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Abstract
We present a novel convolutional neural network architecture designed for dense segmentation in a
subset of the dimensions of the input data. The architecture takes an N-dimensional image as input,
and produces a label for every pixel in M output dimensions, where 0 < M < N. Large context
is incorporated by an encoder-decoder structure, while funneling shortcut subnetworks provide
precise localization. We demonstrate applicability of the architecture on two problems in retinal
optical coherence tomography: segmentation of geographic atrophy and segmentation of retinal
layers. Performance is compared against two baseline methods, that leave out either the encoder-
decoder structure or the shortcut subnetworks. For segmentation of geographic atrophy, an average
Dice score of 0.49±0.21 was obtained, compared to 0.46±0.22 and 0.28±0.19 for the baseline
methods, respectively. For the layer-segmentation task, the proposed architecture achieved a mean
absolute error of 1.305±0.547 pixels compared to 1.967±0.841 and 2.166±0.886 for the baseline
methods.
Keywords: Segmentation, Retina, OCT

1. Introduction

Many applications of deep convolutional neural networks (CNNs) in medical imaging can be for-
mulated as either a classification or a segmentation problem (Litjens et al., 2017). Classification
problems can be defined as a mapping from an input of N spatial dimensions (usually N is 2 or 3,
for 2D or 3D images) to an output without any spatial dimension, while for segmentation problems
the N-dimensional input is mapped to an N-dimensional output. However, some medical applica-
tions require the projection of N-dimensional images to M-dimensional output, where 0 < M < N.
Problems that can be formulated as extracting a 2D manifold from a 3D volume include the detec-
tion of boundary surfaces or fissures, such as separating the cerebral hemispheres in MRI (Liang
et al., 2007), segmenting pulmonary fissures in CT (Wang et al., 2006), or delineating the diaphragm
in CT (Rangayyan et al., 2008). Similarly, a 1D line can be extracted from a 2D image (e.g. retinal
layers (Fang et al., 2017)). Direct application of well-known classification or segmentation network
architectures to this class of problems comes with limitations. Classification networks do not main-
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tain any spatial information in their output values, so adapting them to produce a label for each pixel
in the desired output dimensions is not feasible in practice. Segmentation networks, on the other
hand, produce a dense N-dimensional output for all pixels, but there is no natural way to enforce
output in just M-dimensions. This is problematic in case we do not have a label for all pixels.

In this paper we present a novel CNN architecture that produces dense predictions only in the
desired output dimensions, maintaining spatial correlation. To the best of our knowledge, this is
the first CNN architecture that is specifically designed for this task. Large context from N input
dimensions is incorporated by an encoding network. A selective decoding is applied only in the
required M output dimensions.

The encoder-decoder paradigm has been applied successfully to many segmentation problems
in medical imaging, where U-Net (Ronneberger et al., 2015) (or a 3D variation (Çiçek et al., 2016))
is especially popular. In this network several layers of downsampling are applied to the input im-
age in a contracting or encoding path. Subsequently, the original resolution is reconstructed in an
expanding or decoding path that is connected via shortcut connections to the feature maps of the cor-
responding resolution in the contracting path. These shortcut connections are important for precise
localization (Drozdzal et al., 2016).

In our network architecture, direct shortcut connections between the encoding and decoding
blocks are not possible, because of a mismatch in the dimensions of the feature maps. This issue is
resolved by adding funneling shortcut subnetworks between the encoder and decoder that contract
only in the dimensions that are spliced out.

Although the proposed general formulation of the network architecture is applicable to any N
and M (0 < M < N), we will focus in this paper on the case where N = 2 and M = 1. More
specifically, we focus on application to retinal optical coherence tomography (OCT), where we
predict a label for every vertical column (A-scan) in each slice of the OCT volume (B-scan). We
demonstrate its applicability to two problems: segmentation of retinal layers, and segmentation of
geographic atrophy (GA), and compare performance against two baseline models.

