
SPMDM: Enhancing Masked Diffusion Models
through Simplifing Sampling Path

Yichen Zhu 1,3,* Weiyu Chen 2,* James Kwok 2 Zhou Zhao 1,3,†

1Zhejiang University 2HKUST 3Shanghai Artificial Intelligence Laboratory
{yc_zhu, zhaozhou}@zju.edu.cn
{wchenbx, jamesk}@cse.ust.hk

Abstract

Autoregressive models (ARMs) show strong capabilities in many domains but
face challenges with planning and complex reasoning due to their sequential
generation. Masked diffusion models (MDMs) address these issues by enabling
controllable, any-order, and parallel generation but encounter training difficulties
as token prediction complexity varies with unmasked token positions. This work
identifies two key characteristics of efficient MDM sampling paths: prioritizing
tokens near unmasked ones and generating subsequence earlier in reasoning. We
propose the Simple Path Masked Diffusion Model (SPMDM), which partitions
sequences into fixed-length, non-overlapping subsequences and applies varying
noise scales to learn token-level and cross-subsequence dependencies. Experiments
on synthetic data and tasks like Countdown and Sudoku show SPMDM captures
structural rules effectively, significantly outperforming existing MDMs and ARMs,
with competitive results on broader reasoning benchmarks.

1 Introduction

Autoregressive models (ARMs) have ushered in a new era of artificial intelligence, demonstrating
remarkable performance in applications such as high-quality text generation [33, 3, 43, 7], code
generation [35], and chain-of-thought (CoT) reasoning for mathematical problem solving [45].
Despite the remarkable achievements and widespread real-world applications of autoregressive
models, the left-to-right generation paradigm continues to suffer from several inherent limitations [21,
40, 8, 20, 46]. Notable challenges include difficulties in future planning, complex reasoning and self-
correction [22, 6, 47]. These constraints have spurred researchers to explore alternative architectures
for next-generation LLMs.

A compelling direction in current research focuses on the development of masked diffusion models
(MDMs) [5, 26, 25, 30, 36]. Researchers have drawn inspiration from the remarkable success of
diffusion models in image generation [19, 42, 34, 14] and have increasingly focused on exploring
MDMs for discrete sequence generation. In contrast to AR models, which generate tokens sequen-
tially, a unifying insight across these models is the potential of diffusion language models (DLMs)
for controllable [29, 44], any-order, and parallel text generation [28, 16, 27]. Notably, DLMs exhibit
promising capabilities in complex reasoning and global planning [48, 51], thereby addressing key
limitations inherent in the AR approach.

However, training MDMs is inherently more challenging than training ARMs [23]. While ARMs
aim to predict the next token given an unmasked prefix, MDMs are tasked with predicting a token
conditioned on a set of unmasked tokens located at arbitrary positions. In other words, unlike ARMs,

*Equal contribution.
†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



where the learning difficulty remains consistent, the denoising difficulty in MDMs varies depending
on the positions of the unmasked tokens. As a result, many existing studies focus on identifying
simpler sampling paths to improve sample quality. This is typically achieved by carefully selecting
which token to unmask next during the sampling process [23, 32].

In this work, we begin by comparing the sampling paths, which refer to the token unmasking orders
produced by different sampling strategies, and identify two key characteristics that define simpler and
more efficient sampling paths: (a) From a generation-order perspective, prioritizing tokens in the local
neighborhood of unmasked tokens. (b) From a logical-order perspective, prioritizing the generation
of subsequences that appear earlier in the reasoning process. Motivated by these observations,
we propose a novel approach called the Simple Path Masked Diffusion Model (SPMDM), which
encourages these characteristics during MDM training. Specifically, we partition the input sequence
into non-overlapping, fixed-length subsequences and assign different noise scales to each of them.
This design encourages the model to capture token-level dependencies within each subsequence,
while simultaneously learning logical dependencies across subsequences.

In our experimental evaluation, we first assess the intra- and inter-subsequence modeling capabilities
of SPMDM on synthetic sequences that follow predefined structural rules. Our method significantly
outperforms baseline MDMs in capturing these rules. We then focus on substantially more complex
problem-solving tasks, such as Countdown and Sudoku. These tasks require extensive planning over
a large number of combinations and remain challenging even for commercial large language models
(e.g., GPT-4 [3]). Notably, our method significantly outperforms its autoregressive counterpart and
surpasses most existing discrete diffusion language models. Finally, we evaluate SPMDM on a
broader set of reasoning benchmarks, where it also demonstrates strong and competitive performance.

2 Background

In this section, we introduce the notation used throughout the paper and briefly review masked
diffusion models (MDMs), along with a method that optimizes MDM sampling trajectories during
inference via an adaptive sampling strategy. Additional related works are discussed in Appendix A.

Notations. We consider scalar discrete random variables with V categories as one-hot column
vectors in the space V = {x ∈ {0, 1}V :

∑
i xi = 1} ⊂ ∆V for the simplex ∆V . Let the V -th

category denote a special [MASK] token, where m ∈ V is its one-hot vector. We define x1:N as a
sequence of N tokens, where xℓ ∈ V for all tokens ℓ ∈ {1, . . . , N}, and use VN to denote the set of
all such sequences. Throughout the work, we simplify notation and refer to the token sequence as
x and an individual token as xℓ. Finally, let Cat(·; p) be a categorical distribution with probability
p ∈ ∆V .

2.1 Masked Diffusion Models

Similar to continuous diffusion models [41, 42, 19], MDMs introduce a forward process that pro-
gressively adds noise to data in the discrete domain, and learn the marginal distribution of the
corresponding reverse process [36].

The forward process starts with clean data x and defines latent variables xt = [x1
t , · · · ,xN

t ] for
t ∈ [0, 1]. MDLM [36] defines q as a coordinate-independent masking process:

qt|0(xt | x0) =

N∏
ℓ=1

qt|0(x
ℓ
t | xℓ

0), qt|0(x
ℓ
t | xℓ

0) = Cat(αtx
ℓ
0 + (1− αt)m), (1)

where αt is the predefined noise schedule satisfying α0 ≈ 1, α1 ≈ 0.

The reverse process in MDMs iteratively recover values for masked tokens, starting from a mask
sequence x1 = [m, · · · ,m]. Let 0 ≤ s < t ≤ 1, the reverse process is given by

qs|t(xs | xt,x) =

N∏
ℓ=1

qs|t(x
ℓ
s | xt,x), qs|t(x

ℓ
s | xt,x) =

{
Cat(xℓ

t) xℓ
t ̸= m;

Cat
(

1−αs

1−αt
m+ αs−αt

1−αt
xℓ
)

xℓ
t = m.

