
Under review as a conference paper at ICLR 2017

COARSE PRUNING OF CONVOLUTIONAL NEURAL
NETWORKS WITH RANDOM MASKS

Sajid Anwar, Wonyong Sung
Department of Electrical Engineering and Computer Science
Seoul National University
Gwanak-Gu, 08826, Republic of Korea
sajid@dsp.snu.ac.kr, wysung@snu.ac.kr

ABSTRACT

The learning capability of a neural network improves with increasing depth at
higher computational costs. Wider layers with dense kernel connectivity patterns
further increase this cost and may hinder real-time inference. We propose feature
map and kernel pruning for reducing the computational complexity of a deep con-
volutional neural network. Due to coarse nature, these pruning granularities can
be exploited by GPUs and VLSI based implementations. Further, we propose a
simple strategy to choose the least adversarial pruning masks. The proposed ap-
proach is generic and can select good pruning masks for feature map, kernel and
intra-kernel pruning. The pruning masks are generated randomly, and the best
performing one is selected using the validation set. The sufficient number of ran-
dom pruning masks to try depends on the pruning ratio, and is less than 100 when
40% complexity reduction is needed. Once the least adversarial pruning mask is
selected, we prune and retrain the network in one-shot. The proposed approach
therefore consumes less time compared to iterative pruning. We have extensively
evaluated the proposed approach with the CIFAR-100, CIFAR-10, SVHN, and
MNIST datasets. Experiments show that 60-70% sparsity can be induced in the
convolution layers with less than 1% increase in the misclassification rate of the
baseline network.

1 INTRODUCTION

Deep and wider neural networks have the capacity to learn a complex unknown function from the
training data. The network reported in Dean et al. (2012) has 1.7 billion parameters and is trained
on tens of thousands of CPU cores. Similarly (Simonyan & Zisserman, 2014) has employed 11-19
layers and achieved excellent classification results on the ImageNet dataset. However, the increasing
depth and width demands higher computational power. This high computational complexity is a
major obstacle in porting the benefits of deep learning to resource limited devices. Further, the hot-
spot for optimization are the convolution layers, as most of the computations are conducted there.
Therefore, many researchers have proposed ideas to accelerate deep networks for real-time inference
Yu et al. (2012); Han et al. (2015b;a); Mathieu et al. (2013); Anwar et al. (2015b).

Network pruning is one promising technique that first learns a function with a sufficiently large
sized network followed by removing less important connections Yu et al. (2012); Han et al. (2015b);
Anwar et al. (2015b). This enables smaller networks to inherit knowledge from the large sized pre-
decessor networks and exhibit a comparable level of performance. The works of Han et al. (2015b;a)
introduce fine grained sparsity in a network by pruning scalar weights. Due to unstructured sparsity,
the authors employ compressed sparse row/column (CSR/CSC) for sparse representation. Thus the
fine grained irregular sparsity cannot be easily translated into computational speedups.

Sparsity in a deep convolutional neural network (CNN) can be induced at various levels. Figure 1
shows four pruning granularities. At the coarsest level, a full hidden layer can be pruned. This is
shown with a red colored rectangle in Fig. 1(a). Layer wise pruning affects the depth of the network
and a deep network can be converted into a shallow network. Increasing the depth improves the net-
work performance and layer-wise pruning therefore demand intelligent techniques to mitigate the

1

Under review as a conference paper at ICLR 2017

(a) Layer-wise pruning
Conv2

L1 L2 L3

Conv1

(b) Feature map pruning

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

(c) k × k Kernel-pruning

1 0 2 1 0

1 1 0 3 0

1 0 1 1 1

0 1 0 2 0

1 0 1 0 1

(d) Intra-kernel-pruning

Pruning granularity (coarse (left) to fine grained (right)

Inducible pruning ratios Inside allowable budget (increasing from left to right), (e.g., budget = ↓Accuracy)

Sparse representation (increasing complexity from left to right)Depth reduction

W
idth reduction

Figure 1: (a-d) shows four possible pruning granularities. The proposed work is focussed on the (b)
feature map and (c) kernel pruning for simple sparse represenation. It can be observed that for the
depicted architecture in Fig. (b), four convolution kernels are pruned.

performance degradation. The next pruning granularity is removing feature maps Polyak & Wolf
(2015); Anwar et al. (2015b). Feature map pruning removes a large number of kernels and may
degrade the network performance much. We therefore may not achieve higher pruning ratios with
this granularity. For the depicted architecture in Fig. 1 (b)., pruning a single feature map, removes
four kernels. Feature map pruning affects the layer width and we directly obtain a thinner network
and no sparse representation is needed. Kernel pruning is the next pruning granularity and it prunes
k × k kernels. It is neither too fine nor too coarse and is shown in Fig. 1(c). Kernel pruning is
therefore a balanced choice and it can change the dense kernel connectivity pattern to a sparse one.
Each convolution connection involves W × H × k × k multiply and accumulate (MAC) oper-
ations where W, H and k represents the feature map width, height and the kernel size, respectively.

