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ABSTRACT

GANs have shown how deep neural networks can be used for generative modeling,
aiming at achieving the same impact that they brought for discriminative model-
ing. The first results were impressive, GANs were shown to be able to generate
samples in high dimensional structured spaces, like images and text, that were no
copies of the training data. But generative and discriminative learning are quite
different. Discriminative learning has a clear end, while generative modeling is
an intermediate step to understand the data or generate hypothesis. The quality of
implicit density estimation is hard to evaluate, because we cannot tell how well
a data is represented by the model. How can we certainly say that a generative
process is generating natural images with the same distribution as we do? In this
paper, we noticed that even though GANs might not be able to generate samples
from the underlying distribution (or we cannot tell at least), they are capturing
some structure of the data in that high dimensional space. It is therefore needed to
address how we can leverage those estimates produced by GANs in the same way
we are able to use other generative modeling algorithms.

1 INTRODUCTION

Generative Adversarial Models (GANs) (Goodfellow et al., 2014) or, in general, implicit generative
models (Mohamed & Lakshminarayanan, 2017; Kingma & Welling, 2014) are extremely appeal-
ing to natural science because they promise to be the universal simulator. If I were a genetist and
had access to the genome of a few millions (billions) humans, a GAN could help me imagine any
possible human. If I were a climate scientist and had access to global weather data, a GAN could
envision any worldwide weather pattern. These simulators are not a goal of their own, no matter how
difficult they are to build. They are tools to understand genetic disease or comprehend hurricane for-
mation or any other particularity that we are interested in. Once, we had such a universal simulator
that can generate data as nature does, we could ask any relevant question and, automatically and
inexpensively have the data to validate our hypothesis.

GANs have brought deep learning to generative modeling. Deep learning has been extremely suc-
cessful in discriminative modeling, because they allow learning the features together with the clas-
sifier and we do not need to rely on low-dimensional-intuitively-human-engineered features to do
so. In (Vapnik, 1998) the author, when criticizing the paradigms created by parametric approach,
declares that: “To find a functional dependency from data, the statistician is able to define a set of
functions, linear in their parameters, that contain a good approximation to the desired function. The
number of parameters describing this set is small”. Deep Learning takes this need to define a priori
this set of functions. Implicit models in discriminative learning make a lot of sense. We have a clear
goal in mind, like: finding objects in an image, converting speech into text or automatic machine
translation, and we have a clear metric to validate our results.

But generative modeling, unlike discriminative learning, does not have such clear goals and metrics.
The generative model is always an intermediate result for solving some other problem. We want
a generative model to understand the available data and be able to generate/validate hypothesis
about it. Broadly, we can classify generative models in two groups: those that estimate the density
of the data accurately and could potentially be used for any application; and, those that extract a
representation that is actionable, even though the generative model might not fully capture the data
generating process, and target a specific question about the data.
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In this second group, we encounter dimensionally reduction and clustering algorithms. A represen-
tative example, among many others, could be Latent Dirichlet Allocation (LDA) (Blei et al., 2003).
LDA is a generative model, that allows understanding the topics in a corpus and which topics are
covered in each document, but generating a document from it, would be utterly incomprehensible.
GANs clearly do not fall in this category.

GANs belong to the first category, but while non-parametric models, like histograms or kernel den-
sity estimation, suffer from slow converge to the density even in the simplest low dimensional prob-
lems (Vapnik, 1998; Lugosi & Nobel, 1996; Wasserman, 2010). GANs seem to be immune, because
we have seen that with very limited data they have been able to generate compelling images (Rad-
ford et al., 2016; Salimans et al., 2016; Gulrajani et al., 2017). But, is this a proper test to assure that
GANs are generating from the distribution of the data? Shouldn’t we have some test in which we can
say how far we are from the true underlying distribution? Shouldn’t we have a specific application in
mind for which GAN might be instrumental? Furthermore the visual tests that we use nowadays are
clearly flawed. Because when we look from afar the 32-by-32 pixel images might look as bedrooms
(Radford et al., 2016), but as soon as we magnify them and look at them one by one, we see that in
most of them there is something off. For higher resolutions, the images look even more unnatural
(Salimans et al., 2016). The same thing happens for text generation (Gulrajani et al., 2017).

