
Under review as a conference paper at ICLR 2019

THE CAKEWALK METHOD

Anonymous authors
Paper under double-blind review

ABSTRACT

Combinatorial optimization is a common theme in computer science. While
in general such problems are NP-Hard, from a practical point of view, locally
optimal solutions can be useful. In some combinatorial problems however, it can
be hard to define meaningful solution neighborhoods that connect large portions
of the search space, thus hindering methods that search this space directly. We
suggest to circumvent such cases by utilizing a policy gradient algorithm that
transforms the problem to the continuous domain, and to optimize a new surrogate
objective that renders the former as generic stochastic optimizer. This is achieved
by producing a surrogate objective whose distribution is fixed and predetermined,
thus removing the need to fine-tune various hyper-parameters in a case by case
manner. Since we are interested in methods which can successfully recover locally
optimal solutions, we use the problem of finding locally maximal cliques as a
challenging experimental benchmark, and we report results on a large dataset of
graphs that is designed to test clique finding algorithms. Notably, we show in
this benchmark that fixing the distribution of the surrogate is key to consistently
recovering locally optimal solutions, and that our surrogate objective leads to an
algorithm that outperforms other methods we have tested in a number of measures.

1 INTRODUCTION

Combinatorial optimization is one of the foundational problems of computer science. Though in
general such problems are NP-hard Papadimitriou (2003), it is often the case that locally optimal
solutions can be useful in practice. In clustering for example, a common objective is to divide a
given set of examples into a fixed number of groups in a manner that would minimize the distances
between group members. As enumerating all the possible groupings is usually intractable, local
search methods such as k-means MacQueen et al. (1967) are frequently used to approach such
problems. We find the persistent use of k-means in a wide variety of applications as convincing
evidence that from a practical perspective, locally optimal solutions can be useful.

In the combinatorial setting however, solution neighborhoods are not always available, and even when
they are, in many interesting cases they only connect small parts of the search space. For example,
when the search space involves computer programs, it is not clear how replacing one operation with
another (for example, an if clause with an addition operation) impacts the program behavior even if
the program validity is preserved. Though one can define a limited but sensible set of neighboring
solutions (e.g., replace an addition with a multiplication), neighborhoods that build on those usually
connect only a tiny fraction of the search space. Another interesting case involves natural language
sentences where replacing one word with another (say, ’very’ to ’not’), or changing clauses order can
completely change the meaning of a sentence. A third popular scenario involves sequential decision
making as is the case in reinforcement learning problems with discrete action spaces, where it is
not always clear that two action sequences can be related if the initial actions are different. In such
combinatorial problems, methods that transforms one solution to another (either directly or through
smoothing) might be confined to a small sub-space, and therefore in such problems, searching the
solution space directly is unfavorable.

One type of algorithms which are suitable to such combinatorial problems, and have drawn con-
siderable interest in the last few years are policy gradient methods Sutton & Barto (2017). The
general strategy these methods adopt is to construct a parametric sampling distribution over the
search space, and to optimize the expected value of some given objective function by applying
gradient updates in the parameters’ space. In spite of their apparent generality, these gradient updates

1

Under review as a conference paper at ICLR 2019

require special attention. In particular, the sampled objective values affect both the sign and the
magnitude of the gradient step size. On the one hand, such dependence on the objective values is
what allows these algorithms to give higher likelihood to examples which achieve better objective
values. On the other hand, such direct dependence makes it hard to tune the step sizes by means of
predetermined hyper-parameters. As our goal is to extend such constructions to any objective in a
generic fashion, we seek to transform the construction so that it will only be sensitive to the order
relation the objective induces. In this construction however, the objective is essentially a random
variable whose distribution changes from one problem to another, and not only that, it keeps on
changing throughout the optimization. As a result, it seems that finding a generic rule for tuning
various hyper-parameters in a manner that fits all scenarios seems impractical.

Following this understanding, we purpose to utilize a generic surrogate objective function that has the
following two properties. First, the surrogate should preserve the set of locally optimal solutions if
solution neighborhoods can be defined. Second, the surrogate should have a fixed and predetermined
distribution for every possible objective, and this distribution should remain fixed throughout the
optimization. Once in this form, generic rules for setting various hyper-parameters can be found,
and that can provide us with a generic stochastic optimizer. Though it might seem that such general
purpose surrogate objectives could be hard to find, we show that by utilizing the empirical cumulative
distribution function (CDF henceforth) of the original objective, these can be easily constructed. We
discuss few possible surrogate objectives, and purpose one such version which makes the basis our
method. Since the crux of our method is based on capitalizing on the CDF of the original objective,
we refer to our method as CAkEWaLK which stands for CumulAtivEly Weighted LiKelihood.

We start by considering policy gradient methods as stochastic optimization algorithms for combinato-
rial problems in section 2, and proceed to present the Cakewalk method in section 3. In section 4
we discuss how Cakewalk is related to the cross-entropy (CE henceforth) method, to policy-gradient
methods in reinforcement learning, and to multi-arm bandit algorithms. Since we are interested in
methods that can recover locally optimal solutions when these can be defined, we use the problem
of finding inclusion maximal cliques in undirected graphs as a controlled experiment for testing
this property in a non-trivial setting. For that matter, in section 6 we investigate how to apply such
methods to the clique problem, and in section 7 we report experimental results on a dataset of graphs
on which results are regularly published. Lastly, as an additional experimental task, we show in
appendix section B how Cakewalk can be used to produce an algorithm that outperforms the most
commonly used algorithms for k-medoids clustering, the combinatorial counterpart of k-means.
Notably, we use this task to demonstrate that Cakewalk can also be used to optimize the starting
point of greedy algorithms that search the input space directly, thus providing empirical evidence that
supports Cakewalk’s effectivity in a greater variety of combinatorial problems.