2. Background

The retina is a layered structure in the back of the eye that converts light into a neural response
that provides vision. This layered structure can be visualized non-invasively using OCT, an imaging
technique based on low coherence interferometry. OCT is commonly used to generate stacks of
cross-sectional 2D images (B-scans), where every column in the image (an A-scan) represents a
single acquisition entity. Often, the distance between slices is much larger than the distance between
A-scans, so the acquired volume is highly anisotropic.

The proposed network architecture is particularly suitable for application to OCT, due to the
nature of the image acquisition and the horizontally-layered structure of the retina. The pixel inten-
sities within A-scans are strongly correlated, and the presence or absence of certain features can be
identified for each of them, without specifying their location within the A-scan. In order to accu-
rately classify each A-scan, contextual information from surrounding A-scans is usually required.
Some examples in this category include segmentation of atrophic areas (Hu et al., 2013; Niu et al.,
2016), localization of anatomical landmarks such as the fovea (Liefers et al., 2017) or segmentation
of vessels (Tan et al., 2018). Another application typical for retinal OCT is the segmentation of
retinal layers (Fang et al., 2017; Kugelman et al., 2018). These layers are horizontally stacked, so
the boundary between them can be encoded as the vertical pixel index of the transition between two
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layers. Hence, these problems can all be formulated as taking a 2D image as input and generating a
label or a regression output for each column in the image, yielding a 1D output.

The two applications we focus on in this paper are segmentation of GA and retinal layers.
GA occurs as an end stage in age-related macular degeneration (AMD) and is characterized by
loss of retinal tissue and pigment. Next to absence of certain layers, this can be identified on
OCT as a hyper-reflective area below the retina (refered to as hypertransmission). Segmentation
of the individual layers of the retina allows to measure their thickness. Both applications can help
ophthalmologists to diagnose disease status and decide treatment options.

3. Method

3.1. Data

Data for the application of the proposed model to segmentation of GA was collected from the
Rotterdam Study (Hofman et al., 2007). This data set contains 55 OCT volumes acquired with a
Topcon system, each containing 128 B-scans of either 512×885 pixels or 512×650 pixels (width
× height). Manual annotations were made by four to five experienced graders in consensus using
a multimodal annotation workstation. The graders did not directly annotate the OCT volume, but
delineated the area of GA on 2D en-face retinal images (color fundus, and for some cases also
autofluorescence or infrared). Image registration of these en-face images to the OCT volume was
used to efficiently obtain a label (presence or absence of GA) for every A-scan in the volume. The
data was split in a training set of 25 volumes, a validation set of 10 volumes, and a test set of 20
volumes.

For the layer-segmentation problem we used the publicly-available data set (Farsiu et al., 2014),
containing annotations for three retinal layers: inner limiting membrane (ILM), retinal pigment
epithelium drusen complex (RPEDC) and Bruch’s membrane (BM). This data set contains OCT
volumes for 269 AMD patients and 115 normal subjects. It was split in a training set (159 AMD, 5
normal), a validation set (10 AMD, 10 normal) and a test set (100 AMD, 100 normal). OCT volumes
in this data set were acquired using a Bioptigen system, and contain 100 B-scans of 1000× 512
pixels each.

3.2. Network architecture

The proposed network architecture follows an encoder-decoder structure, providing a large contex-
tual window, with funneling subnetworks that provide local context. In this section we will focus
on the case where the model takes a 2-dimensional input, and produces a label or a regression out-
put for every vertical column in the image. This specific instance of the proposed generic network
architecture is visualized in Figure 1.

The proposed architecture applies 9 levels of downsampling, which effectively reduces the input
image from 512× 512 pixels to 1× 1 pixel in the deepest layer. This allows the model to capture
information from a large contextual window. Residual connections are used to facilitate effective
training of the deep network architecture (He et al., 2015; De Fauw et al., 2018).

Next to a path with 2×2 downsampling operations, separate downsampling paths are added to
the encoder path at every resolution. In these downsampling paths 2×1 (height × width) operations
are used, therefore only reducing the vertically resolution. These paths constitute the funneling
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Figure 1: Proposed network architecture for 2D images to 1D segmentation. The white squares
represent the size (log-scale) of the feature maps. Within each square, two convolu-
tions are applied in a residual manner. For visualization purposes, the feature maps with
width/height 1, have the same size as the feature maps with size 2. In the upsampling
path, the residual blocks have height 1, and the convolutional kernels are of size 1×3.

shortcut subnetworks that should provide the model with better localization abilities. Downsam-
pling is performed by either 2× 2 convolutions with stride 2× 2 or 2× 1 convolutions with stride
2×1.