Pre-Train the Network
to the Baseline

Re-initialize from the baseline network,
prune with mf ,retrain and increment j

For current pruning ratio
cpr = j×∆, generate mi mask, where

i = 1, 2,…, N

Evaluate the MCR on each
W .* mi network

Choose the best pruning mask,
 mf = argminmi (MCRmi)

One-
Shot vs.
Iterative

Re-initialize from the baseline network,
prune with mf and retrain

For current pruning ratio
cpr = tpr, generate mi mask, where i

= 1, 2,…, N

Evaluate the MCR on each
W .* mi network

Choose the best pruning mask,
mf = argminmi (MCRmi)

One-Shot
∆ = tpr

Iterative
∆ = tpr/M

Figure 2: This figure compares the iterative and
one-shot pruning. tpr and cpr represents the tar-
get and current pruning ratio respectively. The
iterative pruning Han et al. (2015b) gradually
achieves the target pruning ratio in M steps of ∆
size each, while the ∆ = tpr for one-shot prun-
ing. This work adopts the one-shot pruning ap-
proach.

Further the sparse representation for kernel
pruning is also very simple. A single flag is
enough to represent one convolution connec-
tion. Generally, the pruning techniques in-
duce sparsity at the finest granularity by remov-
ing scalar weights. This sparsity can be in-
duced in much higher rates but high pruning
ratios do not directly translate into computa-
tional speedups in VLSI or parallel computer
based implementations Han et al. (2015b). Fig-
ure 1(d) shows this with red colored zeroes in
the kernel. Further Fig. 1 summarizes the re-
lationship between three related factors: the
pruning granularities, the pruning ratios and the
sparse representations. Coarse pruning granu-
larities demand very simple sparse representa-
tion but higher pruning ratios are comparatively
difficult to achieve. Similarly fine grained prun-
ing granularities can achieve higher pruning ra-
tios but the sparse representation is more com-
plicated. The proposed work therefore prunes
feature maps and kernels in a network. Experi-
mental evaluations show that better pruning re-
sults can be achieved when a network is pruned
with both granularities successively.

An important contribution of this work is
proposing a simple and generic strategy for the
selection of pruning masks. Finding pruning
candidates is an important and difficult prob-

2

Under review as a conference paper at ICLR 2017

lem. Generally, in the literature granularity specific pruning strategies are reported Han et al.
(2015b); Li et al. (2016). (Anwar et al., 2015b) have developed a particle filtering approach, where
the sequential importance resampling is employed. The proposed strategy randomly generates N
pruning masks, evaluates the importance of each mask with the validation set, selects the best mask
having the argminmi

(MCRmi
), prunes and retrains the network Yu et al. (2012). It is important to

mention here that the pruning can be conducted in one-shot or iteratively. This difference is shown in
Fig. 2. For a target pruning ratio (tpr), the iterative process gradually increases sparsity and repeats
the process M times. On the other hand, the one-shot pruning induces the target pruning ratio in
one step. We employ one-shot pruning as the retraining after pruning consumes much time. Thus,
the one shot pruning is much more efficient in terms of the optimization time. We show experimen-
tally that the proposed algorithm can select better pruning candidates compared to other methods.
Further, our approach is not computationally expensive as it involves N random evaluations on the
small sized validation set.

The rest of the paper is organized as follows. Section 2 provides detailed explanations on the pruning
candidate selection. Section 3 discusses the two pruning granularities while Section 4 presents the
experimental results. In Section 5, recent related works are revisited. We finally conclude the
discussion in Section 6 and add the future research dimensions for this work.

2 PRUNING CANDIDATE SELECTION

Pruning reduces the number of network parameters and inevitably degrades the classification per-
formance. The pruning candidate selection is therefore of prime importance. For a specific pruning
ratio, we search for the best pruning masks which afflicts the least adversary on the pruned net-
work. Indeed retraining can partially or fully recover the pruning losses, but the lesser the losses,
the more plausible is the recovery Mishkin & Matas (2015). Further small performance degradation
also means that the successor network has lost little or no knowledge of the predecessor network. If
there are M potential pruning candidates, the total number of pruning masks is (2M) and an exhaus-
tive search is therefore infeasible even for a small sized network. We therefore propose a simple and
greedy strategy for selecting pruning candidates.

We initialize a network with pre-trained parameters. These parameters may be learnt on the same
or related problem. We randomly generate N pruning masks and compute the misclassification
rate (MCR) for each one. We then choose the best pruning mask with maximum accuracy on the
validation set. Referring to the depicted architecture in Fig.4a, suppose we need to select feature map
pruning candidates in layer L2 and L3 with 1/3 pruning ratio. If N = 4, the following N ordered
pairs of feature maps may be randomly selected for (L2, L3) : (1, 2), (2, 3), (3, 1), (1, 1). These
combinations generate random paths in the network and we evaluate the validation set MCR through
these routes in the network.

However, this further raises the question of how to approximate N. We analyze the relationship
between pruning ratio and N on three datasets and the results are reported in Fig. 3. This analysis
is conducted for feature map pruning but is also applicable to other pruning granularities. It can be
observed from Fig. 3a and 3c, that for higher pruning ratios, bigger value of N is beneficial as it
results in better pruning candidate selection. Moreover, for the pruning ratio of no more than 40%,
N = 50 random evaluations generate good selections. For lower pruning ratios, retraining is also
more likely to compensate the losses as the non-pruned parameters may still be in good numbers.
The computational cost of this technique is not much as the evaluation is conducted on the small
sized validation set. By observing Fig. 3a and 3c., we propose that the value of N can be estimated
initially and later used in several pruning passes. The plots in Fig. 3b and 3d show the pre-retraining
distribution of N random masks. Further, the plots in Fig. 3b and 3d, shows that the distributions
are narrow for small pruning ratios.