2 BACKGROUND

We set out on constructing a stochastic optimization algorithm for combinatorial optimization
problems, and start by stating the problem. Let f be an objective function which we need to
maximize, and let x ∈ [M]N be a string that describes N items such that each xj is one of a discrete
set of M items. In this text we denote discrete sets {1, . . . ,K} using [K] . Our goal is to search
the space X = [M]N for some x? that achieves an optimal f (x?) = y?. Since X is discrete, in
general this problem is NP-Hard (maximum clique can be reduced to this description), hence we
focus only on finding locally optimal solutions rather than the global optimum x?. For the purpose of
defining locally optimal solutions, we’ll rely on a neighborhood function N that maps each x to its
neighboring set, though the methods we consider treat f as a black-box, and don’t require suchN for
their operation. Our goal is to find some locally optimal solution x∗ ∈ X ∗f where the set of locally
optimal solutions is defined as X ∗f = {x ∈ X |∀x′ ∈ N (x) .f (x) ≥ f (x′)}. Preferably, we would
like to find some x∗ whose objective value y∗ = f (x∗) is as large as possible, though in general,
this cannot be guaranteed.

We describe a stochastic optimization algorithm for problems of this form. Let X be a random
variable that is defined over X , and which is distributed according to a parametric distribution Pθ that
the algorithm maintains. In addition, let Y be a random variable that is defined over the values of the
objective function f , i.e. Y = f (X). We emphasize that in this text we refer to random variables
using capital English letters in bold such as X or Y , and we use x and y to refer to elements in

2

Under review as a conference paper at ICLR 2019

their appropriate sample spaces (deterministic quantities). During the optimization, the algorithm
iteratively samples solutions x according to Pθ, and updates the parameters θ ∈ Rd which govern
Pθ in a manner that reflects how good is the objective value y = f (x) with which x is associated.
Initially Pθ (X = x) is multi-variate uniform (fully specified in section 5), but as the optimization
continues, the algorithm decreases the entropy in the distribution until eventually only few solutions
become likely, and sampling some x from Pθ, with high probability, returns some locally optimal
solution. Since we discuss an iterative algorithm that at each iteration t updates the parameters θt,
we refer to the random variables that are associated with Pθt byXt and Y t. Lastly, as a short hand
notation, we refer to Pθ (X = x) simply by Pθ (x).

Since we learn a distribution function, we say that our learning objective J(θ) is to maximize the ex-
pectation over x ∼ Pθ of the original objective which we denote as Eθ [Y]. To find the parameters θ
which maximize Eθ [Y], we derive a gradient ascent algorithm which relies on estimates of∇θEθ [Y].
To calculate the gradient, we use the log-derivative trick, ∇θEθ [Y] = Eθ [Y ∇θ logPθ (X)]. Next,
we can use Monte Carlo estimation Wasserman (2013) to estimate Eθ [Y ∇θ logPθ (X)]. Tradition-
ally, at each iteration t, a large sample St =

{
xkt , y

k
t

}K
k=1

of some fixed size K is sampled using Pθt .
Denoting this estimate by ∆t, then the update at iteration t takes the following form,

θt = θt−1 + ηt∆t (1)

∆t =
1

K

K∑
k=1

[
ykt∇θ logPθ

(
xkt
)]

(2)

where ηt is a learning rate parameter that is predetermined. We describe the update step using a
vanilla gradient update mostly for illustratory purposes, though in practice any gradient based update
such as AdaGrad Duchi et al. (2011) or Adam Kingma & Ba (2014) can be used instead. Turns out
that for positive learning rates this stochastic optimization scheme converges to a local maximum of
J , and when using the optimal parameters θ∗, sampling from Pθ∗ returns locally optimal solutions
x∗ ∈ X ∗f with high probability Williams (1992). Nonetheless, such gradient estimates are known
to be highly variable Paisley et al. (2012), which requires drawing large samples at each iteration
which is costly. Though there are techniques for reducing the variance of such estimates Ross (2013),
these are mostly useful when tied to the specifics of a given objective. We approach this problem
differently, and consider instead how can we adapt the optimization objective in a manner that allows
us to rely on noisy gradient estimates that only involve a single example (i.e., setting K = 1), while
ensuring we converge to a distribution that still allows us to sample some x∗ ∈ X ∗f . Since we focus
on online updates, for the reminder of the text we drop the superscript k when referring to xkt and ykt .

3 CAKEWALK METHOD

At this point, we’ve set the stage for discussing how can we transform the previous construction into
a generic stochastic optimizer. We start by examining equations 1 and 2 and observing that if we
update θt in the direction of ∇θ logPθ (xt), ηtyt can be considered as the step we’re taking in that
direction. Thus, the sign and magnitude of ηtyt essentially determine whether we increase or decrease
the likelihood of xt, and to what extent we do so. The implication this has over the optimization is
that the distributions of {ηtY t}Tt=1 determine the course of the optimization. If for example |ηtY t|
is unbounded from above, we might take steps that are too large, which might cause us to diverge.
Steps that are too small are unfavorable as well, as these will keep the sampling distribution too close
to uniform, and due to the combinatorial nature of X , finding good xs can take exponentially many
examples. This extends to scenarios that involve functions that have a different scale. For example,
suppose that we have two functions such that f2 (x) = cf1 (x) for every x, with c being some fixed
positive constant. Clearly, X ∗f1 = X ∗f2 , nonetheless, sampling and updating the parameters using
equations 1 and 2 would change the speed of the optimization by a factor c. Though one can adjust
the learning rates to the particularities of some given objective, such an approach would require that
we tune the optimization on a case by case basis. Lastly, since in general we don’t know ahead of
time the distribution of each Y t, it seems that if we follow the construction presented in section 2, we
won’t be able to determine the series {ηt}Tt=1 in a manner that would fit all scenarios. This reasoning
leads us to conclude that if we wish to obtain generic updates, we must come up with some fixed
surrogate objective function which preserves X ∗f , and for which we can determine the distributions of

3

Under review as a conference paper at ICLR 2019

{Yt}Tt=1 ahead of time. To achieve this, we suggest a weight function w that when composed over f
(i.e. w ◦ f) produces a surrogate objective that meets these criteria.

