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Abstract. Grading for cancer, based upon the degree of cancer differentiation, 

plays a major role in describing the characteristics and behavior of the cancer and 

determining treatment plan for patients. The grade is determined by a subjective 

and qualitative assessment of tissues under microscope, which suffers from high 

inter- and intra-observer variability among pathologists. Digital pathology offers 

an alternative means to automate the procedure as well as to improve the accuracy 

and robustness of cancer grading. However, most of such methods tend to mimic 

or reproduce cancer grade determined by human experts. Herein, we propose a 

quantitative means of assessing and characterizing cancer via conditional gener-

ative adversarial networks. The proposed method is evaluated using tissue mi-

croarrays (TMA) of colorectal cancer. The results suggest that the proposed 

method holds a potential for quantifying cancer characteristics and improving 

cancer pathology. 
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1 Introduction 

In pathology, grading is a means of evaluating tumors based upon their appearance. A 

grade is given depending on how different the tumors from normal/benign tissues (i.e., 

differentiation). It is utilized to determine a patient’s prognosis and develop a treatment 

plan. However, pathologists manually assess the tissue under microscope and determine 

its grade, i.e., it is a subjective and qualitative process, limiting the speed and question-

ing on the reproducibility [1]. Moreover, it is well known that the current grading sys-

tem is sub-optimal, especially for prognosis [2] . Therefore, an objective and quantita-

tive method for assessing tumors beyond the current tumor grading scheme holds a 

great potential for improving cancer pathology and patient management. 

With the advent of digital pathology, numerous computerized tools, including deep 

learning, have been proposed to aid in pathologists and improve the current pathology 

[3]. A majority of such tools has been (successfully) applied to discriminative tasks, 

including cell/tissue classification and segmentation, where the ground truth labels are 

provided by pathologists. In other words, these tools, by and large, sought to mimic 
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pathologists and/or automate the histopathologic analysis. Although they could facili-

tate the rapid and robust decision-making and ease the burden of the pathologists, the 

limitation of the current histopathologic analysis remains the same. For instance, such 

tools cannot tell the difference between the tumors within the same grade. To further 

improve the current grading system and digital pathology tools, it is highly desirable to 

develop a method that is capable of learning the tissue or tumor characteristics and 

quantitatively measuring the similarity/dissimilarity to the normal/benign tissue (dif-

ferentiation) without explicit guidance of tumor grades, i.e., in an unsupervised fashion. 

A generative adversarial network (GAN) [4] is a type of deep learning approach that 

can generate or produce realistic outputs (here, tissue images). Recently, a conditional 

GAN (cGAN) [5], where the output is conditioned on an input, has gained much atten-

tion. For example, a cGAN was used to generate synthetic tissue images [6]. It was also 

used to conduct virtual H&E staining [7] as well as H&E-to-immunofluorescent stain 

translation [8]. The strength of a GAN/cGAN is its superior learning capability in an 

unsupervised manner; hence, the technique could be better suited for learning the latent 

characteristics of tissues or tumors. 

In this manuscript, we propose a cGAN-based method to learn and quantify the char-

acteristics of the tissue that are relevant to tumor differentiation. We construct a cGAN 

model (BenignGAN) using benign tissue images only. BenignGAN is utilized to gen-

erate tumor images of differing degree of differentiation. The less similar the tumor is 

to the benign (poorly-differentiated), the harder BenignGAN generates a realistic tumor 

image. The difference between the original and generated tumor images is quantita-

tively measured and compared to tumor differentiation. We evaluate the proposed 

method using tissue microarrays (TMA) of colorectal cancer. Our main contributions 

are summarized as follows: 1) We propose an alternative means of learning and quan-

tifying the tumor characteristics; 2) We build BenignGAN to learn the characteristics 

of the tissue of origin (here, benign); 3) Employing BenignGAN, the proposed method 

analyzes tumors in an unsupervised manner, and thus is not restricted to the current 

grading system. 
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Fig. 1. Overview of the proposed method. Benign tissue images are converted to edge maps and 

used to train a cGAN (BenignGAN). Given the edge map of tumor images of differing grades, 

BenignGAN is utilized to reconstruct the tumor images. The similarity between the reconstructed 

and original tumor images is measured and compared to tumor grades provided by pathologists. 

2 Methods 

The overview of the proposed method is illustrated in Fig. 1. Details of the method is 

described in the following sections. 

2.1 BenignGAN: Conditional Generative Adversarial Network 

A conditional generative adversarial network (cGAN) [5] consists of a generator and a 

discriminator. Given an input image, a generator G learns how to transform the input 

image to an output image. Following [9], we adopt U-Net [10] architecture to build the 

generator G. The role of a discriminator D is to distinguish the output images generated 

by the generator G from the original images. As described in PatchGAN [9], the dis-

criminator D is solely composed of convolutional layers. It outputs a patch, not a scalar. 

Each pixel in the patch has a value ranging from 0 to 1, representing how believable 

the corresponding section of the unknown image is.  