We further analyze the effect of retraining on the pruning mask selection. We prune a network
with several masks and retrain each pruned network. As several networks needs to be pruned and
retrained many times, we experiment with a small network where the architecture is reported like
this: 32(C5) − MP2 − 64(C5) − MP2 − 64(C5) − 64FC − 10Softmax. The network is
trained with the CIFAR-10 dataset (40,000 training samples) without any data augmentation and
batch normalization. The network achieves the baseline performance of 26.7% on the test set. The
results are reported in Fig. 4d, where the pre and post-retraining network performance is shown on

3

Under review as a conference paper at ICLR 2017

Random Pruning Masks N
0 100 200 300 400 500 600 700 800 900 1000

M
C

R
V

al
id

at
io

n o
n

th
e

B
es

t o
f

N

20

30

40

50

60

70

80

Prune Ratio 88.8672

Prune Ratio 81.4616

Prune Ratio 61.8076

Prune Ratio 34.7005

(a) Best of N masks for CIFAR10 CNNsmall

MCRValidationSet

20 30 40 50 60 70 80

H
is

to
gr

am

0

20

40

60

80

100

120

140

Prune Ratio 81.4616

Prune Ratio 61.8076

Prune Ratio 34.7005

(b) Distribution of N masks for CIFAR10 CNNsmall

Random Pruning Masks N
0 100 200 300 400 500 600 700 800 900 1000

M
C

R
V

al
id

at
io

n o
n

th
e

B
es

t o
f

N

0

10

20

30

40

50

60

70

80

Prune Ratio 90.5132
Prune Ratio 83.3969
Prune Ratio 63.6679
Prune Ratio 35.9769

(c) Best of N masks for CNNSV HN

MCRValidationSet

0 10 20 30 40 50 60 70

H
is

to
gr

am

0

20

40

60

80

100

120

140

160

Prune Ratio 83.3969

Prune Ratio 63.6679

Prune Ratio 35.9769

(d) Distribution of N masks for CNNSV HN

Figure 3: The network architectures are reported in Table 1. The networks are feature map pruned to
generate the pre-retraining plots. Figure (a, c) compares the best candidate selected out of N random
combinations for various pruning ratios. The distribution of N random evaluations is shown in Fig.
(b, d). We can observe that it resembles a Gamma distribution. Further, for higher pruning ratios,
the distribution resembles a bell-shaped curve. Analyzing Fig. (a,c) with Fig. (b,d), we infer that
bigger N may be beneficial for higher pruning ratios.

the x and y axis, respectively. Further, we superimpose a least-squares (LS) line fit to each of the
scatter plot. It can be observed that the slope of the LS line decreases for higher pruning ratios. We
infer that for high pruning ratios, the final network performance is dictated by the surviving number
of effective parameters. It can be observed that the overall distribution is noisy. However, in general,
the pre-retraining least adversarial pruning masks perform better after retraining. In the rest of this
work, we therefore use the pre-retraining best mask for pruning the network.

We further compare this method with the weight sum criterion proposed in Li et al. (2016) and
shown in Fig. 4a. The set of filters or kernels from the previous layer constitute a group. This is
shown with the similar color in Fig. 4a. According to Li et al. (2016), the absolute sum of weights
determine the importance of a feature map. Suppose that in Fig.4a, the Layer L2 undergoes feature
map pruning. The weight sum criterion computes the absolute weight sum at S1, S2 and S3. If we
further suppose that the pruning ratio is 1/3, then the min(S1, S2, S3) is pruned. All the incoming
and outgoing kernels from the pruned feature map are also removed. We argue that the sign of a
weight in kernel plays important role in well-known feature extractors and therefore this is not a
good criterion.

We compare the performance of the two algorithms and Fig. 4b and 4c shows the experimental
results. These results present the network status before any retraining is conducted. We report
the performance degradation in the network classification against the pruning ratio. From Fig. 4b
and 4c, we can observe that our proposed method outperforms the weight sum method particularly
for higher pruning ratios. The best of N Pruning masks strategy evaluates pruning candidates in
combinations and provides a holistic view. The criterion in Li et al. (2016) evaluates the importance
of a pruning unit in the context of a single layer while our proposed approach evaluates several
paths through the network and selects the best one. The combinations work together and matter
more instead of individual units. Further, our proposed technique is generic and can be used for any
pruning granularity: feature map, kernel and intra-kernel pruning.