(2)

2



V
an
il
la

A
d
a
p
ti
v
e

M M M M M 8 M M 8 M M M M 7 3

M M M M = 8 1 ， 8 M M M M 7 3

= 8 1 ， 8 1 - 8 = 7 3

8 2 - 1 = 8 1 ， 8 1 - 8 = 7 3

M M M M

1 M 8 M = M 1 M 8 M M M M M M

1 M 8 2 = 8 1 M 8 M M 8 = 7 M

1 + 8 2 = 8 1 ， 8 1 - 8 = 7 3

1 + 8 2 = 8 1 ， 8 M M 8 = 7 M

(a) (b)

Figure 1: Motivation examples. (a) Denoising process of MDLM on the Countdown dataset using
the prompt “1, 82, 8, 73,”. (b) Average unmasking timestep per token index in generated chain-of-
thought reasoning on the GSM8K test set.

A distribution pθ(x | xt) parameterized by θ is employed to approximate qs|t(xℓ
s | xt,x) ≜ qs|t(x

ℓ
s |

xt,x ∼ pθ(x | xt)), optimizing the following upper bound on negative log-likelihood:

LNELBO = Eq

∫ t=1

t=0

α′
t

1− αt

∑
ℓ

log⟨pℓθ(xt, t),x
ℓ⟩ dt. (3)

2.2 Adaptive MDM Sampling Strategy

According to Equation 2, the MDM inference can be decomposed into two steps: (a) randomly
selecting a set of positions to unmask and (b) assigning token values to each position via the
denoising network pθ. However, unlike continuous diffusion, the reverse process in MDMs permits
multiple valid sampling paths, i.e., different token unmasking orders, that are consistent with the
initial distribution defined by the forward process. To identify simpler and more efficient sampling
trajectories within the space of valid ones, Kim et al. [23] proposed the Adaptive MDM sampling
strategy. Specifically, they designed an efficient ordering oracle function, denoted as F , and used it to
adjust the sampling process of MDMs as follows: (a) sample a set of masked tokens S = F(θ,xt) ⊆
{ℓ | xℓ

t = m}, then (b) for each i ∈ S, sample xℓ
s ∼ pℓθ(x | xt).

3 Method

In this section, we begin with a motivational experiment to identify key characteristics of effective
sampling paths (Section 3.1). Based on these observations, we propose Simple Path Masked Diffusion
Model (SPMDM), an effective method to encourage these key characteristics during training. We
provide the formulation of forward and backward processes in Section 3.2. We then discuss the
network architecture in Section 3.3 and detail the training and sampling algorithms in Section 3.4.

3.1 Motivation

Vanilla MDM inference aims to align the intermediate distributions with the forward process, follow-
ing the approach used in continuous diffusion. However, a key distinction in MDMs is that the reverse
process permits multiple valid sampling paths—specifically, different token unmasking orders—all
of which remain consistent with the initial distribution defined by the forward process [23].

Figure 1a illustrates two results generated by MDLM [36] trained on the Countdown dataset, em-
ploying distinct sampling strategies: vanilla and adaptive (as discussed in Section 2.2). As shown
in Figure 1a, the vanilla sampling strategy does not decode semantically related tokens at close
timesteps, leading to incorrect outcomes. In contrast, the adaptive sampling strategy demonstrates
that groups of related tokens are decoded at closer timesteps, which contributes to achieving the
correct result.

3



To quantitatively analyze the impact of these two sampling strategies, we conducted an experiment.
Specifically, we employed a SMDM [27] fine-tuned on the GSM8K [11] dataset and compared its
performance under the vanilla (original) sampling strategy and the adaptive sampling strategy. Using
the GSM8K test set as input, we performed 256 sampling steps and recorded the average unmasking
timestep for each token throughout the generation process. Figure 1b shows the average decoding
timestep for tokens at each index. As illustrated, under the vanilla sampling strategy, the unmasking
timesteps are distributed almost uniformly across all tokens. In contrast, outputs generated using
the adaptive sampling strategy exhibit a distinct grouping pattern: (i) Tokens in the first half of the
sequence, corresponding to the initial part of the problem (e.g., the first mathematical equation),
demonstrate similar average decoding timesteps. Likewise, tokens in the second half, corresponding
to the subsequent part (e.g., the second equation), also show similar average decoding timesteps
among themselves. (ii) Tokens from the first half are generally decoded earlier than those in the
second half, highlighting a sequential decoding pattern that aligns with the inherent structure of the
problem, such as solving equations in order.

Based on the above observations, we summarize the two characteristics of simple sampling path as
follows: (a) From a generation-order perspective, it prioritizes tokens in the local neighborhood of
unmasked tokens (xi ̸= m). (b) From a logical-order perspective, it prioritizes the generation of
subsequences that appear earlier in the reasoning process.

These characteristics are consistent with human problem-solving strategies, where we focus on each
equation individually and solve them sequentially. However, the adaptive sampling strategy is applied
only during inference. Can we encourage such characteristics during training to further improve
performance?

3.2 Subsequence Level Forward and Reverse Process

Building upon the observation in Section 3.1, our objective is to enhance two characteristics of
sampling paths during training. To achieve this, we propose to partition the input sequence x into
multiple subsequences and apply noise of varying magnitudes across these subsequences.

Specifically, the input token sequence x (of total length N ) is divided into K non-overlapping
subsequences, each of length L. Thus, K = N/L, assuming N is an integer multiple of L. The k-th
subsequence, denoted as xk for k ∈ {1, . . . ,K}, comprises tokens from the original sequence. For
convenience, we refer to the ℓ-th token within the k-th subsequence as xk,ℓ.

In the standard forward process of MDMs, each token xi in the input sequence x has an equal
probability of being replaced by a [MASK] token at any given noising step t. In contrast, our approach
introduces noise with distinct magnitudes across different subsequences. The forward process for a
token within a specific subsequence then becomes:

qtk|0(x
k,ℓ
tk
| xk,ℓ

0 ) = Cat(αtkx
k,ℓ
0 + (1− αtk)m). (4)

Here, xk,ℓ
0 is the original ℓ-th token of the k-th subsequence, xk,ℓ

tk
is its state at noising step tk, and

tk is the noising step specifically assigned to the entire k-th subsequence xk. αtk controls the noise
schedule for that subsequence.