At the bottom of the network, 2 residual blocks with 1× 1 convolutions are applied. The up-
sampling path consists of 1×2 upsampling operations, followed by 1×2 convolutions with stride
1×2. Before entering the first residual block, a 3×3 convolution with 32 filters is applied to match
the required number of features for the summation operation in the first residual block. After con-
catenating the feature maps of the upsampling path and the shortcut networks, a 1×1 convolution
is applied to match the required number of features for the next residual block. The kernel size of
the convolutions in the downsampling path is 3×3; at the bottom of the network, 1×1; and in the
upsampling path, 1×3.

Although the height of the input images is fixed by the network architecture, their width can be
any multiple of 512. This is exploited in the application to layer segmentation, where we apply the
same architecture to images that are 1024 pixels wide.

3.3. Experimental design

We compare our proposed network architecture to two baseline models, that are constructed by
leaving out either the encoder-decoder structure, or the shortcut subnetworks.

The first baseline model, referred to as base 1, applies downsampling only in the dimensions
that will be spliced out, until the feature maps are sufficiently compressed and can be passed to a
classification layer. This architecture corresponds to part of the proposed architecture highlighted in
the top yellow row in Figure 1. For this model, before the output layer, we also added a classification
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part that consists of two 1×1 residual blocks with 1024 filters each, in order to mimic classification
networks more closely.

The second baseline model, referred to as base 2, leaves out the shortcut subnetworks. This
architecture can be created by following the green and red arrows in Figure 1, ignoring the blue and
orange arrows.

3.4. Training procedure

3.4.1. GA SEGMENTATION

Images were cropped to 512× 512 pixels. The vertical position was centered on the row in the
original image with the highest cumulative pixel intensity, to ensure the retina was visible in the
output image. The images were augmented using random horizontal and vertical translations and
horizontal flipping. Additionally, pixel intensities were modified using gamma corrections. A sig-
moid function was applied to the output image of 512×1 pixels, to obtain a normalized binary label
for every A-scan. Mean log loss (binary cross-entropy) was used a loss function. The models were
trained for 2×104 iterations using the Adam optimizer, with a learning rate of 1×10−5, divided by
2 after 104 iterations, on batches of 4 images.

3.4.2. LAYER SEGMENTATION

Input images were padded to 1024× 512 pixels. Random horizontal and vertical translation, and
random horizontal flips were used as data augmentation. The output layer has three channels, each
producing an image of size 1024× 1, representing the normalized pixel index of the three layers
(ILM, RPEDC, BM). An output of 0 for a specific layer in an A-scan is interpreted as the layer
being completely at the top of the image (pixel 0), while an output of 1 is interpreted as the layer
being completely at the bottom (pixel 512). No non-linearity was applied to the output layer.

Mean squared error was used as loss function. However, to calculate the loss for a given layer,
we only took into account those A-scans where the squared error was larger than the mean squared
error of all A-scans for that layer. This modification was made because the contribution to the loss
of many small errors may dominate some of the larger, more localized errors. Additionally, images
were more frequently sampled for training if their loss was larger than the median loss of the last
100 iterations. The model was trained for 4×105 iterations, one image per batch, using the Adam
optimizer and a learning rate of 2×10−5, divided by 2 every 105 iterations.

4. Results

On the GA data set we calculated a single Dice score per OCT-volume. The proposed model ob-
tained a mean (± std) score of 0.49±0.21, compared to 0.46±0.22 for base 1 and 0.28±0.19 for
base 2. The proposed model performed significantly better than the two baseline models (p < 0.01,
paired t-test). Examples of the obtained GA segmentations per B-scan can be found in Figure 2. A
selected set of predictions for full volumes can be found in Figure 3.