4

Under review as a conference paper at ICLR 2017

L1 L2 L3

S1

S2

S3

S1

S2

S3

FM1

FM2

FM3

FM1

FM2

FM3

(a) Absolute weight sum voting Li et al. (2016)

Pruning Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
T

es
t S

et

0

10

20

30

40

50

60

70

80

90

100

Baseline MCR = 3.93%
FeatureMap Pruning with Weight Sum Voting
FeatureMap Pruning with N = 10 Rand Evaluattions
FeatureMap Pruning with N = 20 Rand Evaluattions
FeatureMap Pruning with N = 50 Rand Evaluations
FeatureMap Pruning with N = 100 Rand Evaluations
FeatureMap Pruning with N = 200 Rand Evaluations

(b) Weight sum vs. best of N random masks

Feature Map Pruning Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
va

lid
at

io
n

se
t

-5

0

5

10

15

20

25

30

35

40

45

50

Baseline MCR 0.62%
Pruning with weight sum voting
Pruning with the best of 10 random masks
Pruning with the best of 20 random masks
Pruning with the best of 50 random masks
Pruning with the best of 100 random masks
Pruning with the best of 200 random masks

(c) Best of N random masks vs (a)

MCR with Pre-Retraining Pruning Masks
30 40 50 60 70 80 90

M
C

R
 w

ith
 P

os
t-

R
et

ra
in

in
g

Pr
un

in
g

M
as

ks

25

26

27

28

29

30

31

32

33

Pruning Ratio 31.12 %
Pruning Ratio 56.73%
Pruning Ratio 66.7%
Pruning Ratio 77.13%

(d) Pre and Post Retraining Pruning masks

Figure 4: (a) This figure explains the idea presented in Li et al. (2016) and shows three layers, L1,
L2 and L3. All the filters/kernels from previous layer to a feature map constitute one group which
is shown with similar color. The S1,S2 and S3 is computed by summing the absolute value of
all the weights in this group. (b) The comparison of the proposed method with the absolute weight
sum method is shown here for the CNNSV HN . It can be observed that our proposed method inflicts
lesser adversary on the network for different pruning ratios. (d) In this plot, we prune a CNN network
with various masks and compare their pre and post retraining performance. It can be observed that
on the average, pre-retraining masks perform better after retraining.

3 FEATURE MAP AND KERNEL PRUNING

In this section we discuss feature map and kernel pruning granularities. For a similar sized network,
we analyze the achievable pruning ratios with feature map and kernel pruning. In terms of granu-
larity, feature map pruning is coarser than kernel pruning. Feature map pruning does not need any
sparse representation and the pruned network can be implemented in a conventional way, convolu-
tion lowering Chellapilla et al. (2006) or convolution with FFTs Mathieu et al. (2013). The proposed
work analyzes the unconstrained kernel and feature map pruning. Pruning a feature map eliminates
all the incoming and outgoing kernels because the outgoing kernels are no more meaningful.

Kernel pruning is comparatively finer. The dimension and connectivity pattern of 2D kernels deter-
mine the computing cost of a convolutional layer. The meshed fully connected convolution layers
increases this cost and can hinder the real-time inference. In LeNet LeCun et al. (1998), the second
convolution layer has 6 × 16 feature maps and the kernel connectivity has a fixed sparse pattern.
With kernel pruning, we learn this pattern and convert the dense connectivity to sparse one. Kernel
pruning zeroes k × k kernels and is neither too fine nor too coarse. Kernel level pruning provides a
balance between fine-grained and coarse-grained pruning. It is coarser than the intra-kernel sparsity
and finer than the feature map pruning. Depending on the network architecture, kernel pruning may
achieve good pruning ratios at very small sparse representation and computational cost. Each con-
volution connection represents one convolution operation which involves width× height× k × k

5

Under review as a conference paper at ICLR 2017

Pruning Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
T

es
t S

et
 A

ft
er

 R
et

ra
in

in
g

15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

(1). MCR
Baseline

 = 16.260%

(2). MCR
Baseline + Tol(1.0)

 = 17.26%

(3). FeatureMap Pruning
(5). Kernel Pruning

(a) Feature map and kernel pruning of CIFAR-10
CNNsmall

0 0.2 0.4 0.6 0.8 1
Pruning Ratio

0

0.5

1

1.5

2

2.5

3

M
C

R
T

es
t S

et
 A

ft
er

 R
et

ra
in

in
g (1). MCR

Baseline
 = 0.79%

(2). Kernel Pruning
(3). FeatureMap Pruning

(b) MNIST feature map and kernel pruning

Figure 5: Figure (a) and (b) shows feature map and kernel pruning of two networks:
CNNCIFAR−10.small and CNNMNIST2. The corresponding network architectures are reported
in Table 1. The network can be pruned by more than 50% with very small degradation in perfor-
mance. Further, due to finer nature, the kernel pruning may inflict lesser adversary on the network
performance.

MAC operations. We first select pruning candidates with the criterion outlined in Section 2. The
pruned network is then retrained to compensate for the losses incurred due to pruning. Figure 5a
and 5b show that depending on the network architecture, kernel pruning may achieve higher pruning
ratio than feature map pruning due to finer granularity. As the sparse granularities are coarse, a
generic set of computing platform can benefit from it. One disadvantage of the unconstrained kernel
pruning is that the convolution unrolling technique cannot benefit from it Chellapilla et al. (2006).
However, customized VLSI implementations and FFT based convolutions do not employ convolu-
tion unrolling. Mathieu et al. (2013), have proposed FFT based convolutions for faster CNN training
and evaluation and the GPU based parallel implementation showed very good speedups. As com-
monly known that the IFFT (FFT (kernel) × FFT (featuremap)) = kernel ∗ featuremap,
the kernel level pruning can relieve this task. Although the kernel size is small, massive reusability
of the kernels across the mini-batch enables the use of FFT. The FFT of each kernel is computed
only once and reused for multiple input vectors in a mini-batch. In a feed-forward and backward
path, the summations can be carried in the FFT domain and once the sum is available, the IFFT can