Most of the published results for GANs have the following flavor: GANs are unstable and we do such
and such to make them easier and better to train them (Nowozin et al., 2016; Arjovsky & Bottou,
2017; Arjovsky et al., 2017; Radford et al., 2016; Salimans et al., 2016; Gulrajani et al., 2017; Li
et al., 2015; Mroueh & Sercu, 2017; Tolstikhin et al., 2017; Mescheder et al., 2017; Nagarajan &
Kolter, 2017; Roth et al., 2017; Mroueh et al., 2017)1. We are able to generate better-looking images
or even text or something else. But actually very few papers have studied if the GANs results really
generate samples from the density, they just hope they do. In a way, we are still asking what can we
do for GANs, instead of asking what can GANs do for us.

On one hand, our working hypothesis is that GANs will not be able to deliver accurate density
estimates in high-dimensional structured spaces. On the other hand, GANs are capturing some
relevant information of that data, which is providing a simulator that can still be useful even if the
density estimate is wrong. There are some applications (Zhang et al., 2017; Hayes & Danezis, 2017;
Hausman et al., 2017; Hitaj et al., 2017a) in which this is clearly the case. For example, GANs for
password generation (Hitaj et al., 2017b) do not need accurate density estimates, because the GAN
is able to capture passwords that previous methods could not. The frequencies might be off, but they
are valid passwords nonetheless.

GAN-like objective functions also emerge within the context of approximate variational inference
with implicit distributions (Mescheder et al., 2017; Huszár, Ferenc, 2017). Many applications lever-
age on this kind of highly-scalable approximate inference machinery to train interpretable latent
variable models in which an accurate estimate of the underlying distribution is not mandatory, see
for instance (Srivastava & Sutton, 2017; Yang et al., 2017). The unanswered relevant question is
when a GAN can be safely used in an application that requires some form of density estimation. We
expect that the answer to this application would be application dependent. It can take the form of a
flawed density estimate or rely on some statistics of the models that match those in the real data or
described a interpretable model.

In this paper, to foster the discussion about where GANs should lead us, we first examine the conver-
gence proofs for GANs and why we believe they are incomplete or not suitable for analyzing GANs.
We also revisit the papers that have look at GANs density estimate and why most of them are criti-
cal of GANs. In the second part, we show two examples that reinforce this idea that GANs density
estimates are very poor and they do not generate from the same distribution the data is coming from.
Our experiments concur with the papers detailed in the second section of the paper.

1The activity in this area is very large and we might have missed some relevant papers
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2 DENSITY ESTIMATION FOR GANS

2.1 PROOFS OF CONVERGENCE

There are four papers in which the convergence of the GANs to the true density is analyzed. The
first proof that GANs can converge to the true density was given in the GAN original paper by
Goodfellow et al. (2014). Recently, a new convergence proof has been reported in (Tolstikhin et al.,
2017; Liu et al., 2017). On the contrary, in (Arora et al., 2017), the authors show that there exist
equilibrium points during the training of the GAN for which the generative neural net distribution
would not converge to the real distribution of the data.

The analysis in the original paper (Goodfellow et al., 2014) proved that, if we knew the underlying
density model, the equilibrium of the game would be a generator that would draw samples from the
original distribution and a discriminator that would not be able to tell the difference. It assumed
that if the discriminator has finite (VC) dimension and the number of samples tends to infinity, then
the convergence will happen. But this derivation has several missing steps. First, the law of large
numbers is not enough for that convergence to take place, since one will need to prove uniform
convergence too (Schölkopf & Smola, 2002). Second, we need to prove that the iterative procedure,
between the discriminator and generator, does not get stuck in local minima in which the generator
only mimics, at best, part of the distribution. Third, we also need to analyze the convergence when
the neural network grows and so does the input dimension (e.g. noise distribution). We need to sort
out all of them, before we can claim that GANs converge to the distribution, because otherwise we
might find that we are dropping modes or not estimating the tails of the distribution correctly. This
second problem has not even been addressed yet, as we show in the experimental section. Finally,
there is no bound for finite set of samples, so we will never know how far we are from achieving our
goal.

