both tasks; nevertheless, RNNs with hidden to hidden transitions
initialized as orthogonal matrices performed admirably without a memory component and without
all of the additional parameters associated with gates. Indeed, orthogonally initialized RNNs per-
formed almost on par with the LSTM in the permuted sequential MNIST task which presents longer
distance dependencies than the ordered task. Although the optimal margin appears to be 0.1, RNNs
with large margins perform almost identically to an RNN without a margin, as long as the transition
matrix is initialized as orthogonal. On these tasks, orthogonal initialization appears to significantly
outperform Glorot normal initialization (Glorot & Bengio, 2010) or initializing the matrix as iden-
tity. It is interesting to note that for the MNIST tasks, orthogonal initialization appears useful while
orthogonality constraints appear mainly detrimental. This suggests that while orthogonality helps
early training by stabilizing gradient flow across many time steps, orthogonality constraints may
need to be loosened on some tasks so as not to over-constrain the model’s representational ability.

Curiously, larger margins and even models without sigmoidal constraints on the spectrum (no mar-
gin) performed well as long as they were initialized to be orthogonal, suggesting that evolution away
from orthogonality is not a serious problem on MNIST. It is not surprising that orthogonality is use-
ful for the MNIST tasks since they depend on long distance signal propagation with a single output at
the end of the input sequence. On the other hand, character prediction with PTB produces an output
at every time step. Constraining deviation from orthogonality proved detrimental for short sentences
(Table 3) and beneficial when long sentences were included (Table 4). Furthermore, Glorot normal
initialization did not perform worse than orthogonal initialization for PTB. Since an output is gen-
erated for every character in a sentence, short distance signal propagation is possible. Thus it is
possible that the RNN is first learning very local dependencies between neighbouring characters and
that given enough context, constraining deviation from orthogonality can help force the network to
learn longer distance dependencies.

3.1.3 SPECTRAL AND GRADIENT EVOLUTION

It is interesting to note that even long sequence lengths (T=1000) in the copy task can be solved
efficiently with rather large margins on the spectrum. In Figure 2 we look at the gradient propaga-
tion of the loss from the last time step in the network with respect to the hidden activations. We can
see that for a purely orthogonal parameterization of the transition matrix (when the margin is zero),
the gradient norm is preserved across time steps, as expected. We further observe that with increas-
ing margin size, the number of update steps over which this norm preservation survives decreases,
though surprisingly not as quickly as expected.

Figure 2: The norm of the gradient of the loss from the last time step with respect to the hidden
units at a given time step for a length 220 RNN over 1000 update iterations for different margins.
Iterations are along the abscissa and time steps are denoted along the ordinate. The first column
margins are: 0, 0.001, 0.01. The second column margins are: 0.1, 1, no margin. Gradient norms are
normalized across the time dimension.

Although the deviation of singular values from one should be slowed by the sigmoidal parameteriza-
tions, even parameterizations without a sigmoid (no margin) can be effectively trained for all but the
longest sequence lengths. This suggests that the spectrum is not deviating far from orthogonality and
that inputs to the hidden to hidden transitions are mostly not aligned along the dimensions of great-
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est expansion or contraction. We evaluated the spread of the spectrum in all of our experiments and
found that indeed, singular values tend to stay well within their prescribed bounds and only reach
the margin when using a very large learning rate that does not permit convergence. Furthermore,
when transition matrices are initialized as orthogonal, singular values remain near one throughout
training even without a sigmoidal margin for tasks that require long term memory (copy, adding,
sequential MNIST). On the other hand, singular value distributions tend to drift away from one for
PTB character prediction which may help explain why enforcing an orthogonality constraint can
be helpful for this task, when modeling long sequences. Interestingly, singular values spread out
less for longer sequence lengths (nevertheless, the T=10000 copy task could not be solved with no
sigmoid on the spectrum).