Kernel Prune Ratio
1 2 3 4 5 6 7 8

M
ill

iS
ec

on
ds

0

20

40

60

80

100

120

140

Conv1 3 # 128
Conv2 128 # 128
Conv3 128 # 128
Conv4 128 # 128
Conv5 128 # 256

 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

(a) Profiling kernel pruning

L1
L2

H

W

…
…

Fi Fo

k × k

dim3 dimGrid (Fi×Fo×pr, BatchSize, 1);
dim3 dimThread (H, W, 1);

(b) Custom GPU kernel for
convolutions

Figure 6: (a) This figure shows the profiling results for kernel pruning with a customized GPU im-
plementation. It can be observed that the kernel pruning reduces the execution time. The experiment
is conducted with the CIFAR-10 CNN. In (b), Fi and Fo shows the input and output feature maps,
while pr represents the pruning ratio. The GPU function scheduler shows that the call is only for
non-masked kernels.

6

Under review as a conference paper at ICLR 2017

Table 1: Specifications of the three CIFAR-10 networks

Network Architecture Baseline MCR(%) Data Augmentation
CNNMNIST1 16(C5) − 32(C5) − 64(C5) − 120 − 10 0.62 NO
CNNMNIST2 6(C5) − 16(C5) − 120(C5) − 84 − 10 0.79 NO

CNNCIFAR10.small 2 × 128C3 −MP2 − 2 × 128C3 −MP2 − 2 × 256C3 − 256FC − 10Softmax 16.6 NO
CNNCIFAR10.large 2 × 128C3 −MP2 − 2 × 256C3 −MP2 − 2 × 256C3 − 1 × 512C3 − 1024FC − 1024FC − 10Softmax 9.41 YES

CNNSV HN (2 × 64C3) −MP2 − (2 × 128C3) −MP2 − (2 × 128C3) − 512FC − 512FC − 10Softmax 3.5 NO
CNNCIFAR100 (2 × 128C3) −MP2 − (2 × 128C3) −MP2 − (2 × 256C3) − 256C3 − 512FC − 10Softmax 33.65 YES

Pruning Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
T

es
t S

et
 A

ft
er

 R
et

ra
in

in
g

15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

(1). MCR
Baseline

 = 16.260%

(2). MCR
Baseline + Tol(1.0)

 = 17.26%

(3). FeatureMap Pruning
(4). Feature Map Followed by Kernel Pruning
(5). Kernel Pruning
(6). Kernel Prune Followed by Feature Map Pruning

(a) CIFAR-10 CNNsmall

0 0.2 0.4 0.6 0.8 1
Prune Ratio

Conv2-Conv7

7

8

9

10

11

12

13

M
C

R
T

es
t S

et
 A

ft
er

 R
et

ra
in

in
g

FeatureMap Pruning
Kernel Pruning
FeatureMap followed by Kernel Pruning
Baseline MCR = 9.39%
Baseline + Tolerance (1.0%)

(b) CIFAR-10 CNNlarge

Figure 7: The combinations of feature map and kernel pruning is reported here. Figure (a) and (b)
provides pruning results for the CNNCIFAR10.small and CNNCIFAR10.large networks. It can be
observed from both figure, that more sparsity can be induced in the network by indcuing sparsity
with two granularities.

be performed Mathieu et al. (2013). Similarly, a customized VLSI based implementation can also
benefit from the kernel level pruning. If the VLSI implementation imposes a constraint on the prun-
ing criterion, such as the fixed number of convolution kernels from the previous to the next layer, the
pruning criterion can be adapted accordingly. In the next Section, we report and discuss the exper-
imental results in detail. As the commonly available libraries do not support masked convolutions,
we therefore profile kernel pruning with customized GPU functions. We call the GPU function only
for the non-pruned convolution kernels and pass the appropriate indices. It can be observed that
fewer number of convolutions will reduce the required number of GFLOPs. Howevr, we conjecture
that the true benefit of kernel pruning can be obtained with FFT based masked convolution.

4 EXPERIMENTAL RESULTS

In this section, we present detailed experimental results with the CIFAR-10 and SVHN datasets
Krizhevsky & Hinton (2009). We experiment on three image classification problems and induce
sparsity feature map and kernel wise. We also prune one network with more than one pruning
granularity in combinations. During training and pruning, we use the stochastic gradient descent
(SGD) and batch normalization Ioffe & Szegedy (2015). As elaborated in Section 1, we do not
prune the network in small steps, and instead one-shot prune the network for a given pruning ratio
followed by retraining. The experimental results are reported in the corresponding subsections.