Preserving the original set of optimal solution is the easy part, as all we need to do is to require that
w will be monotonic increasing, and that would imply that X ∗f ⊆ X ∗w◦f (and strict monotonicity
would ensure that X ∗f = X ∗w though we don’t insist on that). The harder part is to construct w in
a manner that would fix the distribution of w(Y t) for all t. Nonetheless, basic probability tells us
that if Ft is the CDF of Yt, then Ft (Y t) is uniformly distributed on [0, 1] Wasserman (2013). Since
every CDF is monotonic increasing, if we construct w using Ft, we can preserve the original set of
optimal solutions. More importantly, if we can estimate Ft, we could use it to produce our surrogate
objective as it would fix the surrogate’s distribution once and for all, thus making significant
progress towards our goal. Next, since insisting that w (Yt) ∼ U (0, 1) might not be ideal, we take
this idea one step further, and utilize another monotonic increasing function g for which g (Ft (Y t))
can be distributed differently. For purposes that we specify next, we also require that g will be
bounded.

Since we don’t have access to Ft in general, as was the case with the gradient, we need to estimate it
from data. Fortunately enough, since the image of f is one dimensional (an optimization objective),
order statistics can supply us with highly reliable non-parametric estimates for each Ft. The only
question that comes up is how can we perform the aforementioned estimation without drawing
a large sample at each iteration. Due to equation 2, if we use a sampling distribution for which
‖∇θ logPθ (xt)‖ is bounded, then since w (yt) is bounded as well, ‖∆t‖ will be bounded for
every xt and yt. The main implication of this property is that we can control how different the
parameters will be between any two iterations, i.e., that for any two iterations t and t − k where
k ∈ [t− 1] we can make ‖θt − θt−k‖ as small as we want simply by changing ηt. Thus, instead
of drawing a large sample in each iteration, we can say the last objective values yt−1, . . . , yt−k
are approximately i.i.d from Pθt−1

. Therefore, if we use small enough learning rates, we can use
F̂t−1 (y) =

1
k

∑k
i=1 I [yt−i < y] as an estimator for Ft−1, where I [·] is the indicator function. In our

experiments, using some fixed learning rate η ∈ (0, 1) along with k = 1
η seem to work quite well.

Overall, the parameters’ updates we suggest have the following form,

∆t = g
(
F̂t−1 (yt)

)
∇θ logPθ (xt) (3)

3.1 SURROGATE OBJECTIVES

In this section, we focus on a single iteration t, and thus, drop the subscript t in all cases. The
purpose of the first option we present is to illustrate the connection between our algorithm, and the
CE method, and for that reason we denote this weight function by ŵCE (y) = gCE

(
F̂ (y)

)
, and its

associated transformation by gCE . Given some small ρ ∈ [0, 1] which is decided by the user a-priori
(typically, 0.1 or 0.01), gCE is a thresholding function gCE (z) = I [z ≥ 1− ρ]. Clearly, for any
fixed ρ, ŵCE is monotonic increasing and bounded, and ŵCE (Y) is a Bernoulli random variable
with probability ρ. Notably, using gCE in equation 3 leads to an update which can be considered as
an online version of the CE method. There are two main disadvantages to ŵCE . First of all, it relies
on another parameter ρ that requires manual tuning. More importantly, ŵCE uses only the highest
ρ percentile of the examples to update Pθ while in fact the worst xs supply valuable information
- they have low objective values, and thus, their likelihood should be decreased rather than simply
ignored. Thus, we suggest two weight functions which fix these issues. Probably the simplest option
is to use the empirical CDF F̂ directly, which would make F̂ (Y) uniform discrete on [0, 1]. While
this surrogate doesn’t involve any extra parameters, nor does it ignore the information supplied by
every x, it still has one major drawback, it leads to an increase in the likelihood of every example it
sees. This create a bias towards xs that have already been sampled, compared with xs that weren’t,
even though their associated objective value might be better. Since X grows exponentially fast
with N , as N grows, examples that are drawn early in the process can influence the course of the
optimization dramatically. Following this reasoning, we adjust F̂ so that it would only increase the
likelihood of only half of the examples, and decrease the likelihood of the other half. To do so, we
make ŵ (y) = 2F̂ (y)− 1. By construction, it follows that ŵ (Y) is uniform discrete on [−1, 1]. In
this fashion, when applied with some fixed learning rate, ŵ determines whether the likelihood of

4

Under review as a conference paper at ICLR 2019

Algorithm 1 Cakewalk

input f , Pθ, k, Add {objective function f , sampling distribution Pθ, integer k, gradient addition
rule Add}
initialize θ0
repeat {for every t in 1, 2, . . . }
xt ∼ Pθt−1

{sampling an example}
yt = f (xt) {objective function evaluation}
if t > k then
wt = 2

(
1
k

∑k
i=1 I [yt−i < yt]

)
− 1

∆t = wt∇θ logPθ (xt)
θt = Add (θt−1,∆t)

end if
until convergence
return x∗ which had the highest y∗

some example will be increased or decreased, and to what extent. Notably, this is achieved along
with full specification of the distribution of ŵ (Y). This is a major advantage compared with, for
example, transforming Y with its estimated z-score, as in this case we can’t determine how w (Y)
is distributed, nor can we guarantee that |w (Y)| is bounded (leading to a risk of divergence, and
disrupting of the online estimation of F). We summarize Cakewalk with ŵ, and any gradient addition
rule Add (this includes hyper-parameters such as learning rate) in algorithm 1.