In (Tolstikhin et al., 2017), the authors propose a GAN that follows a boosting procedure. New com-
ponents are added to the mixture until the original distribution is recovered and they show exponen-
tial convergence to the underlying density. Our concern with the proof is its practical applicability,
as it requires that, at each step, the GAN estimated density, call it dQ, and the true underlying den-
sity of the data, call it dPd, satisfy that βdQ ≤ dPd. However, it is indeed unknown how to design
a generative network that induces a density dQ that would guarantee βdQ ≤ dPd with a non-zero β
when dPd is a high-dimensional structure generative process.

In (Arora et al., 2017) the authors prove that for the standard metrics (e.g. Shannon-Jensen diver-
gence and Wasserstein-like integral probability metrics), the discriminator might stop discriminating
before the estimated distribution converges to the density of the data. They also show a weaker re-
sult, in which convergence might happen, but the estimated density might be off, if the discriminator
based on a deep neural network is not large enough (sufficient VC dimension).

Finally, in (Liu et al., 2017) the authors worry about two important aspects of GAN convergence:
what how good the generative distribution approximates the real distribution; and, when does this
convergence takes place. For the first question the answer is the discriminator forces some kind of
moment matching between the real and fake distributions. In order to get full representation of the
density we will need that the discriminator grows with the data. For the second question, they show
a week convergence result. This result is somewhat complementary to Arora et al. (2017), because it
indicates that the discriminator complexity needs to grow indefinitely to achieve convergence. The
question that remains to be answer is the rate of convergence, as the moments need to be matched
for complicated distributions might require large data and complex discriminators. So in practice,
we cannot tell if the generated distribution is close enough to the distribution we are interested in.

Today’s GAN’s results can be explain in the light of these theoretical results. First, we are clearly
matching some moments that relate to visual quality of natural images with finite size deep neural
networks, but they might not be deep enough to capture all relevant moments and hence they will
not be able to match the distribution in these images. This explains why low resolution images, in
which are visual systems interpolates what it wants to see, the results are so appealing, while in large
resolution the results are far from acceptable.
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2.2 CONVERGENCE CRITIQUES

In two recent papers (Lopez-Paz & Oquab, 2017; Sutherland et al., 2017), the authors proposed to
use two-sample tests to validate GANs density estimates. Both papers reach similar conclusions, if
we compare images in pixel space, none of the generated distributions by GANs pass those tests.
Basically these methods notice that there are artefacts in which the two-sample tests can lock onto
to distinguish between real and fake images. In the next section we replicate these experiments and
find similar conclusions.

In (Sutherland et al., 2017) the authors even replicated the experiment with MNIST in Salimans
et al. (2016) in which human could not distinguish between fake and real digits and showed that
for the MMD test the difference was easy, because of the artifacts and because the GANs were
only showing standard digits, but the GAN was not able to generate samples from the tail of the
distribution. This experiment shows the risk of using human evaluation of densities estimates, as we
focus more on normalcy and under-represent the unexpected. In the next section, we show another
test that illustrates that GANs might be only focusing on the modes in the data and ignoring those
tails, which might be critical in applications in which the tails carry the information of the extreme
events that we might be interested in (e.g. think of weird genetic diseases or extreme weather
patterns).

In (Lopez-Paz & Oquab, 2017) , the authors also showed that if instead comparing in the pixel space,
the comparison is made in some transformed space (in their case the final layer in a Resnet structure),
the fake samples and the true samples were indistinguishable. This result is quite appealing, because
there are some statistics in which the GANs samples are distributed like the real samples and those
statistics are sufficient for our problem in hand then we might be able to rely on GANs as a simulator.
The main questions is for which statistics this happens and how broad they are.

Finally, in (Arora & Zhang, 2017; Lee et al., 2017), the authors complete their theoretical paper in
Arora et al. (2017) to show that GANs might be dropping modes of the distribution by adapting
the birthday paradox for images. Like images comes from a continuous space they need some dis-
cretization in order to show this mode dropping effect. In this paper, we showed that this limitation
can be also analyzed when the GAN is used to generate a discrete distribution. We show that the
estimated probabilities are way off and we find both mode dropping and mode enhancing to happen
at the same time.