On the layer-segmentation task, the proposed model obtained a mean absolute difference to the
reference standard (averaged over all layers) of 1.305± 0.547 pixels, compared to 1.967± 0.841
and 2.166±0.886 for base 1 and base 2, respectively. Table 1 summarizes the performance of the
models in more detail. An example with predictions for the different models on a single B-scan can
be found in Figure 4.
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Figure 2: Predictions for GA for 3 different B-scans. The graphs show the reference standard (gray
area), and predicted GA probabilities. The black line represents the proposed model; the
red line, base 1; and the green line, base 2.

Figure 3: Selection of predictions of GA area for full OCT-volumes. Each horizontal line in the im-
ages represents a B-scan. The left column represents the reference standard, the heatmaps
in the second to fourth column represent the probabilities generated by the proposed
model, base 1, and base 2, respectively. Numbers below the images are the Dice scores.
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Table 1: Results on the layer-segmentation task. Values represent mean absolute difference between
prediction and annotation in pixels.

Control AMD
ILM RPEDC BM ILM RPEDC BM Overall

Proposed 0.840 1.280 1.227 1.055 1.568 1.858 1.305
Base 1 1.031 1.507 2.246 1.200 2.267 3.553 1.967
Base 2 1.880 1.762 1.673 2.203 2.785 2.693 2.166

5. Discussion

We proposed a novel CNN architecture for dense segmentation in selected output dimensions. The
proposed architecture was validated on two applications in retinal OCT, where it achieved superior
performance compared to two baseline models on both tasks. We attribute this to the ability of the
proposed architecture to simultaneously make use of a large contextual window, and local context
through funneling shortcut connections. This was demonstrated on the layer-segmentation task,
where base 1 performed worse especially in localization of BM in AMD, for which a large contex-
tual window is required in presence of abnormalities. Base model 2 can make use of a large context,
but appears to be less accurate in general. This may be due to missing shortcut connections, which
hampers its ability to perform exact localization. This observation is illustrated by the example in
Figure 4. For the GA segmentation we observe similar results. For example, in the left image of
Figure 2, the misclassifications in the center of the image of base 1 may be due to lack of context,
while base 2 is unable to accurately delineate the borders of the atrophic region.

The Dice scores for the GA segmentation task are relatively low. This is partly due to the inher-
ent difficulty of the task, which may have led to inaccuracies in the reference standard. Moreover,
the actual GA area sometimes does not align perfectly with the GA that is visible in the B-scan due
to registration errors. This is demonstrated in Figure 2 in the center and right images, where the ref-
erence grading does not align well with the observed hypertransmissive region. Visually judging the
predictions of the proposed model in Figure 3, however, seems to indicate that even with relatively
low Dice scores, the predicted GA areas are plausible.

A limitation of this work is that the proposed general architecture for problems that require
mapping an N-dimensional input to an M-dimensional output, has only been validated for the 2D to
1D mapping of retinal OCT data. In future work, we hope to apply the proposed architecture also
for the 3D to 2D case. Although the anisotropic resolution of OCT volumes is a hurdle in direct
application of 3D convolutions, we do see potential applications of the proposed architecture for
isotropic images in OCT angiography. Here it could be used, for example, in the generation of 2D
images representing perfusion density in different vascular plexi from 3D volumetric data.

6. Conclusion

We demonstrated the applicability of a new CNN architecture to two problems in retinal OCT, where
its value was warranted by the unique properties of the retina (its horizontally-layered structure), and
the image acquisition of OCT (where each A-scan represents a column of information on a retinal
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Figure 4: Example result for the layer-segmentation task. Image A shows the reference standard,
which is only provided for the central part of the image. Images B, C and D represent
the proposed model, base 1, and base 2, respectively. The graphs on the right depict the
difference in pixels with the reference for this example for the ILM, RPEDC and BM, in
green, orange and blue, respectively.

surface). The proposed model consistently outperformed two baseline models, which indicates
that the combination of a large contextual window, provided by an encoder-decoder structure, and
accurate localization, provided by funneling shortcut subnetworks, is beneficial.
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