4 RELATED WORK

Our method is closely related to the CE method. CE was introduced by Rubinstein initially for
estimating low probability events Rubinstein (1997), and later adapted to combinatorial optimization
problems Rubinstein (2001). Turns out that when CE is applied with discrete sampling distributions
the likelihood-ratio term cancels out, and the construction is equivalent to maximizing the likelihood
of the examples whose objective values belong to the highest ρ percentile De Boer et al. (2005). Thus,
in this case CE’s update step is equivalent to maximizing the surrogate objective ŵCE described
in section 3.1. As discussed in section 3.1, ŵCE has two major shortcomings, and these lead us to
suggest a different surrogate objective which makes the basis for Cakewalk. In addition to these
differences, Cakewalk is an online algorithm whereas CE requires drawing a large sample in each
iteration so as to estimate the CDF. Our construction enables us to rely on bounded gradient updates
that facilitate online estimation of the CDF, and therefore Cakewalk’s iterations are considerably less
computationally expensive than those of CE. The next family of algorithms to which our method
is related to are policy gradient methods. The research on these was initiated by Williams with
REINFORCE Williams (1988), an algorithm which we consider as the prototype to Cakewalk, and
which provides Cakewalk with convergence guarantees. Most of the work on policy gradient methods
derives from REINFORCE, essentially discussing how to rescale the objective in various scenarios.
For example, actor critic methods Sutton & Barto (2017) use estimates µ̂ of E (Y) that are produced
with some model of the objective, and can be used to make y − µ̂ zero mean. As these methods
rely on a particular model of the objective, they are inherently problem specific. Of these methods,
probably the natural actor-critic algorithm Peters & Schaal (2008) better fits Cakewalk’s general
purpose nature. This algorithm rescales the estimated gradient by multiplying it by the inverse of
the Fisher information matrix. As this requires large sample to accurately estimate both the gradient,
and of the Fisher information matrix, the natural actor-critic is considerably more computationally
expensive than online algorithms such as Cakewalk or REINFORCE. The third family of algorithms
to which our method is related are multi-arm bandit algorithms. In the bandit setting, a learner is
faced with a sequential decision problem, where in each round an arm is chosen, and each arm is
associated with some non-deterministic loss. Initially suggested by Thompson Thompson (1933), this
setting has been explored extensively with the notable successes of the UCB algorithm Auer (2002);
Auer et al. (2002a) for cases where the losses are stochastic, and the Exp3 Auer et al. (1995; 2002b)
for when they can even be determined by an adversary. Over the years these have become a basis for
a wide variety of algorithms Bubeck et al. (2012) for various settings which that even extend to cases
that involve high dimensional structured arms Awerbuch & Kleinberg (2004); McMahan & Blum

5

Under review as a conference paper at ICLR 2019

Table 1: Local optimality, Hamming neighbourhood, higher is better.1

Exp3 REINF REINFB REINFZ OCE0.01 OCE0.1 CW F̂ CW ŵ

SGA 0.000∗ 0.001∗ 0.001∗ 0.097 0.001∗ 0.000∗ 0.002∗ 0.042
AdaGrad 0.000∗ 0.000∗ 0.352∗ 0.427∗ 0.077∗ 0.691∗ 0.164∗ 0.835
Adam 0.000∗ 0.000∗ 0.525∗ 0.616∗ 0.106∗ 0.353∗ 0.184∗ 0.753

Table 2: Local optimality, inclusion maximality, higher is better.

Exp3 REINF REINFB REINFZ OCE0.01 OCE0.1 CW F̂ CW ŵ

SGA 0.000 0.000 0.000 0.138 0.000 0.000 0.000 0.037
AdaGrad 0.000∗ 0.000∗ 0.637∗ 0.688∗ 0.063∗ 0.875 0.175∗ 0.912
Adam 0.000∗ 0.000∗ 0.662∗ 0.787 0.100∗ 0.412∗ 0.212∗ 0.887

(2004); Cesa-Bianchi & Lugosi (2012). The key difference between the bandit and the optimization
setting is that the losses associated with each of the arms are non-deterministic, and thus in the bandit
setting the main challenge is to balance estimating the statistics associated with each of the arms, with
exploiting the information gathered thus far. In the optimization setting however, the goal is simply
to find the best deterministic solution using the least number of steps. Thus, in spite of the apparent
similarity, it is this fundamental difference that separates the optimization from bandit settings.

5 SAMPLING DISTRIBUTION

Before we specify a particular distribution, we wish to emphasize that the Cakewalk update rule
isn’t tied to any particular sampling distribution. The distribution we specify next is only used as an
example, and as a basis for the experiments we report later. Following Rubinstein’s construction, we
use a simple distribution that factorizes into a sequence of independent distributions, each defined
over a different dimension. In this manner, the number of parameters required to represent Pθ (x)
grows only linearly with MN , instead of the exponential number of parameters that is required to
represent the full joint distribution. Formally, each xj is drawn independently according to a softmax

distribution Pθ (xj = i) = eθi.j∑
k∈[M] e

θk,j
where i ∈ [M], and therefore Pθ (x) =

∏
j∈[N]

e
θxj,j∑

k∈[M] e
θk,j

.

Next, we describe∇θ logPθ (x) in terms of partial derivatives, ∂ log Pθ(x)
∂θi,j

= I [xj = i]−Pθ (xj = i).

Note that since ‖∇θ logPθ (x)‖ is bounded, we can estimate F̂ in an online manner.