The overall objective function can be represented as: 

 𝐿𝑜𝑠𝑠 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝐺  𝑚𝑎𝑥𝐷  𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷)  +  λ 𝐿𝐿1(𝐺) (1) 

 LcGAN(𝐺, 𝐷) = 𝔼𝑥,𝑦[log(D(𝑥, 𝑦))] + 𝔼𝑥,𝑧[log(1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))]  (2) 

 𝐿𝐿1(𝐺) = 𝔼𝑥,𝑦,𝑧[‖𝑦 − 𝐺(𝑥, 𝑧)‖1]  (3) 

where LcGAN(𝐺, 𝐷) the conditional adversarial loss and 𝐿𝐿1(𝐺) is the L1 norm loss be-

tween the original image and the output image of the generator G. x, y and z denote the 

input image, output image and random noise vector, respectively. 

Given an input image x, the generator G reconstructs the original RGB image y. The 

random noise vector z is introduced in the form of dropout to prevent the generator G 

from directly mapping the input image x to the output image y. L1 norm loss is known 

to be helpful in generating less blurry output images. 

2.2 Preprocessing 

A cGAN generates an output image conditioned on an input image. Since a neural net-

work tends to focus on the surface statistics of the input [11], training the cGAN directly 

on the RGB images may cause the generator G to only memorize the direct mapping 

between the input and output and thus fail to learn the fundamental characteristics of 

the input, i.e., benign tissue. Thus, we limit the amount of information that the generator 

G receives. Given the limited information, the cGAN tries to reconstruct the original 

RGB image. To reduce the amount of the information, we apply Sobel operator to an 

input image and compute the gradient magnitude, called as an edge map. 
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2.3 Similarity Metrics 

We utilize mutual information (MI), structural similarity index (SSIM) and Pearson 

correlation coefficient (CC) for measuring the similarity between the reconstructed im-

ages and their originals. For each pair of reconstructed and original images, we compute 

the three metrics for their RGB and gray scale images. For an RGB image, the metrics 

are separately calculated for each channel and then averaged across channels. Gray 

scale images are converted from the reconstructed and original RGB images and used 

to compute the three metrics. 

2.4 Training and Implementation 

We implemented the proposed method using Python and Pytorch. The proposed method 

is trained for a total of 150 epochs using Adam optimizer with beta1=0.5 and 

beta2=0.999. λ is set to 100 to weight the L1 loss. The learning rate of both the gener-

ator and discriminator is set to 1.0e-4 and reduces to 1.0e-5 at 50th epoch. In order to 

enhance the robustness of the generator, during training, we perform a random horizon-

tal and vertical flip, random scaling, random rotation and random shearing of the input 

image. We also add Gaussian noise and perform minor blurring using a median or 

Gaussian filter. 

3 Experiments 

3.1 Dataset 

One whole slide images (WSI) and two colorectal tissue microarrays (TMAs) were 

employed to evaluate the proposed method. Tissue samples in the WSI and TMAs were 

stained with Hematoxylin and Eosin (H&E) and digitized at x40 optical magnification. 

An experienced pathologist identified and delineated benign and tumor regions. Tumor 

regions were further categorized into 3 grades – well-differentiate (WD), moderately-

differentiate (MD) and poorly-differentiate (PD). From the first TMA group, we ex-

tracted 212 benign (BN) image patches of size 1024x1024 and used as the training set. 

339 tumor image patches and 80 benign images patches of size 2048x2048 were ob-

tained from the second TMA and WSI, respectively, forming the evaluation set. In 

short, the evaluation set is composed of 80 BN, 28 WD, 246 MD and 65 PD image 

patches. The patches were mainly focused on the glandular structure, and the patches 

containing >20% luminal and/or un-annotated regions were excluded. 

3.2 Qualitative Results 

To qualitatively evaluate the effectiveness of the proposed method, the results of the 

proposed method is presented in Fig. 2. The result demonstrated that BenignGAN is 

capable of reconstructing the benign tissue image from the corresponding edge map, 

capturing the underlying characteristics of the benign tissue. The presence and location 
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of glands, basement membrane and nuclei were well observed and retained. The ap-

pearance of glands was also reasonably depicted. However, the reconstructed images 

had a tendency to become blurry, slightly losing the fine details of the tissue. As for the 

tumors, the presence of glands and density of nuclei tended to influence the quality of 

the reconstruction. As the density of nuclei increases, the capability of BenignGAN to 

reconstruct the original images degrades. Absence of glands in the original image (e.g., 

PD) resulted in poorer reconstruction.  

 

 

Fig. 2. Representative reconstructed and original tumor images. The original tumor images (first 

row), edge maps (second row) and reconstructed tumor images (third row) are shown for the 

benign tissue and well-differentiated (WD), moderately-differentiated (MD) and poorly-differ-

entiated (PD) tumor images, respectively. 