Partitioning the sequence in this manner encourages the model to learn dependencies among tokens
within each subsequence, thereby encouraging characteristic (a) (in Section 3.1). Furthermore, assign-
ing different noise scales (tk) to different subsequences prompts the model to leverage information
from less noisy subsequences, which strengthens its capacity to capture logical relationships across
subsequences.

Correspondingly, we define a reverse process to invert the noising process defined in Equation 4. This
process adapts the formulation from Equation 2 to the subsequence level:

qsk|tk(x
k,ℓ
sk
| xk,ℓ

tk
,xk,ℓ) =

{
Cat(xk,ℓ

tk
) xk,ℓ

tk
̸= m;

Cat
(

1−αts

1−αtk
m+

αts−αtk

1−αtk
xk,ℓ

)
xk,ℓ
tk

= m.
(5)

Here, sk < tk are two noising steps for the k-th subsequence.

We employ a distribution pθ(x
k,ℓ | xk,ℓ

tk
,x−k

t ) parameterized by θ to approximate qsk|tk(x
k,ℓ
sk
|

xk,ℓ
tk

,xk,ℓ), and the upper bound on negative log-likelihood at subsequence level can be written as

4



Training

MDLM BDLM Ours

Sampling

𝑡 = 1

𝑡 = 0 

N
o

ise

Add Noise Generation

Figure 2: Method Overview. During training, SPMDM partitions the input sequence x into K
subsequences and introduces noise with varying magnitudes to each of them. Compared to MDLM,
our method not only models token-level dependencies but also explicitly encourages the learning
of inter-subsequence relationships. In contrast to BDLM, SPMDM does not impose a left-to-right
generation order, enabling more flexible sampling strategies.

follows (see Appendix B for the proof):

LNELBO = Etk∼[0,1],qtk|0

[
α′
tk

1− αtk

log pθ(x
k | xk

tk
,x−k

t )

]
, (6)

where α′
t denotes the derivative of αt with respect to t, and x−k

t = x1
t1 , · · · ,x

k−1
tk−1

,xk+1
tk+1

, · · · ,xK
tK .

3.3 Network Architecture

We adopt a transformer as the base model, following existing works [25, 36]. Many discrete diffusion
models do not use explicit time embeddings for the current timestep t [36, 16, 27, 28]. Instead, they
typically assume t, which indicates the noise scale applied to the input, can be implicitly inferred
from the count of masked tokens.

However, the proposed method applies different noise scales to different subsequences, necessitating
the introduction of time embedding layers. These layers explicitly encode the noise scale for each
subsequence. In contrast to typical time embeddings in other discrete diffusion models, our design
assigns K distinct timestep embeddings per input sequence, one corresponding to each of the K
subsequences. We therefore adapt the dimensionality and structure of the timestep embedding layer
for this subsequence-based approach, improving the model’s capacity to capture localized noise
levels within different subsequences. Note that the computational overhead from introducing these
time embedding layers is minimal, as their parameter count is significantly smaller than that of other
model components.

3.4 Training and Sampling

Training. We apply Equation 6 to language modeling over sequences x1:K , which are partitioned
into K subsequences. Specifically, we model the conditional distribution as pθ(x

1:K | x1:K
t ) =∏K

k=1 pθ(x
k | xk

tk
,x−k

t ). Accordingly, we employ a single model to compute pθ(x
k | xk

tk
,x−k

t ) for
each token subsequence, and optimize the following objective:

LNELBO =

K∑
k=1

Etk∼[0,1],qtk|0

[
α′
tk

1− αtk

log pθ(x
k | xk

tk
,x−k

t )

]
. (7)

5



Algorithm 1 Sampling

1: Input: Network pθ, subsequence length L, time [0, 1], sampling steps T , oracle function F
2: Initialize x1 ∼ {m}N , t← 1, ∆t← 1/T
3: for n = 0 to T do
4: ∀k : Count unmasked tokens nk

5: ∀k : tk ← 1− nk/L

6: ∀k : x̂k
0 ∼ pθ(· | xk

tk
,x−k

t , tk)
7: if using adaptive sampling strategy then
8: Sample a set of masked token indices S = F(θ,xt)

9: ∀(i, ℓ) ∈ S : xi,ℓ
t = x̂i,ℓ

0
10: else
11: ∀k : sk ← max(tk −∆t, 0)

12: ∀k : For all masked tokens, with probability sk
tk
, x̂k,ℓ

0 ←m

13: Update xt ← x̂0

14: end if
15: end for
16: Return xt

Sampling. Since our forward process assigns distinct noise scales to different subsequences, we
correspondingly modify the sampling procedure. Specifically, sampling starts from a fully masked
sequence, denoted as x1. At each denoising step, for every k-th subsequence xk, we count the
number of its unmasked tokens, denoted nk. The corresponding timestep tk for this subsequence
is then updated according to the formula tk = 1 − nk/Lk, where Lk represents the length of the
subsequence.

Through this timestep updating mechanism, we encourage the model to prioritize denoising tokens
that are adjacent to clean tokens, fostering coherent generation. The detailed sampling process for
SPMDM is depicted in Algorithm 1. It is also worth noting that our sampling method is compatible
with adaptive sampling strategies. We present the corresponding ablation studies in Section 4.5 to
demonstrate this compatibility.

4 Experiments

In this section, we first demonstrate the intra- and inter-subsequence modeling capabilities of SPMDM
using toy examples in Section 4.1. We then experiment with significantly more complex problem-
solving tasks in Section 4.2, which require extensive planning over a large number of combinations.
Following this, we further evaluate SPMDM on a broader set of reasoning benchmarks in Section 4.3.
Finally, we present an ablation study in Section 4.5. Detailed descriptions of the experimental setup
are provided in the Appendix C.

4.1 Toy Examples

Intra-subsequence modeling. To assess the model’s capacity to capture intra-subsequence de-
pendencies, we construct a synthetic training dataset following a well-defined set of constraints.
Each input sequence consists of 8 characters sampled from the English alphabet (i.e., a-z). Each
sequence is divided into four consecutive, non-overlapping character pairs. A strict intra-pair ordering
constraint is imposed: the first character in each pair must precede the second in alphabetical order.
For instance, the sequence adghklmn is valid, as each of its four pairs, ad, gh, kl, and mn, satisfies the
specified ordering constraint.