6 STUDYING LOCAL OPTIMALITY USING CLIQUE FINDING

In this section, we set the grounds for investigating whether algorithms that only rely on function
evaluations can recover locally optimal solutions. We emphasize that our goal is to investigate
this question, and not compete with algorithms that rely on some neighborhood function for their
operation, and which search the input space directly. We study this question on a NP-hard problem
instead of problem for which we can find the global optimum in polynomial time, as it important
to verify that such methods can recover non-trivial optima in challenging scenarios. We focus on
the problem of finding locally maximal cliques, as the notion of inclusion maximal cliques naturally
entails what neighborhood function should be used to judge this property. Formally, a graph G is a
pair (V,E) where V = [N] is a set of vertices, and E ⊆ V × V is a set of edges. G is undirected if
for every (i, j) ∈ E it follows that (j, i) ∈ E. A clique in an undirected graph is a subset of vertices
U ⊆ V such that each pair of which is connected by an edge. An inclusion maximal clique U is such
that there is no other v ∈ V \ U for which U ∪ {v} is also a clique.

Next, we design an objective that could inform algorithms that only rely on function evaluations how
densely connected is some subgraph, and which favors larger subgraphs. We refer to this function as

1Out performance by CW ŵ in a statistical significant is denoted by ∗. This applies to all tables.

6

Under review as a conference paper at ICLR 2019

Table 3: Best-sample to total-samples ratio, lower is better.

Exp3 REINF REINFB REINFZ OCE0.01 OCE0.1 CW F̂ CW ŵ

SGA - - 0.654 0.907 0.874 0.945 0.939 0.927
AdaGrad - - 0.821∗ 0.821∗ 0.966∗ 0.820∗ 0.926∗ 0.657
Adam - - 0.743∗ 0.731∗ 0.835∗ 0.697∗ 0.741∗ 0.619

Table 4: Largest-returned-clique to largest-known-clique ratio, higher is better.

Exp3 REINF REINFB REINFZ OCE0.01 OCE0.1 CW F̂ CW ŵ

SGA 0.000 0.000 0.000 0.135 0.000 0.000 0.000 0.038
AdaGrad 0.000∗ 0.000∗ 0.538∗ 0.567∗ 0.062∗ 0.738 0.161∗ 0.756
Adam 0.000∗ 0.000∗ 0.577 0.657 0.091∗ 0.364∗ 0.190∗ 0.737

the soft-clique-size function, and denote it by fSCS . For our purposes, we say the space X = {0, 1}N
correspond to strings which determine membership in some subgraph U . Let x ∈ X , then for each
vertex j ∈ V , we say that j ∈ U if and only if xj = 1, and accordingly we denote such subgraphs
by Ux. If some Ux is a clique, for every i, j ∈ Ux, i 6= j it follows that (i, j) ∈ E, and therefore∑
i,j∈Ux,i6=j

I [(i, j) ∈ E] = |Ux| (|Ux| − 1). As a consequence, dividing by the RHS produces a

subgraph density term. Next, we add a parameter κ ∈ [0, 1] that rewards larger subgraphs, and which
could indicate to an algorithm it should prefer larger subgraph over smaller ones. To achieve this,
we change aforementioned denominator to |Ux| (|Ux| − 1 + κ). Lastly, to avoid division by zero for
cases |Ux| < 2, we can wrap the denominator with max (·, 1). Altogether,

fSCS (x, G, κ) =

∑
i,j∈Ux,i6=j

I [(i, j) ∈ E]

max (|Ux| (|Ux| − 1 + κ) , 1)

To see why higher κ can reward larger cliques we focus on the case that |Ux| ≥ 2, and observe that
for Ux which is clique, when κ = 0, fSCS (x, G, 0) = 1. However, when κ = 1, fSCS (x, G, 1) =
|Ux|−1
|Ux| , and thus, the larger Ux is, the closer this ratio is to 1. In this manner, increasing κ gives larger

subgraphs a ’boost’ compared with smaller one, though it could be that some subgraph which isn’t
a clique will receive a higher value than some smaller subgraph which is a clique (only for κ = 0
we get that fSCS (x, G, 0) = 1 necessarily means that Ux is clique). Empirically, we see that the
algorithms we’ve tested aren’t very sensitive to the value of κ.

7 EXPERIMENTAL RESULTS

As a benchmark for clique finding, we used 80 undirected graphs that were published as part of the
second DIMACS challenge Johnson & Trick (1996). Each graph was generated by a random generator
that specializes in a particular graph type that conceals cliques in a different manner. The graphs
contain up to 4000 nodes, and are varied both in their number of nodes and in their edge density. We
tested each method on all 80 graphs, letting it maximize the soft-clique-size function using various
values of κ. To determine if a clique is inclusion maximal, since a-priori we don’t know which κ will
lead to such clique, we’ve executed each method using each of the values 0.0, 0.1, . . . , 1.0 as κ. In
each execution, we’ve executed a method for 100 |V | samples (hence runtime is fixed per graph), and
at the execution’s end, we recorded both the best solution along with its objective value, as well as
the sample number in which that solution was found.

In terms of the methods tested, following the discussion on related work, we experimented with the
CE method, three versions of REINFORCE, and of the bandit algorithms we’ve used Exp3. As we
focus on online algorithms, for CE, we used the online version that we derived in this work, using two
threshold values suggested by Rubinstein, ρ = 0.1 and ρ = 0.01, and refer to these as OCE0.1 and
OCE0.01, with O standing for online. Next, we’ve experimented with three versions of REINFORCE.
First is the vanilla version, second is a version where the mean µ̂ is subtracted from y as a baseline,

7

Under review as a conference paper at ICLR 2019

and a third uses the objective’s estimated z-score y−µ̂
σ̂ . We refer to these by REINF, REINFB , and

REINFZ . For Cakewalk, we used both the unscaled empirical CDF F̂ , and its scaled counterpart
ŵ, denoting these as CW F̂ and CW ŵ. Note however that the former is only used for comparisons,
and that we identify Cakewalk with the latter. For estimating µ̂, σ̂ and F̂ , we’ve used the last 100
objective values, and thus, both REINFB , and REINFZ make for important comparison as these only
transform the objective values, but do not fix its distribution as CE and Cakewalk do. For gradient
update methods, we’ve used vanilla stochastic gradient ascent (SGA henceforth), AdaGrad, and the
Adam updates. The latter two methods are considered scale invariant, and thus could help Exp3,
REINF, and REINFB handle changes in the objective’s scale. Altogether, we’ve tested 8 optimization
methods, 3 update steps, on 80 graphs, and 11 values of κ, leading to a total of 21120 separate
executions. We specify the complete experimental details in the appendix section A.