4.1 CIFAR-10

The CIFAR-10 dataset includes samples from ten classes: airplane, automobile, bird, cat, deer,
dog, frog, horse, ship and truck. The training set consists of 50,000 RGB samples and we allo-
cate 20% of these samples as validation set. Test set contains 10,000 samples and each sample has
32 × 32 × RGB resolution. We evaluate the proposed pruning granularities with two networks.
CNNCIFAR10.small and CNNCIFAR10.large. CNNCIFAR10.small has six convolution and two
overlapped max pooling layers. We report the network architecture with an alphanumeric string as

7

Under review as a conference paper at ICLR 2017

Table 2: Feature map and kernel level pruning (75%) in CNNCIFAR10.small

Feature Maps Pruned Feature Maps Feature Maps Prune Ratio Pruned Kernels (%) Conv Connections Kernel Prune Ratio (%)
Conv2(128 × 128) 128 × 89 30.5 27306/9 = 3034 11392 3034/11392 = 26.6
Conv3(128 × 128) 89 × 89 51.5 18702/9 = 2078 7921 2078/7921 = 26.2
Conv4(128 × 128) 89 × 89 51.5 18702/9 = 2078 7921 2078/7921 = 26.2
Conv5(128 × 256) 89 × 179 51.4 37881/9 = 4209 15931 4209/15931 = 26.4
Conv6(256 × 256) 179 × 179 51.1 76851/9 = 8539 32041 8539/32041 = 26.6

reported in Courbariaux et al. (2015) and outlined in Table 1. The (2 × 128C3) represents two con-
volution layers with each having 128 feature maps and 3 × 3 convolution kernels. MP2 represents
3 × 3 overlapped max-pooling layer with a stride size of 2. We pre-process the original CIFAR-10
dataset with global contrast normalization followed by zero component analysis (ZCA) whitening.

The CNNCIFAR10.large has seven convolution and two max-pooling layers. Further, online data
augmentations are employed to improve the classification accuracy. We randomly crop 28 × 28 × 3
patches from the 32×32×3 input vectors. These cropped vectors are then geometrically transformed
randomly. A vector may be flipped horizontally or vertically, rotated, translated and scaled. At
evaluation time, we crop patches from the four corners and the center of a 32 × 32 × 3 patch and
flip it horizontally. We average the evaluation on these ten 28 × 28 × 3 patches to decide the final
label. Due to larger width and depth, the CNNCIFAR10.large achieves more than 90% accuracy on
the CIFAR-10 dataset. The CNNCIFAR10.small is smaller than CNNCIFAR10.large and trained
without any data augmentation. The CNNCIFAR10.small therefore achieves 84% accuracy.

4.1.1 FEATURE MAP AND KERNEL LEVEL PRUNING

After layer pruning, feature map pruning is the 2nd coarsest pruning granularity. Feature map
pruning reduces the width of a convolutional layer and generates a thinner network. Pruning a
single feature map, zeroes all the incoming and outgoing weights and therefore, higher pruning
ratios degrade the network classification performance significantly. Feature map pruning for the
CNNCIFAR10.small is shown in Fig. 5a with a circle marked red colored line. The sparsity re-
ported here is for Conv2 to Conv6. We do not pruned the first convolution layer as it has only
3 × 128 × (3 × 3) = 3456 weights. The horizontal solid line shows the baseline MCR of 16.26%
whereas the dashed line shows the 1% tolerance bound. Training the network with batch normaliza-
tion Ioffe & Szegedy (2015) enables us to directly prune a network for a target ratio, instead of taking
small sized steps. With a baseline performance of 16.26%, the network performance is very bad at
80% feature map pruning. We can observe that 62% pruning ratio is possible with less than 1%
increase in MCR. The CNNCIFAR10.small is reduced to (128C3 − 83C3)-MP3-(83C3 − 83C3)-
MP3-(166C3 − 166C3)-256FC-10Softmax. As pruning is only applied in Conv2 to Conv6,
therefore the Figure 5a pruning ratios are computed only for these layers.

For the same network, we can see that kernel level pruning performs better. We can achieve 70%
sparsity with kernel level pruning. This is attributed to the fact that kernel pruning is finer and
hence it achieves higher ratios. Further kernel pruning may ultimately prune a feature map if all the
incoming kernels are pruned. However at inference time, we need to define the kernel connectivity
pattern which can simply be done with a binary flag. So although the sparse representation is needed,
it is quite simple and straightforward. Experimental results confirm that fine grained sparsity can be
induced in higher rates. We achieved 70% kernel wise sparsity for Conv2 - Conv6 and the network
is compressed with very simple sparse representation.

4.1.2 COMBINATIONS OF KERNEL AND FEATURE MAP PRUNING

In this section we discuss the various pruning granularities applied in different combinations. We
first apply the feature map and kernel pruning to the CNNCIFAR10.small network in different or-
ders. With feature map pruning, we can achieve 60% sparsity under the budget of 1% increase in
MCR. But at this pruning stage, the network learning capability is affected much. So we take a
50% feature map pruned network, where the CNNCIFAR10.small is reduced to (128C3 − 89C3)-
MP3-(89C3 − 89C3)-MP3-(179C3 − 179C3)-256FC-10Softmax. As pruning is only applied
to Conv2 − Conv6, therefore in Fig. 5a., pruning ratios are computed only for these layers. This
network then undergoes kernel level pruning. The blue rectangle line in Figure 7a shows the pruning

8

Under review as a conference paper at ICLR 2017

Prune Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
 o

n
th

e
C

IF
A

R
-1

00
 T

es
t S

et

32

33

34

35

36

37

38

39

40

41

Baseline MCR 33.65%

Baseline + 1.0%

Feature Map Prunning

Kernel Prunning

Feature Map(42%) Followed by Kernel Pruned

Feature Map(50%) Followed by Kernel Pruned

(a) CIFAR-100 CNN

Prune Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

R
T

es
t S

et

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Feature map pruning

Kernel Pruning

Baseline MCR is 3.5%

Tolerance MCR is 4.00%

(b) SVHN CNN

Figure 8: The pruning plots for 100 class classification problem is reported in (a). It can be observed
that this network can be pruned by more than 60% with very small degradation in the network
performance. Figure (b) shows the pruning results for the CNNSV HN . It can be observed that
more than 70% sparsity can be induced in the network while the network accuracy still remains
above 96%.

results. We achieve the best pruning results in this case and the final pruned network is reported in
detail in Table 2. Overall we achieve more than 75% pruning ratio in the final pruned network.