Table 1. Results of the comparison between the reconstructed and original tissue images on the 

evaluation set. The mean ± standard deviation is shown for three evaluation metrics that is com-

puted for benign and three tumor grades.  

  CC MI SSIM 

RGB 

Benign 0.8308 ± 0.0400 0.6918 ± 0.0754 0.5130 ± 0.0385 

WD 0.6544 ± 0.0802 0.4605 ± 0.0848 0.4138 ± 0.0423 

MD 0.6119 ± 0.0760 0.4369 ± 0.0768 0.3928 ± 0.0400 

PD 0.5378 ± 0.0898 0.3626 ± 0.0912 0.3520 ± 0.0415 

Grayscale 

Benign 0.8432 ± 0.0393 0.7470 ± 0.0806 0.5276 ± 0.0402 

WD 0.6834 ± 0.0835 0.4886 ± 0.0886 0.4191 ± 0.0442 

MD 0.6414 ± 0.0809 0.4657 ± 0.0798 0.3970 ± 0.0419 

PD 0.5604 ± 0.0956 0.3922 ± 0.0950 0.3542 ± 0.0430 
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Fig. 3. Boxplots for similarity measurements. Correlation coefficient (CC), mutual information 

(MI) and structural similarity index (SSIM) are measured between the reconstructed and original 

tumor images, including well-differentiated (WD), moderately-differentiated (MD) and poorly-

differentiated (PD) tumors. Red points correspond to outliers, defined by the cases outside the 

range [Q1 − 1.5 × IQR, Q3 +1.5 × IQR] where Q1, Q3 and IQR denote the first quartile, third 

quartile and interquartile range, respectively. 

3.3 Experiments and Quantitative Results 

The performance of the proposed method was quantitatively assessed using the three 

evaluation metrics, including CC, MI and SSIM, between the reconstructed and original 

tumor images. Within the training set, 3-fold cross validation was performed to evaluate 

BenignGan’s capability on reconstructing benign tissue samples. Comparing the origi-

nal and reconstructed RGB images, we achieved 0.7984±0.0570 CC, 0.6402±0.1026 

MI and 0.4955±0.0491 SSMI. Using grayscale images (converted from RGB images), 

we obtained 0.8127 ± 0.0568 for CC, 0.6920± 0.1104 for MI and 0.5050 ± 0.0514 for 

SSIM. Subsequently, we trained BenignGAN on the entire training set and tested on 

the evaluation set. The results are shown in Fig. 3 and Table 1. The results on BN 
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patches in the evaluation set were similar to the reported results of 3-fold cross valida-

tion (Table 1), which confirms the ability of BenignGAN in reconstructing benign tis-

sue images. Moreover, investigation of the results on the tumor image patches revealed 

that the similarity measurements between the original and reconstructed images are re-

lated to the degree of tumor differentiation (Fig. 3 and Table 1). The worse the tumor 

grade is, the less similar the tumor is to the benign tissue. The similar trend was ob-

served for all three evaluation metrics. ANOVA was further conducted on each of the 

three evaluation metrics to evaluate the significance of the difference in the similarity 

measure between the original and reconstructed images in regard to tumor grades. A 

statistically significant difference (p-value < 10−5) was found for the three evaluation 

metrics using both RGB and grayscale images, suggesting that the difference between 

the reconstructed and original tumor images, with respect to the benign tissue, could 

serve as a means of analyzing tumors. In additional, no significant difference between 

color and grayscale images was observed, indicating that the observed trend is not 

simply due to the color difference between tumors. 

The difference between MD and PD tumors was larger than the difference between 

WD and MD tumors. This may be ascribable to the presence of glands. Glands are 

present in many of the tumors of WD and MD but absent in PD tumors. It would have 

been a bigger challenge for BenignGAN to reconstruct PD tumors since BenignGAN 

was trained using the benign tissues only, which contain plenty of glands in general. 

Although there was a downward trend in similarity, the three similarity measures were 

overlapping between different tumor grades. This may be due to the intrinsic similarity 

between tumors. However, the specific meanings or biological causes of our observa-

tion cannot be identified without further histopathologic and/or biological studies. 

Moreover, since this study is conducted based upon image patches, sampling of image 

patches could have an effect on the study. A large-scale study should be followed to 

further confirm our findings. 

4 Conclusion 

Herein, we presented a method of utilizing a cGAN to quantify the tissue characteristics 

relevant to tumor differentiation. The experimental results demonstrated that a cGAN 

is capable of learning the latent representation of the benign tissue and, as it is applied 

to tumor images, its ability varied depending on the tumor grade, suggesting that it 

could be utilized to quantitatively analyze and measure the degree of tumor differenti-

ation. The proposed method is generic, and thus could be applied to different types of 

tissues and tumors. Providing an alternative means of analyzing tissues/tumors, we be-

lieve that this approach could aid in improving and reshaping the current cancer pathol-

ogy in both clinics and research. The future study will entail the comparison of the 

proposed method to the patients’ outcome. 
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