3 SIMULATIONS

We now provide a set of experiments to support our previous discussion. We first consider two image
datasets, MNIST and CIFAR-10, and later we will revisit the recently proposed GAN-approach to
enhance password guessing (PassGAN) (Hitaj et al., 2017b). While in the first case we have used the
GAN implementation proposed in (Salimans et al., 2016), PassGAN has been implemented using
the improved Wasserstein GAN described in (Gulrajani et al., 2017).

3.1 SIMULATIONS USING MNIST AND CIFAR DATABASES

We consider a specific implementation of the generator and discriminator networks, both trained
over the MNIST (60,000 labeled images of handwritten numbers, plus 10,000 extra images in the
test set) and CIFAR-10 datasets (50,000 labeled natural images, plus 10,000 extra images in the test
set). Also, we train the GAN with the ones from MNIST, i.e. 1-MNIST database, which contains
6739 training images of ones and 1134 test images.

We have reproduced the experiments and network design of (Salimans et al., 2016). More specifi-
cally, the generator network is a 4 layer deep CNN, with both batch and weight normalization (Ioffe
& Szegedy, 2015). The input z is a 100-dimensional Gaussian. The discriminator network is a 9
layer deep convolutional network with dropout, weight normalization and a Gaussian noise layer
that is added to the input. The discriminator is trained using minibatch discrimination (MD), which
helps to avoid collapse of the generator by looking at multiple data examples in combination. As
described in (Salimans et al., 2016), within a few iterations of stochastic gradient descend (SGD),
the generator network is already able to provide visually appealing images. In all cases, we have
run 600 epochs, where per iteration all data mini-batches are processed with SGD once. In Figure 1,
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(a) (b)

Figure 1: Samples drawn from the generator network trained over the MNIST and 1-MNIST
datasets.

Figure 2: 200 samples drawn from the generator network trained over CIFAR-10 dataset.

we illustrate samples from the generator network trained over MNIST (a) and 1-MNIST (b), and in
Figure 2 samples when it is trained over CIFAR-10. In most cases the samples are visually appeal-
ing, and it is likely that in most of them a person is not able to distinguish if they are real images or
generated by our network. These results match those in Salimans et al. (2016).

In the next subsection we analyzed the Kernel Two-Sample Test results and we have left for the
appendix the results in which we illustrate the mode dropping and the under sampling of the tails of
the distribution.
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3.1.1 KERNEL TWO-SAMPLE TEST

In contrast to (Salimans et al., 2016), where the inception score is introduced as a metric of the
quality of the images sampled from the generator network, we propose a statistical hypothesis test
to study whether the distributions p(x) and the probability distribution of images induced by the
generator network, i.e., pg(x) = G(zi; θG), are different. This problem is known as the Two-Sample
Test (Anderson et al., 1994). We use the Kernel Two-Sample Test proposed in (Gretton et al., 2012),
where the test statistic is the Maximum Mean Discrepancy (MMD), defined as the largest difference
in expectations over functions in a unit ball of a characteristic reproducing kernel Hilbert space
(RKHS). When MMD is large, the samples are likely from different distributions. In (Gretton et al.,
2012), unbiased empirical estimators to the MMD metric are presented, and further, it is shown that
the empirical MMD estimate shows a statistically significant difference between distributions. Given
i.i.d. samples X ∼ p(x) and X̃ ∼ pg(x), an statistical hypothesis testing is used to distinguish
between the null hypothesis H0 : p = pg and the alternative hypothesis Ha : p 6= pg . This is
achieved by comparing the empirical MMD estimate with a particular threshold ε: if the threshold
is exceeded, then the test rejects the null hypothesis.