We further conducted experiments on the CNNCIFAR10.large and the corresponding plots are
shown in Fig. 7b. The CNNCIFAR10.large is much wider and deeper than the CNNsmall as
reported in Table 1. Therefore there are more chances of redundancy and hence more room for
pruning. Further we observe similar trends as CNNCIFAR10.small where the kernel pruning can be
induced in higher ratios compared to the feature map pruning. When the kernel pruning is applied
to the feature map pruned network, we can achieve more than 88% sparsity in the Conv2 −Conv7
of the CNNCIFAR10.large network. This way we show that our proposed technique has good scal-
ability. These results are in conformity to the resiliency analysis of fixed point deep neural networks
Sung et al..

4.2 CIFAR-100

The CIFAR-100 dataset has 50,000 images classified into 100 fine and 20 coarse labels. The dataset
has 50,000 training and 10,000 test set images. The hundred class classification problem of CIFAR-
100 has 500 images for each class. We construct a validation set for learning rate scheduling during
training. The validation set is constructed with 100 samples for each class from the training set. This
way we are left with 400 samples per class for training. We train the network with 40,000 images
with data augmentation and batch normalization Ioffe & Szegedy (2015). We obtain a baseline
accuracy of 33.65% on the CIFAR-100 test set with a VGG styled network. The network architecture
is reported in Table 1 as CNNCIFAR100.

The pruning plots for this dataset are provided in Fig. 8a. It can be observed that around 60% of the
network parameters can be pruned with less than 1% (absolute) increase in the network performance.
Moreover, pruning in combinations further improve the pruning ratios. Thus the lessons learnt
generalize well to other datasets.

4.3 SVHN

The SVHN dataset consists of 32 × 32 × 3 cropped images of house numbers [Netzer et al. 2011]
and bears similarity with the MNIST handwritten digit recognition dataset [LeCun et al. 1998].
The classification is challenging as more than one digit may appear in sample and the goal is to
identify a digit in the center of a patch. The dataset consists of 73,257 digits for training, 26,032 for
testing and 53,1131 extra for training. The extra set consists of easy samples and may augment the

9

Under review as a conference paper at ICLR 2017

Class (0 to 9 Digits)
1 2 3 4 5 6 7 8 9 10

Pe
r

C
la

ss
 M

C
R

V
al

0

0.02

0.04

0.06

0.08

0.1
Non-Pruned
Feature Map Pruned
Kernel Pruned

Class (0 to 9 Digits)
1 2 3 4 5 6 7 8 9 10

Pe
r

C
la

ss
 M

C
R

T
es

t

0

0.02

0.04

0.06

0.08

0.1
Non-Pruned
Feature Map Pruned
Kernel Pruned

Figure 9: This figure shows the per class MCR for the original, feature map, and kernel pruned
networks. It can be observed that the per class error does not vary much in the pruned networks.
This shows that the pruning method is not biased towards a specific class. The feature map pruned
network has 63.67% sparsity with MCRTest = 3.84%, MCRV al = 4.16%. The kernel pruned net-
work has 65.01% sparsity with MCRTest = 3.77%, MCRV al = 4.45%. The sparsity are computed
for Conv2-Conv6.

training set. We generate a validation set of 6000 samples which consists of 4000 samples from the
training set and 2000 samples from the extra [Sermanet et al. 2012]. The network architecture is
reported like this: (2 × 64C3)-MP2- (2 × 128C3)-MP2-(2 × 128C3)-512FC-512FC-10Softmax.
This network is trained with batch normalization and we achieve the baseline MCR of 3.5% on the
test set. The corresponding pruning plots are reported in Fig. 8b. We can observe a similar trend
where kernels can be pruned by a bigger ratio compared to feature maps. More than 70% pruning
ratio can be implemented in the reported network. Thus we show that the lessons learnt generalize
well on various datasets.

There can be a concern that pruning may decrease the accuracy of the original network when it is
deployed in the field for run time classification. For a specific problem domain, the test set is used
as a proxy for the future unseen data. We argue that to some extent, this question can be answered
by comparing the per class error for the original and pruned networks. This way we can see whether
the pruned network is biased towards a specific class. To analayze this, we computed the per class
error with the CNNSV HN network as reported in Table 1. The results are reported in Fig. 9. It
can be observed that the per class error for both validation and test set do not vary significantly.
We therefore infer that the pruning and retraining process is a promising technique for complexity
reduction.