We analyzed 4 performance measures for each of the 8 optimizers, and the 3 gradient update types,
and accordingly report results in four 3× 8 tables. In the following, we refer to each combination
of an optimizer and gradient update as a method. First, we examined whether a locally optimal
solution was found. To test for local optimality for the soft-clique-size, given a result x in some
graph, we compared it to every other x′ for that graph whose Hamming distance from x is 1, and
checked that no x′s achieved higher soft-clique-size. We report average local optimality in such
Hamming neighborhoods in table 1. Then, to test inclusion maximality of the returned solutions, since
the soft-clique-size doesn’t guarantee convergence to cliques, for every graph, we tested whether
a method returned at least one inclusion maximal clique when applied with some κ. We report
average inclusion maximality in table 2. Next, since some methods find their best solution earlier than
others, to analyze the sampling efficiency of each method, we calculated the ratio of the best sample
number and the total number of samples used in that execution. Since this comparison only makes
sense when controlling for the quality of the solution, we excluded REINF and Exp3 from it as they
didn’t return locally optimal solutions. We report average best-sample to total-samples ratio in table
3. To ensure returned solutions aren’t trivial (say cliques of size 2), for each graph, we compared
the largest inclusion maximal clique found by that method, and compared it to the best known
solution for that graph, using results from Nguyen (2017). We report average largest-found-clique to
largest-known-clique ratios in table 4. Lastly, we performed multiple hypothesis tests to compare
every optimizer to CW ŵ in all the experimental conditions using one sided sign test Gibbons &
Chakraborti (2011), and to control the false discovery rate Wasserman (2013), we determined the
significance threshold at a level of 10−2 using the Benjamini-Hochberg method Wasserman (2013).
The best optimizer in each table is marked using bold fonts.

8 DISCUSSION AND CONCLUSIONS

The results in tables 1 and 2 clearly support our main proposition that in the considered setting, a
surrogate objective whose distribution is fixed and predetermined significantly improves the rate
in which locally optimal solutions are recovered. Both CW ŵ and OCE0.1 rely on such surrogates,
and both outperform Exp3 and all versions of REINFORCE which do not employ such surrogates.
Interestingly, it appears that having a surrogate whose distribution is fixed is more effective than
to normalize the objective values as the previous comparison also includes REINFZ . Nonetheless,
not all distributions are as effective (OCE0.01 and CW F̂ didn’t perform as well), and of the ones
that we have tested, uniform on [−1, 1] seems to be favorable. CW ŵ clearly outperforms OCE0.1 in
table 1, and the latter only comes close in the more permissive comparison which selects the best
result out of 11 different executions (different values of κ) as reported in table 2. In terms of sample
efficiency, the results in table 3 show that even though OCE0.1 can recover locally optimal solutions,
it is not as efficient as CW ŵ which finds the best solution considerably faster. When considering the
various gradient updates, it appears that CW ŵ with AdaGrad produces the best combination as it
outperforms all others methods in almost all measures (CW ŵ with Adam converges slightly faster,
though at the cost of worse optimality rates). Lastly, the comparisons to the best known results in
table 4 show that the recovered solutions are far from trivial, and that Cakewalk might even approach
the performance of problem specific algorithms which have access to a complete specification of the
problem. Overall, we find these results are a strong indication that Cakewalk is a highly effective
optimization method, and we believe that future research will prove its effectiveness in other domains
such as continuous non-convex optimization, and in reinforcement learning problems.

8

Under review as a conference paper at ICLR 2019

REFERENCES

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. Gambling in a rigged
casino: The adversarial multi-armed bandit problem. In Foundations of Computer Science, 1995.
Proceedings., 36th Annual Symposium on, pp. 322–331. IEEE, 1995.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256, 2002a.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed
bandit problem. SIAM journal on computing, 32(1):48–77, 2002b.

Baruch Awerbuch and Robert D Kleinberg. Adaptive routing with end-to-end feedback: Distributed
learning and geometric approaches. In Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing, pp. 45–53. ACM, 2004.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends R© in Machine Learning, 5(1):1–122, 2012.

Nicolo Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. Journal of Computer and System
Sciences, 78(5):1404–1422, 2012.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134(1):19–67, 2005.

John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

Jean Dickinson Gibbons and Subhabrata Chakraborti. Nonparametric statistical inference. In
International encyclopedia of statistical science, pp. 977–979. Springer, 2011.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, T Hastie, J Friedman, and R Tibshirani. The
elements of statistical learning, volume 2. Springer, 2009.

David S Johnson and Michael A Trick. Cliques, coloring, and satisfiability: second DIMACS
implementation challenge, October 11-13, 1993, volume 26. American Mathematical Soc., 1996.

Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction to cluster analysis,
volume 344. John Wiley & Sons, 2009.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

James MacQueen et al. Some methods for classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1,
pp. 281–297. Oakland, CA, USA, 1967.

H Brendan McMahan and Avrim Blum. Online geometric optimization in the bandit setting against an
adaptive adversary. In International Conference on Computational Learning Theory, pp. 109–123.
Springer, 2004.

ThanhVu H. Nguyen. CLIQUE Benchmark Instances, 2017. Last update: 2017-02-01, Accessed:
2018-05-16.