Given the level α of the test (an upper bound on the Type I error), we use bootstrap resampling on
the aggregated data to obtain a test threshold ε2. In our experiments we have used 1000 bootstrap
shuffles, the radial basis function kernel with a bandwidth set as median distance between points
in the aggregate sample. Also, we fix α = 0.05. We use NTest samples taken at random from
the MNIST and CIFAR-10 test sets and the same number of samples drawn from the generator
network. Results are averaged over 1000 realizations. In Table 1 (a) we include the percentage
of times the null hypothesis H0 : p = pg was rejected. We also include in the table the average
MMD value and two times its standard deviation, as well as the estimated threshold ε. In Table
1 (b), we randomly split the MNIST and CIFAR-10 test datasets into two disjoint sets, and we
perform the same statistical test, where ideally the null hypothesisH0 should never be rejected. The
comparison of results in Table 1 (a) and (b) leaves no doubt. As the number of data points increase,
the empirical MMD gets further from the test threshold, strongly indicating a significant statistical
difference between distributions. In contrast, the MMD metric computed in Table 1 (b) does not
grow with NTest and remains very close to the threshold ε. We can safely conclude that the GAN
density model does not match the distribution of the training images. As mentioned before, the use
of Two-Sample statistical hypothesis test to study the distribution induced by GAN has been also
proposed in (Lopez-Paz & Oquab, 2017; Sutherland et al., 2017) with similar conclusions.

3.2 PASSGAN, A GENERATIVE MODEL FOR PASSWORD GUESSING

PassGAN (Hitaj et al., 2017b) is a recently-introduced technique that aims at generating passwords
by extracting distribution information from password leaks. PassGAN builds upon the work of Gul-
rajani et al. (2017), which shows remarkably good results on GAN-based text generation.

In this section we show that, however, PassGAN experiences a severe mode-dropping effect. This
is consistent with the observations presented in the previous sections of this paper. We illustrate
how the distribution of PassGAN’s output presents modes that do not exits in the real distribution
of passwords. While this clearly suggest that PassGAN’s density estimate is not correct, we show
that these new modes are not completely random. Rather, it is reasonable for a user to use them
as a password. This provides further evidence that correctly leveraging the generative distribution
induced by the GAN beyond density estimation is still an open problem.

After training PassGAN, we used the generative network to obtain “fresh” password samples, which
were then used for password guessing. Using the same network design as in Gulrajani et al. (2017),
we trained a Wasserstein-GAN on a leaked portion of the RockYou dataset (RockYou, 2010) using
80% of the data for training (23,679,744 total passwords, 9,925,896 unique passwords), and the
remaining 20% (5,919,936 total passwords, 3,094,199 unique passwords) as testing data. The re-
sults obtained using this process are highly competitive with state-of-the-art rule-based approaches
adopted in John-the-Ripper (the Ripper, 2017) and Hashcat (HashCat, 2017) password cracking
tools, as shown in (Hitaj et al., 2017b).

2See http://www.gatsby.ucl.ac.uk/˜gretton/mmd/mmd.htm
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Data Set NTest %H0 rejected MMD ε

MNIST 100 84 1.41± 0.46 1.16
MNIST 1000 100 2.80± 0.77 1.24
MNIST 5000 100 8.96± 1.45 1.24

CIFAR-10 100 95 1.76± 1.12 1.16
CIFAR-10 1000 100 5.64± 2.66 1.13
CIFAR-10 5000 100 45.15± 7.20 1.11

(a)

Data Set NTest %H0 rejected MMD ε

MNIST 100 59 1.24± 0.36 1.18
MNIST 1000 44 1.25± 0.41 1.24
MNIST 5000 46 1.27± 0.34 1.24

CIFAR-10 100 46 1.24± 0.43 1.18
CIFAR-10 1000 58 1.35± 0.76 1.21
CIFAR-10 5000 61 1.34± 0.72 1.19

(b)

Table 1: In (a), we use the Kernel Two-Sample Test with real images and samples drawn from the
generator network. In (b), we use instead real images taken from two disjoint sets on the MNIST
and CIFAR-10 test datasets.

We generated 1010 samples with PassGAN, out of which 528,834,530 (5.29%) were unique samples.
These passwords matched 2,774,269 (46.9%) of the testing dataset. When matched against a leaked
passwords dataset on which PassGAN was not trained (LinkedIn), the model was able to guess
4,996,980 (i.e., 11.5%) passwords out of 43,354,871 unique entries.