We visualize the spread of singular values for different model parameterizations on the permuted se-
quential MNIST task in Figure 3. Curiously, we find that the distribution of singular values tends to
shift upward to a mean of approximately 1.05 on both the ordered and permuted sequential MNIST
tasks. We note that in those experiments, a tanh transition nonlinearity was used which is contractive
in both the forward signal pass and the gradient backward pass. An upward shift in the distribution
of singular values of the transition matrix would help compensate for that contraction. Indeed, (Saxe
et al., 2013) describe this as a possibly good regime for learning in deep neural networks. That the
model appears to evolve toward this regime suggests that deviating from it may incur a cost. This
is interesting because the cost function cannot take into account numerical issues such as vanish-
ing or exploding gradients (or forward signals); we do not know what could make this deviation
costly. That the transition matrix may be compensating for the contraction of the tanh is supported
by further experiments: applying a 1.05 pre-activation gain appears to allow a model with a margin
of 0 to nearly match the top performance reached on both of the MNIST tasks. Furthermore, when
using the OPLU norm-preserving activation function (Chernodub & Nowicki, 2016), we found that
orthogonally initialized models performed equally well with all margins, achieving over 90% ac-
curacy on the permuted sequential MNIST task. Unlike orthgonally initialized models, the RNN
on the bottom right of Figure 3 with Glorot normal initialized transition matrices, begins and ends
with a wide singular spectrum. While there is no clear positive shift in the distribution of singular
values, the mean value appears to very gradually increase for both the ordered and permuted sequen-
tial MNIST tasks. If the model is to be expected to positively shift singular values to compensate
for the contractivity of the tanh nonlinearity, it is not doing so well for the Glorot-initialized case;
however, this may be due to the inefficiency of training as a result of vanishing gradients, given that
initialization.
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Figure 3: Singular value evolution on the permuted sequential MNIST task for factorized RNNs
with different margin sizes. Margins are, from left to right: top row: 0.001, 0.01, 0.1; bottom row: 1,
no margin, no margin. The singular value distributions are summarized with the mean (green line,
center) and standard deviation (green shading about mean), minimum (red, bottom) and maximum
(blue, top) values. All models are initialized with orthogonal hidden to hidden transition matrices
except for the model on the bottom right where Glorot normal initialization is used.
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3.2 EXPLORING SOFT ORTHOGONALITY CONSTRAINTS

Having established that it may indeed be useful to step away from orthogonality, here we explore
two forms of soft constraints (rather than hard bounds as above) on hidden to hidden transition
matrix orthogonality. The first is a simple penalty that directly encourages a transition matrix W to
be orthogonal, of the form λ||WTW − I||22. This is similar to the orthogonality penalty introduced
by Henaff et al. (2016). In the first two subfigures on the left of Figure 4, we explore the effect
of weakening this form of regularization. We trained both a regular non-factorized RNN on the
T = 200 copy task and a factorized RNN with orthogonal bases on the T = 500 copy task. For
the regular RNN, we had to reduce the learning rate to 10−5. Here again we see that weakening the
strength of the orthogonality-encouraging penalty can increase convergence speed.
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Figure 4: Accuracy curves on the copy task for different strengths of soft orthogonality constraints.
A soft orthogonality constraint is applied to the transition matrix W for a regular RNN on T = 200
(Left) and the same is applied on a factorized RNN on T = 500 (Left center). Another constraint
in the form of a mean one Gaussian prior on the singular values is applied to a factorized RNN on
T = 200 (Right center); the same is applied to a factorized RNN with a sigmoidal parameterization
of the spectrum, using a large margin of 1 (Right). Loosening orthogonality speeds convergence.

The second approach we explore replaces the sigmoidal margin parameterization with a mean one
Gaussian prior on the singular values. In the two right subfigures of Figure 4, we visualize the accu-
racy on the length 200 copy task, using geoSGD (learning rate 10−6) to keep U and V orthogonal
and different strengths of a Gaussian prior with mean one on the singular values. We trained these
experiments with regular SGD on the spectrum and other non-orthogonal parameter matrices, using
a 10−5 learning rate. We see that priors which are too strong lead to slow convergence. Loosening
the strength of the prior makes the optimization more efficient. Furthermore, we compare a direct
parameterization of the spectrum (no sigmoid) in Figure 4 with a sigmoidal parameterization, using
a large margin of 1. Without the sigmoidal parameterization, optimization quickly becomes unsta-
ble; on the other hand, the optimization also becomes unstable if the prior is removed completely in
the sigmoidal formulation (margin 1). These results further motivate the idea that parameterizations
that deviate from orthogonality may perform better than purely orthogonal ones, as long as they are
sufficiently constrained to avoid instability during training.