John William Paisley, David M. Blei, and Michael I. Jordan. Variational bayesian inference with
stochastic search. In Proceedings of the 29th International Conference on Machine Learning,
ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012, 2012.

9

http://cse.unl.edu/~tnguyen/npbenchmarks/clique.html

Under review as a conference paper at ICLR 2019

Christos H Papadimitriou. Computational complexity. John Wiley and Sons Ltd., 2003.

Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.

S.M. Ross. Simulation. Academic Press, 2013. ISBN 9780124158252.

Reuven Y Rubinstein. Optimization of computer simulation models with rare events. European
Journal of Operational Research, 99(1):89–112, 1997.

Reuven Y Rubinstein. Combinatorial optimization, cross-entropy, ants and rare events. Stochastic
optimization: algorithms and applications, 54:303–363, 2001.

Richard S Sutton and Andrew G Barto. Reinforcement learning an introduction–second edition, in
progress (draft), 2017.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Larry Wasserman. All of statistics: a concise course in statistical inference. Springer Science &
Business Media, 2013.

John Myles White. Julia package for loading many of the data sets available in R, 2017. Last update:
2018-04-15, Accessed: 2018-05-15.

Ronald J Williams. On the use of backpropagation in associative reinforcement learning. In
Proceedings of the IEEE International Conference on Neural Networks, volume 1, pp. 263–270.
San Diego, CA., 1988.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

A EXPERIMENTAL SETUP DETAILS

As a benchmark, we used 80 undirected graphs that were published as part of the second DIMACS
challenge (Johnson & Trick, 1996) which specifically focused on combinatorial optimization, and
included instances of the clique problem. Over the years, this dataset has become a standard
benchmark for clique finding algorithms, and results on it are regularly published.

In terms of the methods we use for comparison, of the bandits family of algorithms, we considered
Exp3 as more suitable than UCB due to the multi-dimensionality of the problem. For example, adding
an isolated vertex v to a set of vertices U who is a clique will damage the objective. Due to such
cases, we used Exp3 instead of UCB. We applied Exp3 to each of the N elements independently.
Note that the assumption of bounded losses/gains that the Exp3 algorithm is dependent upon is met
by the soft-clique-size function.

For the gradient updates, we used SGA, AdaGrad, and Adam. We note that AdaGrad is particularly
suited to our setting as applying it on indicator data is one of its classical use cases (I [xj = i] can be
considered as our data). Adam on the other hand has proven as effective for training neural networks
in a wide variety of problems, and nowadays is probably the mostly commonly used gradient update.
We decided to experiment with Exp3 in conjunction with AdaGrad and Adam even though this
revokes the theoretical guarantees of Exp3 for completeness purposes. We applied AdaGrad with
δ = 10−6, and Adam with β1 = 0.9, β2 = 0.999, ε = 10−6. We used a fixed learning rate of 0.01
in all the executions. All the algorithms were implemented in Julia (Bezanson et al., 2017) by the
authors.

B APPLICATION TO K-MEDOIDS

As mentioned in the introduction, clustering is a classical problem in which practitioners regularly
rely on optimization methods that return locally optimal solutions. For that matter, in this section
we study how to apply Cakewalk to the k-medoids (Hastie et al., 2009) problem, the combinatorial
counterpart of k-means. As in the k-means, we’re given a set of m data points from some input space,

10

https://github.com/johnmyleswhite/RDatasets.jl

Under review as a conference paper at ICLR 2019

and our goal is to divide these into k clusters in a manner that would minimize their distances to
one of k representatives. In k-means, each representative can be any point in the input space, and in
k-medoids, the representatives are a subset of original points that we’re given. Since in k-medoids the
representatives are known in advance, it is enough to consider as input a distance matrix D ∈ Rm×m+
where Di,j is the distance between point i and j, and R+ is the set of non-negative reals. Thus, one
can think of the problem as selecting k representatives from the m data points, and in the general case
where we allow points to represent more than one cluster, the solution space becomes [m]

k. Given a
set of representatives x ∈ [m]

k, each point i is assigned to the representative xj which minimizes the
distance Di,xj to it. In this formulation, the k-medoids optimization problem can be stated as follows,

minimize
x∈[m]k

m∑
i=1

[
min
j∈[k]

{
Di,xj

}]
Since the problem is combinatorial, going over all the possible solutions quickly becomes intractable,
and greedy algorithms are usually used to approach the problem. Of these, probably the two
most commonly used algorithms are the Voronoi iteration (Hastie et al., 2009), and the more
computationally expensive, Partitioning Around Medoids (PAM henceforth) (Kaufman & Rousseeuw,
2009). In both methods, first some initial set of representatives is determined, and the appropriate
cluster assignments are determined. In the former method, in each iteration, we seek to replace each
representative with some other cluster member, and in the latter we seek to replace each representative
with any non-representative point. After the new representatives are determined, cluster assignments
are determined, and the process is then repeated as long as the objective is improved. In spite of the
obvious computational benefits of the Voronoi iteration, PAM is probably more commonly used as it
is known to achieve lower objective values.

Since both methods are greedy, the objective to which they converge is determined by how they are
initialized (the algorithms are deterministic). Thus, we can try to find the a good initialization for
such greedy algorithms with some optimization algorithm. Since Cakewalk only relies on function
evaluations, it doesn’t matter if we let it optimize some function g : X → R, or a composition
g ◦ f where f is some deterministic transformation X → X of inputs. As long as some input x is
associated with some fixed objective value y = g (f (x)), any of the methods discussed earlier will
be able to optimize such an objective. The only detail that requires attention is that now instead of
returning the best x∗ associated with the optimal y∗ = g (f (x∗)), we’ll need to return f (x∗). In
terms of implementation, we can do this by either keeping f (x∗) instead of x∗, or by applying f
to the x∗ which is returned by Cakewalk. In this manner, optimization algorithms that only rely on
function evaluations, and greedy algorithms can come together to produce powerful algorithms that
outperform the components that make them up.