Inter-subsequence modeling. To evaluate the model’s ability to capture inter-subsequence depen-
dencies, we design a dataset based on a relational constraint between consecutive character pairs.
Each sequence is again composed of 8 characters drawn from English alphabet, divided sequentially
into four non-overlapping pairs. An inter-block ordering constraint is enforced: for any two adjacent
blocks, the sum of the alphabetical positions of the characters in the preceding block must be strictly
less than that of the following block. This setup encourages the model to learn and generalize the

6



ordering relations between blocks. For instance, the sequence igyeporw is valid, as it consists of four
letter pairs, ig, ye, po, and rw, which satisfies the predefined ordering constraints.

Baselines. In this toy example, we compare the proposed method with two representative discrete
diffusion model: MDLM [36], a popular discrete diffusion model, and BDLM [4], which offers an
interpolation between autoregressive models and discrete diffusion through block-wise partitioning.
All methods share the same model architecture with 6M parameters, and all models are trained
from scratch on the same datasets with the same number of training steps. For intra- and inter-
sequence modeling, we randomly generate 50,000 samples for training and 1000 samples for testing,
respectively. We use the success rate (i.e., the percentage of samples that satisfy the predefined rule)
as the evaluation criterion.

Table 1: Success rates of different methods
on intra-subsequence and inter-subsequence
modeling.

Method Intra-subseq Inter-subseq

MDLM 69.2 58.3
BDLM 92.4 87.1
Ours 95.8 80.6

Results. As shown in Table 1, our method demon-
strates promising performance in modeling both intra-
subsequence and inter-subsequence dependencies.

For intra-subsequence dependencies, the proposed
method achieves 26.6% higher success rates than
MDLM and 3.4% higher than BDLM, clearly show-
casing the ability of SPMDM to effectively capture
intra-subsequence relationships.

In terms of inter-subsequence modeling, our method
also exhibits strong capabilities, outperforming
MDLM by 22.3%. By assigning different noise scales
to different subsequences, the method encourages the model to prioritize extracting information
from subsequences with lower noise levels, thereby enhancing its ability to model inter-subsequence
dependencies.

Although our method performs slightly worse than BDLM in inter-subsequence modeling, this is
largely due to BDLM’s use of a semi-autoregressive sampling strategy during inference. Specifically,
BDLM decodes sequentially from the left block to the right block, which aligns perfectly with the
requirements of this specialized task. However, as will be shown in real-world experiments, BDLM
does not perform well overall.

4.2 Problem-solving Tasks

Dataset. Countdown [1] is a mathematical reasoning task and a generalization of the classic “24
Game,” which remains challenging even for advanced models such as GPT-4 [3]. The objective is to
combine a given set of numbers using basic arithmetic operations (+,−,×,÷) to exactly match a
specified target number. We consider three subtasks of increasing difficulty by varying the number
of input digits in 3, 4, 5. Sudoku [2] is a classic logic-based number placement puzzle, widely
recognized for its stringent intellectual requirements. The objective is to fill a 9× 9 grid with digits
such that each row, each column, and each of the nine 3× 3 subgrids contains all numbers from 1 to
9 exactly once. In our setup, the digit 0 is used to indicate vacant positions to be filled by the model.
Each 9× 9 grid is linearized into a sequence of 81 digits, which serves as the model input. During
tokenization, each digit is treated as an individual token.

Baselines. In addition to the previously introduced MDLM [36] and BDLM [4] baselines, we also
include autoregressive models based on the GPT-2 architecture [33], with parameter sizes ranging
from 6M to 85M, as well as pretrained large language models from the LLaMA family [43], with
parameter sizes ranging from 7B to 13B. Furthermore, we compare our approach against several
other existing discrete diffusion models: D3PM [5], SEDD [25], and MGDM [48]. D3PM serves as
the canonical framework for discrete diffusion modeling. SEDD adapts score-based techniques from
continuous diffusion into the discrete domain. MGDM exhibits strong performance on reasoning and
planning tasks. Except for LLaMA, all other baselines are trained from scratch on the dataset.

Results on Countdown. As shown in Table 2, our method demonstrates superior performance on
the Countdown task. Notably, the performance gap widens as the number of input digits increases. We
attribute this to the fact that countdown can be framed as a brute-force search problem, where a larger

7



Table 2: Test Accuracy on Countdown (CD).

Method Param CD 3 CD 4 CD 5

GPT-2 6M 94.1 31.9 4.3
85M 95.9 45.8 5.1

LLaMA 7B 95.7 44.1 6.7
13B 96.5 51.1 7.4

D3PM 85M 99.4 83.1 27.6
SeDD 85M 99.4 83.7 39.9
MDLM 85M 99.5 85.8 41.2
MGDM 85M 99.5 91.5 46.6
BDLM 85M 98.7 85.5 40.8
Ours (L = 8) 6M 98.3 53.2 27.0
Ours (L = 8) 85M 99.6 92.7 46.1

Table 3: Test Accuracy on Sudoku.

Method Param Acc (↑)

GPT-2 6M 13.1
85M 22.4

LLaMA 7B 28.7
13B 41.2

D3PM 85M 89.8
SeDD 85M 90.2
MDLM 85M 92.3
MGDM 85M 99.9
BDLM 85M 92.1
Ours (L = 9) 6M 99.9
Ours (L = 9) 85M 100.0

Table 4: Performance on language understanding and reasoning benchmarks. For GSM8K, we
finetune the models; all other tasks are evaluated in a zero-shot setting.

Model Param CommonSense Reasoning Math
HSwag SIQA PIQA Wino. GSM8K

LLaMA 7B 74.9 43.2 63.3 67.1 58.6
Plaid 1.3B 39.3 32.3 54.5 51.3 32.6

GPT-2 127M 29.9 35.7 62.1 48.5 44.8
SEDD 170M 30.2 34.4 55.6 50.1 45.3
MDLM 127M 31.5 35.0 54.2 50.4 46.1
DiffuGPT 127M 33.4 37.0 57.7 50.8 50.2
Ours (L = 8) 127M 33.8 37.2 56.9 51.2 51.3
GPT-2 355M 38.8 37.7 67.4 50.7 50.7
SEDD 424M 31.5 35.4 56.1 49.0 53.5
MDLM 355M 32.7 37.4 55.1 51.5 54.1
DiffuGPT 355M 37.2 39.9 59.6 52.6 52.6
Ours (L = 8) 355M 36.3 41.7 58.4 53.2 56.4

number of input digits leads to a combinatorially larger search space and necessitates longer-range
reasoning during generation. Under such conditions, the performance of autoregressive models and
semi-autoregressive baselines such as BDLM degrades due to their limited horizon. In contrast,
our approach exhibits robust performance when handling long reasoning chains, benefiting from its
broader context window and a stronger ability to model logical dependencies across subsequences.