5 RELATED WORK

In the literature, network pruning has been studied by several researches Han et al. (2015b;a); Yu
et al. (2012); Castellano et al. (1997); Collins & Kohli (2014); Stepniewski & Keane (1997); Reed
(1993). Collins & Kohli (2014) have proposed a technique where irregular sparsity is used to re-
duce the computational complexity in convolutional and fully connected layers. However they have
not discussed how the sparse representation will affect the computational benefits. The works of
Han et al. (2015b;a) introduce fine-grained sparsity in a network by pruning scalar weights. If the
absolute magnitude of any weight is less than a scalar threshold, the weight is pruned. This work
therefore favors learning with small valued weights and train the network with the L1/L2 norm
augmented loss function. Due to pruning at very fine scales, they achieve excellent pruning ratios.
However this kind of pruning results in irregular connectivity patterns and demand complex sparse
representation for computational benefits. Convolutions are unrolled to matrix-matrix multiplication
in Chellapilla et al. (2006) for efficient implementation. The work of Lebedev & Lempitsky (2015)
also induce intra-kernel sparsity in a convolutional layer. Their target is efficient computation by un-
rolling convolutions as matrix-matrix multiplication. Their sparse representation is not also simple
because each kernel has an equally sized pruning mask. A recently published work propose sparsity
at a higher granularity and induce channel level sparsity in a CNN network for deep face application
Polyak & Wolf (2015). The work of Castellano et al. (1997); Collins & Kohli (2014); Stepniewski
& Keane (1997); Reed (1993) utilize unstructured fine grained sparsity in a neural network. Fixed

10

Under review as a conference paper at ICLR 2017

point optimization for deep neural networks is employed by Anwar et al. (2015a); Hwang & Sung
(2014); Sung et al. for VLSI based implementations. The reference work of Anwar et al. (2015b)
analyzed feature map pruning with intra-kernel strided sparsity. To reduce the size of feature map
and kernel matrices, they further imposed a constraint that all the outgoing kernels from a feature
map must have the same pruning mask. In this work, we do not impose any such constraint and
the pruning granularities are coarser. We argue that this kind of sparsity is useful for VLSI and
FFT based implementations. Moreover we show that the best pruning results are obtained when we
combine feature map and kernel level pruning.

6 CONCLUDING REMARKS

In this work, we proposed feature map and kernel pruning for reducing the computational complexity
of deep CNN. We have discussed that the cost of sparse representation can be avoided with coarse
pruning granularities. We demonstrated a simple and generic algorithm for selecting the best pruning
mask from a random pool. We showed that the proposed approach adopts a holistic approach and
performs better than the other methods. Further, we adopted the efficient one-shot pruing approach
as the iterative retraining consumes much time. We conducted experiments with several benchmarks
and networks and showed that the proposed technique has good scalability.

REFERENCES

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Fixed point optimization of deep convolutional
neural networks for object recognition. In Acoustics, Speech and Signal Processing (ICASSP),
2015 IEEE International Conference on, pp. 1131–1135. IEEE, 2015a.

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural
networks. arXiv preprint arXiv:1512.08571, 2015b.

Giovanna Castellano, Anna Maria Fanelli, and Marcello Pelillo. An iterative pruning algorithm for
feedforward neural networks. Neural Networks, IEEE Transactions on, 8(3):519–531, 1997.

Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional neural networks
for document processing. In Tenth International Workshop on Frontiers in Handwriting Recogni-
tion. Suvisoft, 2006.

Maxwell D Collins and Pushmeet Kohli. Memory bounded deep convolutional networks. arXiv
preprint arXiv:1412.1442, 2014.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in Neural Information Processing
Systems, pp. 3105–3113, 2015.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior,
Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In Advances in
Neural Information Processing Systems, pp. 1223–1231, 2012.

Song Han, Huizi Mao, and William J Dally. A deep neural network compression pipeline: Pruning,
quantization, huffman encoding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems, pp. 1135–1143,
2015b.

Kyuyeon Hwang and Wonyong Sung. Fixed-point feedforward deep neural network design using
weights+ 1, 0, and- 1. In Signal Processing Systems (SiPS), 2014 IEEE Workshop on, pp. 1–6.
IEEE, 2014.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images, 2009.

11

Under review as a conference paper at ICLR 2017

Vadim Lebedev and Victor Lempitsky. Fast convnets using group-wise brain damage. arXiv preprint
arXiv:1506.02515, 2015.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional networks through
ffts. arXiv preprint arXiv:1312.5851, 2013.

Dmytro Mishkin and Jiri Matas. All you need is a good init. arXiv preprint arXiv:1511.06422,
2015.

Adam Polyak and Lior Wolf. Channel-level acceleration of deep face representations. Access, IEEE,
3:2163–2175, 2015.

Russell Reed. Pruning algorithms-a survey. Neural Networks, IEEE Transactions on, 4(5):740–747,
1993.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Slawomir W Stepniewski and Andy J Keane. Pruning backpropagation neural networks using mod-
ern stochastic optimisation techniques. Neural Computing & Applications, 5(2):76–98, 1997.

Wonyong Sung, Sungho Shin, and Kyuyeon Hwang. Resiliency of deep neural networks under
quantization.

Dong Yu, Frank Seide, Gang Li, and Li Deng. Exploiting sparseness in deep neural networks
for large vocabulary speech recognition. In 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 4409–4412. IEEE, 2012.

12

	Introduction
	Pruning candidate selection
	Feature map and kernel pruning
	Experimental Results
	CIFAR-10
	Feature map and kernel level pruning
	Combinations of Kernel and feature map pruning

	CIFAR-100
	SVHN

	Related work
	Concluding Remarks