B.1 EXPERIMENTAL RESULTS

To test the effectivity of each of the aforementioned optimizers on the k-medoids problem we’ve setup
the following experiment. Using datasets that are publicly available on White (2017), we collected
38 datasets that had between 500 and 1000 data points, and which had numerical attributes. In order
to transform these to a valid input for a k-medoid algorithm, for each dataset, we extracted all the
numerical attributes, and used them as a numerical vector that represents some data point. Then,
we calculated Mahalanobis distance (Bishop, 2006) between each pair of points, which resulted
in a distance matrix for that dataset. For the Mahalanobis distances, we used diagonal covariance
matrices. As this point, we were able to run each of the aforementioned algorithms on these datasets.
Specifically, we used both the Voronoi iteration and PAM algorithms, as well as vanilla Cakewalk. In
order to see if we can combine Cakewalk with a greedy method to produce a combined algorithm
that is more powerful, we also used Cakewalk with the Voronoi iteration using the setup mentioned
earlier. We decided to use the Voronoi iteration instead of PAM, as in our experiments the former
was considerably more efficient. We used Cakewalk with AdaGrad (Duchi et al., 2011) using the
same hyper-parameters as specified in section A, except for the learning rate η, which was set to
0.02 instead of 0.01 as we’ve seen that it led to faster convergence than the latter. We used these
hyper-parameters both when applying Cakewalk alone, and when applying the Cakewalk-Voronoi
combination. As a convergence criterion for Cakewalk, we use two exponentially running averages
of the objective values, and determined convergence has occurred when their absolute difference ratio
was smaller than 0.01. Each running average was produced using a time constant that was calculated

11

Under review as a conference paper at ICLR 2019

using the following formula 1− exp
(

ln(a)
b

)
with a always being 0.01, and b being a parameter that

is adjusted to the size of the problem. Thus, for each dataset with m data points and k clusters, we’ve
set b = max (mk, 1000) for the short running average, and 2b for the long running average. We used
the same converge criterion for Cakewalk+Voronoi. Altogether, this provided us with 4 clustering
algorithms. All methods we’re implemented in Julia by the authors.

As a benchmark, we executed each algorithm on all datasets with k = 10, and recorded the smallest
objective value that was returned, as well as the number of objective function evaluations that were
performed. Since the Voronoi iteration does not fully reevaluate the objective completely after every
step (only within each cluster), we didn’t record the latter measurement for it. Nonetheless, Cakewalk,
PAM, and Cakewalk+Voronoi fully evaluate the objective in each step, and therefore can be compared
in terms of their total number of function evaluations.

In the analysis our goal was to produce a ranking of the tested algorithms in terms of best objective
values that were found. Since it could be some method achieved a better objective by performing
more function evaluations, we also ranked the different algorithm in terms of their total number of
function evaluations. Thus, in the following, we refer either to the best objective value, or to the total
number of function evaluations as a measurement. To determine the best to worst order of each of the
4 algorithms, we first calculated the ratio between the measurement achieved on some dataset, and
the minimal value achieved by any of the algorithms on this dataset. This is important so as to make
the ranking invariant to the specifics of each dataset by fixing their scale. Then, we calculated the
median of the scaled measurements for each of the four algorithms. This produced 4 values for the
objective values, and 3 for the function evaluations. Then, we sorted these to determine the best to
worst order. Next, to see if the differences between any two algorithms in some measurement were
statistically significant, we validated their order using a one sided sign test (Gibbons & Chakraborti,
2011), applying it directly to the original measurements (unscaled). This procedure produced 3
p-values for the objective values, and two for the function evaluations. Next, to control the false
discovery rate (Wasserman, 2013), we determined the significance threshold at a level of 10−2 using
the Benjamini-Hochberg method (Wasserman, 2013). Following this analysis, the best to worst
algorithm in terms of objective value (smallest to largest) was as follows,

Cakewalk+Voronoi
∗
< PAM

∗
< Cakewalk

∗
< Voronoi

where A < B means that A achieved smaller value than B, and ∗ means that the difference between
the two is statistically significant. Next, the best to worst algorithms algorithm in terms of the number
of objective function evaluation (smallest to largest, excluding the Voronoi iteration) is as follows,

Cakewalk+Voronoi
∗
< PAM < Cakewalk

B.2 CONCLUSIONS

Following the analysis presented in section B.1, we conclude that combining Cakewalk with a greedy
algorithm produces a clustering method that outperforms the two most commonly used algorithms for
the k-medoids problem. Notably, here we combined Cakewalk with the Voronoi iteration, the weaker
of the two in terms of performance, and that already produced a method that outperforms PAM.
This suggests that probably combining Cakewalk with PAM can produce an even better clustering
method, though we leave this to future research. Furthermore, it seems that applying Cakewalk
without any greedy method already outperforms the Voronoi iteration, showing that vanilla Cakewalk
can outperform some greedy algorithms as these might be limited by the neighborhood function
they rely on, a limitation that doesn’t apply to a sampling algorithm such as Cakewalk. In terms of
function evaluations, it appears that PAM and Cakewalk perform about the same number of function
evaluations (the difference is not statistically significant), and both perform more evaluations than
the combination of Cakewalk+Voronoi. Taken together, these results not only show that combining
Cakewalk with a greedy method can produce an optimizer that outperforms the components that
make it up, it also leads to a combined algorithm that converges faster.

12

	Introduction
	Background
	Cakewalk Method
	Surrogate Objectives

	Related Work
	Sampling Distribution
	Studying Local Optimality Using Clique Finding
	Experimental Results
	Discussion and Conclusions
	Experimental Setup Details
	Application to K-Medoids
	Experimental Results
	Conclusions