Table 2 shows the 30 most frequent passwords in the subset of the RockYou dataset used to train
PassGAN, sorted in decreasing order based on their frequency. The second column provides the
occurrence of each password in the dataset, whereas the third column provides the frequency of
that password in the training data. In the fourth column, we present the frequency estimated by
the GAN, which represents the number of times a certain password was generated with respect to
the total number of passwords generated. The generator did not follow the underlying distribution:
there are password samples that are significantly underrepresented by the GAN, and even instances
of mode dropping. (See, e.g., “password”, “abc123”, “babygirl” and “anthony”. Passwords present
in the training data, but not in the GAN’s output, are labeled as “not generated” in Table 2.) These
results show a severe mode-dropping effect, as the 30th most common password with over 8,000
repetition in the over 23 million passwords is not generated by the GAN.

Furthermore, in Table 3, we present the 30 passwords produced by PassGAN with the highest num-
ber of occurrences. Interestingly, the model often produced passwords that have low or no repre-
sentation in the training dataset, such as ‘123256’ (appearing 6 times in the training data), ‘iluv!u&’
(which is not present in the training data). This shows a different effect compared to Table 2.
However, PassGAN is always generating new modes that are somewhat structured, and that are not
simply sequences of random letters. Passwords like “dangel”, “michel”, or “ilove”, for example, are
reasonable user-generated passwords. However, the GAN does generates them with a frequency that
is too low. This shows that GANs might not be able to match all the relevant moments, even though
they are still successful at capturing relevant information.
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Password Occurrence
in Training Data

Frequency
in Training Data

GAN
Estimated Frequency

123456 232,844 0.98% 100,971,288 (1.0%)
12345 63,135 0.27% 21,614,548 (0.22%)

123456789 61,531 0.26% 22,208,040 (0.22%)
password 47,507 0.20% 85,889 (8.6e-4%)
iloveyou 40,037 0.17% 10,056,700 (0.10%)
princess 26,669 0.11% 190,796 (0.0019%)
1234567 17,399 0.073% 7,545,708 (0.075%)
rockyou 16,765 0.071% 55,515 (5.5e-4%)

12345678 16,536 0.070% 5,070,673 (0.051%)
abc123 13,243 0.056% 6,545 (6.5e-5%)
nicole 12,992 0.055% 206,277 (0.0021%)
daniel 12,337 0.052% 3,304,567 (0.033%)

babygirl 12,130 0.051% 13,076 (1.3e-4%)
monkey 11,726 0.050% 116,602 (0.0012%)
lovely 11,533 0.049% 1,026,362 (0.010%)
jessica 11,262 0.048% 220,849 (0.0022%)
654321 11,181 0.047% 19,912 (1.9e-4%)
michael 11,174 0.047% 517 (5.2e-6%)
ashley 10,741 0.045% 116,858 (0.0012%)
qwerty 10,730 0.045% 135,124 (0.0013%)
iloveu 10,587 0.045% 4,839,368 (0.048%)

111111 10,529 0.044% 101,903 (0.0010%)
000000 10,412 0.044% 108,300 (0.0011%)
michelle 10,210 0.043% 739,220 (0.0073%)

tigger 9,381 0.040% 658,360 (0.0066%)
sunshine 9,252 0.039% 3,628 (3.6e-5%)
chocolate 9,012 0.038% 12 (1.2e-7%)
password1 8,916 0.038% 6,427 (6.4e-5%)

soccer 8,752 0.037% 25 (2.5e-7%)
anthony 8,752 0.036% not generated

Table 2: Top-30 most frequent passwords present on the dataset used to train PassGAN. The first
column shows passwords from the RockYou training dataset; the second column reports the number
of occurrences of each password in the training dataset; the third column shows the corresponding
frequency; and the forth column illustrates the frequency estimated by the GAN.
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GAN-generated
Passwords

Occurrence
in GAN

Frequency
in GAN

Frequency
in Training Data

123456 100,971,288 1.01% 232,844 (0.98%)
123456789 22,208,040 0.22% 61,531 (0.26%)