Results on Sudoku. Unlike Countdown, the Sudoku task requires a balance between global
structural consistency and fine-grained intra-subsequence constraints. We report the results on the
Sudoku in Table 3. Due to the superior capability of SPMDM in capturing local patterns within
subsequences, it is able to effectively learn row-level constraints. At the same time, its strength in
modeling logical dependencies across subsequences enables it to learn subgrid and column-level
constraints as well. In contrast, BDLM that follow a left-to-right generation paradigm tend to struggle
with capturing subgrid and column-level rules effectively.

4.3 Reasoning Tasks

Benchmarks. We evaluate our model on a suite of challenging benchmarks spanning language
understanding and reasoning. For common sense reasoning, we include four multiple-choice
datasets: HellaSwag(HSwag) [50], SocialIQA (SIQA) [38], PhysicalIQA (PIQA) [9], and Wino-
grande (Wino.) [37], with accuracy as the evaluation metric. Additionally, we test on GSM8K [11], a
benchmark of grade school math word problems, to evaluate the model’s mathematical reasoning

8



capabilities. We follow Ye et al. [49] in finetuning setting using the augmented symbolic data to test
the CoT [45] math reasoning abilities of diffusion models.

Baselines. In addition to the baselines introduced in earlier experiments, we incorporate sev-
eral representative models for comparison in this section: Plaid [17], a state-of-the-art continuous
diffusion-based language model; and DiffuGPT [16], a discrete diffusion model for language genera-
tion adapted from GPT-2.

Result. As shown in Table 4, under the same parameter budget, our SPMDMs achieve state-of-the-
art performance across a variety of reasoning task benchmarks. The slightly worse performance on
PIQA compared to GPT-2 may be due to the specific physical knowledge required for the task, which
our models may lack. This limitation stems from fine-tuning on MDLMs trained on only 30B tokens
of OpenWebText, which may be insufficient to acquire broad general knowledge. In tasks that require
more extensive global reasoning, such as GSM8K, SPMDMs consistently exhibit better performance
compared to AR models that rely solely on left-to-right modeling capabilities.

4.4 Computational Overhead

We evaluated the computational efficiency of SPMDM through speed benchmarks on the Countdown
4 dataset, utilizing a single RTX 4090 GPU. Specifically, we measured: (1) the training and evaluation
token throughput of both MDLM and SPMDM with a batch size of 32, and (2) the time required
for a 32-step sampling process with a batch size of 1. The results are summarized in Table 5. Note
that the official MDLM implementation the official MDLM implementation does not remove the
timestep embedder but instead provides it with an all-zero input. Consequently, reintroducing the
timestep embedding in SPMDM incurs no additional computational overhead compared to MDLM.
As shown in Table 5, these results confirm that SPMDM matches the computational efficiency of
baseline approaches.

Table 5: Comparison of computational efficiency between SPMDM and MDLM.
MDLM SPMDM

Training (token/ms) 93.7 93.1
Evaluation (token/ms) 266.8 265.1

Sampling (s) 0.55 0.57

4.5 Ablation Studies

Effect of subsequence length. In the experiments of Section 4.2, we demonstrated the problem-
solving capability of SPMDM under a fixed subsequence length. We now shift our focus to analyzing
how different subsequence lengths affect model performance. Notably, when L = N , our model
degenerates into MDLM. Specifically, SPMDM reduces to MDLM when L = 48 for Countdown
and L = 162 for Sudoku. The experimental results are shown in Figure 3a. Overall, SPMDM
consistently outperforms MDLM across most subsequence lengths. However, when L = 4, we
observe a performance drop, which we attribute to the subsequences being too short to capture
sufficient semantic or logical information, thus increasing the difficulty of modeling inter-subsequence
dependencies. Conversely, when L = 16, the subsequences become too long and are likely to contain
most of the solution within a single subsequence, thereby diminishing the need for modeling logical
dependencies across subsequences.

Effect of sampling strategy. We also conduct ablation studies on different sampling strategies.
The evaluated strategies include: 1) DDPM sampling, the standard method introduced in MDLM,
where the same timestep t is applied to the entire sequence x at each denoising step; 2) Our proposed
sampling strategy (i.e. lines 10 to 13 in Algorithm 1), where each subsequence is assigned an
individual noise scale and its timestep is dynamically updated during sampling; 3) A hybrid strategy
that combines our sampling method with adaptive sampling (i.e. lines 7 to 9 in Algorithm 1). The
corresponding results are presented in Figure 3b. Clearly, our sampling approach—assigning noise
scales on a per-subsequence basis—leads to more effective denoising. Furthermore, incorporating

9



(a) (b)

Figure 3: Ablation studies on subsenquence length L and sampling strategy using SPMDM trained
on countdown and sudoku datsets. (a) Accuracy on countdown and sudoku v.s. subsenquence length.
(b) Accuracy on countdown and sudoku v.s. sampling strategy.

adaptive sampling further enhances generation quality, indicating the complementary strengths of
both strategies.

5 Conclusion

In conclusion, we identify two key characteristics that define simpler and more efficient sampling
paths during MDM sampling process. Motivated by this two characteristics, we propose a novel
MDM framework, termed SPMDM, whose core idea is to encourage the characteristics of simple
sampling paths during training, thereby enhancing the model’s ability to discover and follow simpler
trajectories during the sampling process. Extensive quantitative experiments across a variety of tasks
demonstrate the effectiveness and superiority of our proposed method.

Acknowledgment

This work was supported by National Key R&D Program of China (No.2022ZD0162000) and
National Natural Science Foundation of China (No.62222211, No.U24A20326). This work was also
supported in part by the Research Grants Council of the Hong Kong Special Administrative Region
(Grants 16202523 and HKU C7004-22G).

References
[1] Countdown. https://en.wikipedia.org/wiki/Countdown_(game_show), 2024.

[2] 1 million Sudoku games. https://www.kaggle.com/datasets/bryanpark/sudoku,
2024.

[3] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[4] Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han,
Subham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between
autoregressive and diffusion language models. arXiv preprint arXiv:2503.09573, 2025.

[5] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg.
Structured denoising diffusion models in discrete state-spaces. Advances in Neural Information
Processing Systems, 34:17981–17993, 2021.

[6] Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. arXiv
preprint arXiv:2403.06963, 2024.