4 CONCLUSIONS

We have explored a number of methods for controlling the expansivity of gradients during backprop-
agation based learning in RNNs through manipulating orthogonality constraints and regularization
on matrices. Our experiments indicate that while orthogonal initialization may be beneficial, main-
taining constraints on orthogonality can be detrimental. Indeed, moving away from hard constraints
on matrix orthogonality can help improve optimization convergence rate and model performance.
However, we also observe with synthetic tasks that relaxing regularization which encourages the
spectral norms of weight matrices to be close to one, or allowing bounds on the spectral norms of
weight matrices to be too wide, can reverse these gains and may lead to unstable optimization.
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5 APPENDIX

5.1 ADDITIONAL FIGURES
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Figure 5: Mean squared error (MSE) curves on the adding task for different spectral margins m .
For a trivial baseline solution of always outputting the same number, the expected baseline MSE is
0.167.
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Figure 6: Loss curves for different factorized RNN parameterizations on the sequential MNIST
task (left) and the permuted sequential MNIST task (right). The spectral margin is denoted by m;
models with no margin have singular values that are directly optimized with no constraints; Glorot
refers to a factorized RNN with no margin that is initialized with Glorot normal initialization.

5.2 COPY TASK NONLINEARITY

We found that nonlinearities such as a rectified linear unit (ReLU) (Nair & Hinton, 2010) or hy-
perbolic tangent (tanh) made the copy task far more difficult to solve. Using tanh, a short se-
quence length (T = 100) copy task required both a soft constraint that encourages orthogonality
and thousands of epochs for training. It is worth noting that in the unitary evolution recurrent neu-
ral network of Arjovsky et al. (2015), the non-linearity (referred to as the ”modReLU”) is actually
initialized as an identity operation that is free to deviate from identity during training. Further-
more, Henaff et al. (2016) derive a solution mechanism for the copy task that drops the non-linearity
from an RNN. To explore this further, we experimented with a parametric leaky ReLU activation
function (PReLU) which introduces a trainable slope α for negative valued inputs x , producing
f (x ) = max(x , 0) + αmin(x , 0) (He et al., 2015). Setting the slope α to one would make the
PReLU equivalent to an identity function. We experimented with clamping α to 0.5, 0.7 or 1 in a
factorized RNN with a spectral margin of 0.3 and found that only the model with α = 1 solved the
T = 1000 length copy task. We also experimented with a trainable slope α, initialized to 0.7 and
found that it converges to 0.96, further suggesting the optimal solution for the copy task is without
a transition nonlinearity. Since the copy task is purely a memory task, one may imagine that a tran-
sition nonlinearity such as a tanh or ReLU may be detrimental to the task as it can lose information.
Thus, we also tried a recent activation function that preserves information, called an orthogonal per-
mutation linear unit (OPLU) (Chernodub & Nowicki, 2016). The OPLU preserves norm, making
a fully norm-preserving RNN possible. Interestingly, this activation function allowed us to recover
identical results on the copy task to those without a nonlinearity for different spectral margins.
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5.3 METHOD RUNNING TIME

Although the method proposed in section 2 relies on a matrix inversion, an operation with O(n3)
complexity for an n × n matrix, the running time of an RNN factorized in such a way actually
remains reasonable. This running time is summarized in Table 5 and includes all computations
in the graph, together with the matrix inversion. As this method is meant to be used only for the
analysis in this work, we find the running times acceptable for that purpose. Models were run on an
Nvidia GTX-770 GPU and were run against the T=100 length copy task.

hidden units SGD geoSGD
128 21.9 ± 0.2 40.4 ± 0.1
500 46.7 ± 0.2 161.4 ± 0.2
1000 95.4 ± 0.3 711.2 ± 0.8

Table 5: Run time in seconds for 1000 itera-
tions on a T=100 copy task of a regular RNN
trained with stochastic gradient descent (SGD)
compared against a factorized RNN trained with
geodesic SGD on the bases (geoSGD) and reg-
ular SGD for other parameters.
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