12345 21,614,548 0.22% 63,135 (0.27%)
iloveyou 10,056,700 0.10% 40,037 (0.17%)
1234567 7,545,708 0.075% 17,399 (0.073%)

angel 6,384,511 0.064% 8,425 (0.036%)
12345678 5,070,673 0.051% 16,536 (0.070%)

iloveu 4,839,368 0.048% 10,587 (0.045%)
angela 3,377,148 0.034% 4,548 (0.019%)
daniel 3,304,567 0.033% 12,337 (0.052%)
sweety 2,560,589 0.026% 5,140 (0.022%)
angels 2,455,602 0.025% 6,600 (0.028%)
maria 1,582,718 0.016% 3,178 (0.013%)

loveyou 1,541,431 0.015% 6,797 (0.029%)
andrew 1,307,400 0.013% 6,666 (0.028%)
123256 1,294,044 0.013% 6 (2.5e-5%)
iluv!u 1,268,315 0.013% 0 (0%)
dangel 1,233,188 0.012% 43 (1.8e-4%)
michel 1,190,127 0.012% 794 (0.0033%)
marie 1,187,051 0.012% 1,788 (0.0076%)
andres 1,055,809 0.011% 3,016 (0.013%)
lovely 1,026,362 0.010% 11,533 (0.049%)

123458 989,324 0.010% 181 (7.6e-4%)
sweet 968,822 0.010% 2,366 (0.010%)
prince 920,415 0.0092% 2,883 (0.012%)
ilove 888,109 0.0089% 555 (0.0023%)
hello 861,067 0.0086% 6,270 (0.026%)

angel1 840,056 0.0084% 3,454 (0.015%)
iluveu 826,944 0.0083% 30 (1.3e-4%)

723456 820,268 0.0082% 6 (2.5e-5%)

Table 3: Top-30 most frequent passwords produced by PassGAN after generating 1010 samples. The
first column shows the passwords; the second column presents the number of occurrences of each
password generated by the GAN; the third column provides the frequency of each password; and the
fourth colum shows the corresponding frequency of each password in the RockYou training dataset.
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Kevin Roth, Aurélien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Stabilizing training of
generative adversarial networks through regularization. CoRR, abs/1705.09367, 2017. URL
http://arxiv.org/abs/1705.09367.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, and
Xi Chen. Improved techniques for training gans. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems 29, pp.
2234–2242. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/
6125-improved-techniques-for-training-gans.pdf.

B. Schölkopf and A. Smola. Learning with kernels. M.I.T. Press, 2002.

Akash Srivastava and Charles Sutton. Autoencoding variational inference for topic models. Interna-
tional Conference on Learning Representations (ICLR), 2017. URL https://arxiv.org/
pdf/1703.01488.pdf.

Dougal J. Sutherland, Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alex
Smola, and Arthur Gretton. Generative models and model criticism via optimized maximum
mean discrepancy. International Conference on Learning Representations (ICLR), 2017. URL
https://arxiv.org/pdf/1703.01488.pdf.

John the Ripper, 2017. URL http://www.openwall.com/john/.

Ilya O. Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, and Bernhard
Schölkopf. Adagan: Boosting generative models. CoRR, abs/1701.02386, 2017. URL http:
//arxiv.org/abs/1701.02386.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer Publishing
Company, Incorporated, 2010. ISBN 1441923225, 9781441923226.

11

https://arxiv.org/pdf/1701.04722.pdf
http://arxiv.org/abs/1705.10461
http://arxiv.org/abs/1705.09675
http://arxiv.org/abs/1705.09675
http://proceedings.mlr.press/v70/mroueh17a.html
http://proceedings.mlr.press/v70/mroueh17a.html
http://arxiv.org/abs/1706.04156
http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2
http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2
http://arxiv.org/abs/1705.09367
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
https://arxiv.org/pdf/1703.01488.pdf
https://arxiv.org/pdf/1703.01488.pdf
https://arxiv.org/pdf/1703.01488.pdf
http://www.openwall.com/john/
http://arxiv.org/abs/1701.02386
http://arxiv.org/abs/1701.02386


Under review as a conference paper at ICLR 2018

9

27

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

0

10

20

30

1-MNIST Train Image Index i

n1-MNIST→1-MNIST(i)

n1-MNIST→GAN(i)
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training set.
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APPENDIX: EXPLAINING THE GAP: NEAREST NEIGHBOR ANALYSIS
BETWEEN SAMPLE SETS

The samples generated by the GAN failed the MMD two sample test even though the generated
images look as good as the original images in MNIST and CIFAR-10. We believe that the GAN
fails the test because the samples are too concentrated on the modes and does not explore the full
density model. This is why the samples generated for MNIST all look very good and we are almost
never surprised by the weird digits that we find sometimes in the original MNIST.