10

https://en.wikipedia.org/wiki/Countdown_(game_show)
https://www.kaggle.com/datasets/bryanpark/sudoku


[7] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin
Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu,
Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren,
Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu,
Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang,
Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv
preprint arXiv:2309.16609, 2023.

[8] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for
sequence prediction with recurrent neural networks. Advances in neural information processing
systems, 28, 2015.

[9] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about phys-
ical commonsense in natural language. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 7432–7439, 2020.

[10] Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis,
and Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in
Neural Information Processing Systems, 35:28266–28279, 2022.

[11] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[12] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

[13] Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin,
Pierre H Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. Continu-
ous diffusion for categorical data. arXiv preprint arXiv:2211.15089, 2022.

[14] Xie Fan, Zeng Dan, Shen Qiaomu, and Tang Bo. A comprehensive survey on text-to-video
generation. Chinese Journal of Electronics, 34(4):1009–1036, 2025. doi: 10.23919/cje.2024.00.
151. URL https://cje.ejournal.org.cn/en/article/doi/10.23919/cje.2024.00.
151.

[15] Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence
to sequence text generation with diffusion models. arXiv preprint arXiv:2210.08933, 2022.

[16] Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
autoregressive models. arXiv preprint arXiv:2410.17891, 2024.

[17] Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models.
Advances in Neural Information Processing Systems, 36:16693–16715, 2023.

[18] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[20] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. arXiv preprint arXiv:1904.09751, 2019.

[21] Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg,
and Tim Salimans. Autoregressive diffusion models. arXiv preprint arXiv:2110.02037, 2021.

[22] Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying
Song, and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

11

https://cje.ejournal.org.cn/en/article/doi/10.23919/cje.2024.00.151
https://cje.ejournal.org.cn/en/article/doi/10.23919/cje.2024.00.151


[23] Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham Kakade, and Sitan Chen. Train for the
worst, plan for the best: Understanding token ordering in masked diffusions. arXiv preprint
arXiv:2502.06768, 2025.

[24] Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto.
Diffusion-lm improves controllable text generation. Advances in neural information processing
systems, 35:4328–4343, 2022.

[25] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by
estimating the ratios of the data distribution. 2023.

[26] Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching:
Generalized score matching for discrete data. Advances in Neural Information Processing
Systems, 35:34532–34545, 2022.

[27] Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and
Chongxuan Li. Scaling up masked diffusion models on text. arXiv preprint arXiv:2410.18514,
2024.

[28] Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

[29] Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking
guidance for discrete state-space diffusion and flow models. arXiv preprint arXiv:2406.01572,
2024.

[30] Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
arXiv preprint arXiv:2406.03736, 2024.

[31] Guilherme Penedo, Hynek Kydlíček, Vinko Sabolčec, Bettina Messmer, Negar Foroutan, Martin
Jaggi, Leandro von Werra, and Thomas Wolf. Fineweb2: A sparkling update with 1000s of
languages, December 2024. URL https://huggingface.co/datasets/HuggingFaceFW/
fineweb-2.

[32] Fred Zhangzhi Peng, Zachary Bezemek, Sawan Patel, Jarrid Rector-Brooks, Sherwood Yao,
Alexander Tong, and Pranam Chatterjee. Path planning for masked diffusion model sampling.
arXiv preprint arXiv:2502.03540, 2025.

[33] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[34] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[35] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation
models for code. arXiv preprint arXiv:2308.12950, 2023.

[36] Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin,
Justin T Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked
diffusion language models. arXiv preprint arXiv:2406.07524, 2024.

[37] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[38] Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Com-
monsense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

[39] Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and
generalized masked diffusion for discrete data. arXiv preprint arXiv:2406.04329, 2024.

12

https://huggingface.co/datasets/HuggingFaceFW/fineweb-2
https://huggingface.co/datasets/HuggingFaceFW/fineweb-2


[40] Andy Shih, Dorsa Sadigh, and Stefano Ermon. Training and inference on any-order autoregres-
sive models the right way. Advances in Neural Information Processing Systems, 35:2762–2775,
2022.

[41] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256–2265. PMLR, 2015.

[42] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[43] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[44] Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan,
Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, et al. Amortizing intractable
inference in diffusion models for vision, language, and control. arXiv preprint arXiv:2405.20971,
2024.

[45] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[46] Juan Wen, Yaqian Deng, Wanli Peng, Xue Yiming, Wen Juan, Peng Wanli, and Xue Yiming.
Linguistic steganalysis via fusing multi-granularity attentional text features. Chinese Journal of
Electronics, pages 248–254, 07 2022. doi: 10.1049/cje.2022.00.009.

[47] Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao,
and Yu Su. Travelplanner: A benchmark for real-world planning with language agents. arXiv
preprint arXiv:2402.01622, 2024.

[48] Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Beyond autoregression: Discrete diffusion for complex reasoning and planning. arXiv
preprint arXiv:2410.14157, 2024.

[49] Jiacheng Ye, Shansan Gong, Liheng Chen, Lin Zheng, Jiahui Gao, Han Shi, Chuan Wu, Xin
Jiang, Zhenguo Li, Wei Bi, et al. Diffusion of thoughts: Chain-of-thought reasoning in diffusion
language models. arXiv preprint arXiv:2402.07754, 2024.

[50] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[51] Yizhe Zhang, Jiatao Gu, Zhuofeng Wu, Shuangfei Zhai, Joshua Susskind, and Navdeep Jaitly.
Planner: Generating diversified paragraph via latent language diffusion model. Advances in
Neural Information Processing Systems, 36:80178–80190, 2023.

13



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provied the limitations of the work in Appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

14



Justification: We provied the full set of assumptions and a complete (and correct) proof
related to the work in Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provied all the information needed to reproduce the main experimental
results in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Due to certain constraints, we are unable to release the code during the review
period.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provied all the training and test details in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All error bars are suitably and correctly defined in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provied provide sufficient information on the computer resources in
Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted have conducted in the paper conform, in every respect,
with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss both potential positive societal impacts and negative societal
impacts of the work performed in Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We describe safeguards that have been put in place for responsible release of
models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the creators or original owners of assets used in the paper are properly
credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

18



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All new assets introduced in the paper are well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No such experiment in this work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No such experiment in this work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No such usage of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Related Works

Autoregressive Models. The autoregressive modeling paradigm, where the prediction of a token
only depends on the preceding context, is widely adopted in modeling language. Autoregressive
models have catalyzed significant advances in artificial intelligence, achieving state-of-the-art results
across a range of tasks, including fluent text synthesis [33, 3, 43, 7], program generation [35], and
chain-of-thought reasoning in mathematical domains [45]. However, despite their transformative im-
pact and broad deployment in real-world systems, ARMs are inherently constrained by their sequential,
left-to-right generation strategy [21, 40, 8, 20]. This unidirectional nature presents persistent chal-
lenges in scenarios requiring foresight, multi-step reasoning, and iterative self-correction [22, 6, 47].

Diffusion Language Models. Continuous diffusion models have demonstrated remarkable perfor-
mance and controllability in image generation tasks [19, 42, 12, 18]. Building on these successful
practices, several works have extended continuous diffusion models to text generation [24, 15, 13, 17].
Among them, Plaid [17] is a notable approach that maps discrete text into a continuous embedding
space and constructs a continuous diffusion framework in that space. Given the inherently discrete
nature of language, Austin et al. [5] proposed D3PM, a diffusion framework tailored to discrete data
domains. They incorporate an absorbing [MASK] state as noise, laying the foundation for discrete
diffusion models. This framework has been further developed by [25], [30], [36], and [39]. Among
these, the MDLM [36] framework is one of the most widely adopted, offering a simple and efficient
training objective. More recently, BDLM [4] combines ARMs with MDMs through interpolation,
integrating the left-to-right generation paradigm of ARMs into MDMs and proposing a novel diffusion
modeling framework. Furthermore, Ye et al. [48] have shown that MDMs significantly outperform
ARMs in complex reasoning and global planning tasks.

B Simple Path Mask Diffusion Model

Recall that, under the SPMDM framework, the input token sequence x (of total length N ) is divided
into K non-overlapping subsequences, each of length L. Thus, K = N/L, assuming N is an integer
multiple of L. The k-th subsequence, denoted as xk for k ∈ {1, . . . ,K}, comprises tokens from the
original sequence. For convenience, we refer to the ℓ-th token within the k-th subsequence as xk,ℓ.

B.1 Forward Process

The forward noise process applied independently for each token is defined as follows:

qt|0(xt | x0) =

K∏
k

L∏
ℓ

qtk|0(x
k,ℓ
tk
|xk,ℓ

0 ), qtk|0(x
k,ℓ
tk
| xk,ℓ

0 ) = Cat(αtkx
k,ℓ
0 + (1− αtk)m), (8)

20

https://neurips.cc/Conferences/2025/LLM


where t = t1, · · · , tK , and tk denotes the noising step applied to xk.

B.2 Reverse Process

Under the framework of MDLM [36], the reverse process iteratively recover values for masked
tokens, starting from a mask sequence x1 = [m, · · · ,m]. Let 0 ≤ sk < tk ≤ 1, the reverse process
is given by:

qs|t(xt | x0) =

K∏
k

L∏
ℓ

qsk|tk(x
k,ℓ
sk
| xk,ℓ

tk
,xk,ℓ),

qsk|tk(x
k,ℓ
sk
| xk,ℓ

tk
,xk,ℓ) =

{
Cat(xk,ℓ

tk
) xk,ℓ

tk
̸= m;

Cat
(

1−αts

1−αtk
m+

αts−αtk

1−αtk
xk,ℓ

)
xk,ℓ
tk

= m.

(9)

B.3 Simple Path Mask Diffusion NELBO

We provide the negative evidence lower bound (NELBO) for the simple path masked diffusion
parameterization. We firstly perform diffusion in each block over T discretization steps. Let DKL[·]
denote the Kullback-Leibler divergence, tk, sk be shorthand for tk(i) = i/T and sk(i) = t(i− 1)/T ,
∀i ∈ [1, T ]. We derive the NELBO as follows:

− log pθ(x) = −
K∑

k=1

logEq

[
pθ(x

k
tk(1):tk(T ) | x

−k
t )

q(xk
tk(1):tk(T ) | xk)

]

= −
K∑

k=1

logEq

[
pθ(x

k
tk(T ) | x

−k
t )

∏T
i=1 pθ(x

k
sk(i)

| xk
tk(i)

,x−k
t )∏T

i=1 q(x
k
sk(i)

| xk
tK(i))

]

≤
K∑

k=1

[
−Eq log pθ(x

k | xk
tk=

1
T
,x−k

t )︸ ︷︷ ︸
Lrecons

+ Etk∈{ 2
T ,...,T−1

T ,1}Eq T DKL

(
q(xk

sk
| xk

tk
,xk) ∥ pθ(xk

sk
| xk

tk
,x−k

t )
)︸ ︷︷ ︸

Ldiffusion

+DKL

(
q(xk

tk=1 | xk) ∥ pθ(xk
tk=1)

)︸ ︷︷ ︸
Lprior

]

(10)

B.4 Simplified NELBO

We adopt the SUBS parameterization proposed by Sahoo et al. [36]. Specifically, we impose the
following constraints on the design of pθ by exploiting the fact that, at any timestep t, each token xℓ

t

can only reside in one of two states: the original token xℓ or the mask token m, i.e., xℓ
t ∈ xℓ,m for

all ℓ ∈ 1, . . . , L:

1. Zero Masking Probability. Since the clean target sequence x does not contain any mask tokens,
we enforce pθ(x

ℓ = m | xℓ
t) = 0, ensuring that the model never predicts a mask token during

denoising.

2. Carry-Over Unmasking. Once a token is unmasked in the reverse process, it is never remasked.
Accordingly, we simplify the denoising model by enforcing pθ(x

ℓ
s = xℓ

t | xℓ
t ̸= m) = 1, meaning

that any token already unmasked remains unchanged in subsequent steps.

21



Table 6: Dataset Deatails. Intra and Inter refer to toy datasets designed for intra- and inter-subsequence
modeling, respectively. CD is an abbreviation for Countdown..