We now perform a simple experiment to demonstrate the generative distribution overfit to the dom-
inant modes of p(x). Consider first the 1-MNIST dataset, with 6739 training images. After jointly
training the discriminative and generative networks, we sample from the generator network a set of
6739 images and, for each of them, we compute the nearest neighbor (NN) in the 1-MNIST training
set. We denote by n1-MNIST→GAN(i) the number of times that the i-th image in the 1-MNIST training
set is the NN of images in the fake dataset generated by the GAN. Note that large n1-MNIST→GAN(i)
values will correspond to images from the 1-MNIST that the GAN tends to over reproduce. The
n1-MNIST→GAN(i) profile is shown in Figure 3, where we have sorted the index images according to
increasing values of n1-MNIST→GAN(i).

We compare this result with the leave-one-out (LOO) NN profile for the 6739 images used for
training, denoted by n1-MNIST→1-MNIST(i). This profile is shown by a red dashed line in Figure 3. The
results clearly indicate that there is a subset in the 1-MNIST training set that is over-reproduced in
the generated artificial dataset, and thus, they correspond to modes in pg(x) that are not so-dominant
in p(x). On the other end of the spectrum the GAN represents much fewer images than the LOO NN
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Figure 5: In (b), we represent the two images that are furthest from their neighbors within the
MNIST training set. In (b), we represent the two images that are furthest from their neighbors in
artificial set of images sampled from the generative network.

profile (almost 1000 samples less). This profile leads us to believe that the GAN density estimation
over represents the modes and under represents the tails of the distribution.

In Figure 4 the n1-MNIST→GAN(i) profile is computed for 105 generated images and the two NNs
are found for each image. In this case, there is still 1,300 images of ones (20% of the 1-MNIST
database) that do not have a first or second NNs in 100,000 GAN generated images. The image that
is most popular appears as the first or second NN in 0.4% of the cases, which seems to corroborate
our initial findings that the GAN over samples the modes and under sample the tails of p(x).

An alternative illustration that reinforces the idea that the distribution pg(x) is indeed not represent-
ing the tails of p(x) is provided in Figure 5, where in column (a) we represent the two ones from
1-MNIST training set furthest from their LOO NNs. In (b), we represent the two images in the fake
dataset sampled from the generative network (using 105 images) that are furthest from their LOO
NNs. While in the ones from the real database, Figure 5(a), we observe images with marked calli-
graphic style (a reasonable unlikely one), in (b) we can appreciate images where the large distance is
explained by residual noise rather than by an unusual calligraphic style. The first column of images
will never be reproduced by the GAN, while the second set are noisy regular-one images.

In Figures 6 we have reproduced the same experiments for the full MNIST train set (a), where
we have sample at random 60,000 images for the GAN, and the CIFAR-10 training set (b), where

13



Under review as a conference paper at ICLR 2018

10

57

0 1 2 3 4 5 6

·104

0

20

40

60

MNIST Train Image Index

nMNIST→MNIST(i)

nMNIST→GAN(i)

57 ↑

59400 60000

5

10

25000 28000 31000

0

1

2

MNIST Train Image Index

192

357

0 1 2 3 4 5

·104

0

100

200

300

CIFAR Train Image Index

nCIFAR→CIFAR(i)

nCIFAR→GAN(i)

38,000 40,000 42,000
−1

0

1

2

CIFAR Train Image Index

49500 50000
10

30

50

(a) (b)

Figure 6: In (a), we represent nMNIST→GAN(i) and nMNIST→MNIST(i) computed for MNIST with
60,000 images. In (b), we reproduce the experiments for CIFAR with 50,000 images.

50,000 images have been sampled from the GAN. Results in both cases corroborate our conclusions,
showing that the distribution pg(x) overrepresents certain subsets of images of the training set and
under represent the tails of the distribution. For the NMIST data the 1% most popular images
represent 8.32% of the images in the GAN dataset and only 5.48% in the original MNIST data,
while needing 6000 less images to find the NNs for all GAN generated images. This shows that the
GAN covers a significantly less fraction of the original distribution and overfits to the modes. For
the CIFAR-10, the results are even more extreme.
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