Intra Inter CD3 CD4 CD5 Sudoku
Train Entries 50k 50k 500k 500k 500k 100k
Test Entries 1k 1k 1k 1k 1k 1k
Avg Input Token 8 8 11 13 16 81
Avg Output Token - - 12 25 35 81
Max Input Token 8 8 16 15 18 81
Max Output Token - - 22 35 52 81

As a result, we will only approximate the posterior pθ(xℓ
s = xℓ | xℓ

t = m). The diffusion loss term
becomes:

Ldiffusion =

K∑
k=1

EtkEqT
[
DKL

(
q(xk

sk
| xk

tk
,xk) ∥ pθ(xk

sk
| xk

tk
,x−k

t )
)]

=

K∑
k=1

EtkEqT

[
L∑

ℓ=1

DKL

(
q(xk,ℓ

sk
| xk,ℓ

tk
,xk,ℓ) ∥ pθ(xk,ℓ

tk
| xk,ℓ

tk
,x−b

t )
)]

=

K∑
k=1

EtkEqT

[
L∑

ℓ=1

αtk − αsk

1− αtk

log pθ(x
k,ℓ | xk,ℓ

tk
,x<b

t )

]

=

K∑
k=1

EtkEqT

[
αt − αs

1− αt
log pθ(x

b | xb
tk
,x−b

t )

]
(11)

Previous works have shown empirically and mathematically that increasing the number of steps
T yields a tighter approximation to the ELBO [10]. Following a similar argument, we form an
continuous time extension by taking T →∞, which yields the following diffusion loss term:

Ldiffusion =

K∑
k=1

Etk∼[0,1]Eq

[
α′
tk

1− αtk

log pθ(x
k | xk

tk
,x−k

t )

]
(12)

For the continuous time case, we have xk
tk=

1
T

∼ limT→∞ Cat
(
xk
tk=

1
T

)
= Cat(xk). Then, the

reconstruction loss term becomes:
Lrecons = −Eq log pθ(x

k | xk
tk=

1
T
,x−k

t ) = − log pθ(x
k | xk

tk=
1
T
= xk,x−k

t ) = 0 (13)

The prior loss also reduces to 0 because αt=1 = 0, which ensures q(xk
tk=1 | xk) = Cat(m) and

pθ(x
k
tk=1) = Cat(m).

Finally, we obtain a simple objective as follows:

LNELBO =

K∑
k=1

Etk∼[0,1]Eq

[
α′
t

1− αt
log pθ(x

k | xk
tk
,x−k

t )

]
(14)

C Experimental Details

C.1 Dataset Details

We present the detailed specifications of the toy datasets and problem-solving task datasets in Table 6.

C.2 Implementation Details

Toy examples. We conduct all toy example experiments using four RTX 4090 GPUs. MDLM [36],
BDLM [4], and SPMDM are all implemented using a tiny model with 6M parameters. For BDLM,
the block size is set to 2, and for SPMDM, the subsequence length is also set to 2. We use a learning
rate of 1× 10−3 and a batch size of 1024. All models are trained for 10 epochs on the training set.
Additionally, the number of sampling steps is fixed to 32 for all models.

22



Problem-solving tasks. We conduct all experiments related to problem-solving tasks using eight
RTX 4090 GPUs. Both ARMs and MDMs are implemented based on the GPT-2 architecture. Across
all datasets, we use a learning rate of 1× 10−3 for the 6M-parameter tiny models and 3× 10−4 for
the 85M-parameter models. The batch size is set to 512. For the countdown task, we train for 150
epochs, and for the sudoku task, we train for 100 epochs. Specifically, for the Countdown task, we
set the block size of BDLM to 4, and for the Sudoku task, we set it to 9. During sampling, we fix the
number of denoising steps to 32 for all MDMs across all tasks. For LLaMA, we follow the results
reported in the work of Ye et al. [48]; detailed fine-tuning settings can be found in Appendix C of
[48].

Reasoning tasks. For GPT-2, SEDD, and DiffuGPT, we borrow the results reported by Gong et al.
[16]. Following their experimental setup, we also use the advanced FineWeb2 corpus [31], which is
derived from Common Crawl, as the training dataset for both MDLM and SPMDM. Training and
sampling are conducted on eight A100 GPUs with 40GB of memory. For models with 127M and
355M parameters, we use a learning rate of 3× 10−4 with a cosine scheduler. The batch size is set
to 512, and training is performed for a total of 400K iterations. During inference, the number of
sampling steps is fixed to 256.

C.3 Evaluation Details

For the intra- and inter-subsequence modeling tasks, we perform unconditional generation using
MDMs, generating 1,000 samples per task and evaluating performance by counting the number of
samples that satisfy the predefined structural constraints. For the countdown and sudoku tasks, we con-
duct conditional generation using the questions from the test set as prompts, and measure performance
by the number of correctly solved instances. For common sense reasoning tasks—HellaSwag [50],
Winogrande [37], SIQA [38], and PIQA [9]—we use answer accuracy as the evaluation metric. For
GSM8K [11], we take the questions from the test set as prompts for conditional generation and report
the accuracy of the final predicted answers as the evaluation metric.

D Limitation

SPMDM framework is based on factorization assumptions. In a state space of length N , the transition
matrix [10] contains an exponential number of possible states, making it computationally expensive
to reverse. To alleviate this issue, existing works [10, 25, 36, 39] assume independence between
dimensions, treating each dimension as an independent one-dimensional diffusion process with the
same transition rate matrix. Admittedly, in language modeling, tokens are not entirely independent,
there exist complex dependencies between them. However, without this independence assumption,
the computational cost of training would become astronomical, and the modeling complexity would
increase significantly. Despite this simplification, extensive prior work [10, 25, 36, 39] and our
own experiments demonstrate that under this assumption, the model achieves strong performance
with practically acceptable results for real-world applications. At the same time, this presents an
interesting research direction—exploring ways to explicitly model the conditional dependencies
between tokens. By leveraging these dependencies to strategically plan the denoising process of
DDMs, we can potentially unlock significant improvements in the model’s generative capabilities.

E Impact

Ethical impacts. This study does not pose any ethical concerns. It does not involve subjective
assessments or the use of private data, as all experiments are conducted on publicly available datasets.

Expected societal implications. The primary potential societal impact of SPMDM lies in its
possible misuse, particularly in generating false or misleading information, which could contribute to
misinformation, privacy violations, and other harmful consequences. To mitigate these risks, it is
essential to establish robust ethical guidelines and implement continuous monitoring to ensure the
responsible and ethical deployment of such generative models.

23


	Introduction
	Background
	Masked Diffusion Models
	Adaptive MDM Sampling Strategy

	Method
	Motivation
	Subsequence Level Forward and Reverse Process
	Network Architecture
	Training and Sampling

	Experiments
	Toy Examples
	Problem-solving Tasks
	Reasoning Tasks
	Computational Overhead
	Ablation Studies

	Conclusion
	Related Works
	Simple Path Mask Diffusion Model
	Forward Process
	Reverse Process
	Simple Path Mask Diffusion NELBO
	Simplified NELBO

	Experimental Details
	Dataset Details
	Implementation Details
	Evaluation Details

	Limitation
	Impact

