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ABSTRACT

Data augmentation is one of the most effective approaches for improving the ac-
curacy of modern machine learning models, and it is also indispensable to train a
deep model for meta-learning. However, most current data augmentation imple-
mentations applied in meta-learning are the same as those used in the conventional
image classification. In this paper, we introduce a new data augmentation method
for meta-learning, which is named as “Task Level Data Augmentation” (referred
to Task Aug). The basic idea of Task Aug is to increase the number of image class-
es rather than the number of images in each class. In contrast, with a larger amount
of classes, we can sample more diverse task instances during training. This allows
us to train a deep network by meta-learning methods with little over-fitting. Ex-
perimental results show that our approach achieves state-of-the-art performance
on miniImageNet, CIFAR-FS, and FC100 few-shot learning benchmarks. Once
paper is accepted, we will provide the link to code.

1 INTRODUCTION

Although the machine learning systems have achieved a human-level ability in many fields with a
large amount of data, learning from a few examples is still a challenge for modern machine learning
techniques. Recently, the machine learning community has paid significant attention to this prob-
lem, where few-shot learning is the common task for meta-learning (e.g., Ravi & Larochelle (2017);
Finn et al. (2017); Vinyals et al. (2016); Snell et al. (2017)). The purpose of few-shot learning is
to learn to maximize generalization accuracy across different tasks with few training examples. In
a classification application of the few-shot learning, tasks are generated by sampling from a con-
ventional classification dataset; then, training samples are randomly selected from several classes in
the classification dataset. In addition, a part of the examples is used as training examples and test-
ing examples. Thus, a tiny learning task is formed by these examples. The meta-learning methods
are applied to control the learning process of a base learner, so as to correctly classify on testing
examples.

Data augmentation is widely used to improve the training of deep learning models. Usually, the
data augmentation is regarded as an explicit form of regularization He et al. (2016); Simonyan
& Zisserman (2014); Krizhevsky et al. (2012). Thus, the data augmentation aims at artificially
generating the training data by using various translations on existing data, such as: adding noises,
cropping, flipping, rotation, translation, etc. The general idea of data augmentations is increasing
the number of data by change data slightly to be different from original data, but the data still can
be recognized by human. The new data involved in the classes are identical to the original data.
However, the minimum units of meta-learning are the tasks rather than data. Increasing the data of
original class cannot increase the types of task instances. Therefore, “Task Aug” increases the data
that can be clearly recognized as the different classes as the original data. With novel classes, the
more diverse task instances can be generated. This is important for the meta-learning, since meta-
learning models must predict unseen classes during the testing phase. Therefore, a larger number of
classes is helpful for models to generate task instances with different classes.

In this work, the natural images are augmented by being rotated 90, 180, 270 degrees (we show
examples in Figure 1). We compare two cases, 1) the new images are converted to the classes of
original images and 2) the new images are separated to the new classes. The proposed method
is evaluated by experiments with the state of art meta-learning Methods Snell et al. (2017); Lee
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Figure 1: Examples of the novel created classes.

et al. (2019); Bertinetto et al. (2018) on CIFAR-FS, FC100, miniImageNet few-shot learning tasks
with the standard training protocol, and the training protocol with ensemble method Huang et al.
(2017). The experimental result analysis shows that Task Aug can reduce over-fitting and improve
the performance, while the conventional data augmentation (referred to Data Aug) of rotation, which
converts the novel data into the classes of original data, does not improve the performance and even
causes the worse result. In the comparative experiments, Task Aug achieves the best accuracy of
the meta-learning methods applied. Besides, the best results of our experiments exceed the current
state-of-art result over a large margin.

2 RELATED WORK

Meta-learning involves two hierarchies learning processes: low-level and high-level. The low-level
learning process learns to deal with general tasks, often termed as the “inner loop”; and the high-
level learning process learns to improve the performance of a low-level task, often termed as the
“outer loop”. Since models are required to handle sensory data like images, deep learning methods
are often applied for the “outer loop”. However, the machine learning methods applied for the “inner
loop” are very diverse. Based on different methods in the “inner loop”, meta-learning can be applied
in image recognition Fei-Fei et al. (2006); Santoro et al. (2016); Finn et al. (2017); Vinyals et al.
(2016); Ravi & Larochelle (2017), image generation Antoniou et al. (2017); Zhang et al. (2018);
Rezende et al. (2016), reinforce learning Finn et al. (2017); Al-Shedivat et al. (2017), and etc. This
work focuses on few-shot learning image recognition based on meta-learning. Therefore, in the
experiment, the methods applied in the “inner loop” are able to classify data, and they are K-nearest
neighbor (KNN), Support Vector Machine (SVM) and ridge regression, respectively Snell et al.
(2017); Lee et al. (2019); Bertinetto et al. (2018).

Previous studies have introduced many popular regularization techniques to few-shot learning from
deep learning, such as weight decay, dropout, label smooth Bertinetto et al. (2018), and data augmen-
tation. Common data augmentation techniques for image recognition are usually designed manually
and the best augmentation strategies depend on dataset. However, in natural color image datasets,
random cropping and random horizontal flipping are the most common. Since the few-shot learn-
ing tasks consist of natural color images, the random horizontal flipping and random cropping are
applied in few-shot learning. In addition, color (brightness, contrast, and saturation) jitter is often
applied in the works of few-shot learning Gidaris & Komodakis (2018); Qiao et al. (2018).

Other data augmentation technologies related to few-shot learning include generating samples by
few-shot learning and generating samples for few-shot learning. The former tried to synthesize
additional examples via transferring, extracting, and encoding to create the data of the new class, that
are intra-class relationships between pairs of reference classes’ data instances Hariharan & Girshick
(2017); Schwartz et al. (2018). The later tried to apply meta-learning in a few-shot generation
to generate samples from other models Antoniou et al. (2017). In addition to these two types of
studies, the data augmentation technology most closed to the new proposed approach is applied to
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Omniglot dataset, which consists of handwritten words Lake et al. (2015). They created the novel
classes by rotating the original images 90, 180 and 270 degrees Santoro et al. (2016). However, this
approach cannot be applied for the natural color image directly, and we will explain the reasons and
the solutions in Section 3.

3 METHOD

3.1 PROBLEM DEFINITION

We adopt the formulation purposed by Vinyals et al. (2016) to describe the N -way K-shot task. A
few-shot task contains many task instances (denoted by Ti), each instance is a classification problem
consisting of the data sampled from N classes. The classes are randomly selected from a classes set.
The classes set are split into M tr, Mval and M test for a training class set Ctr, a validation classes
set Cval, and a test classes set Ctest. In particular, each class cannot overlap others (i.e., the classes
used during testing are unseen classes during training). Data is randomly sampled from Ctr, Cval
and Ctest, so as to create task instances for training meta-set Str, validation meta-set Sval, and test
meta-set Stest, respectively. The validation and testing meta-sets are used for model selection and
final evaluation, respectively.

The data in each task instance, Ti, are divided into training examples Dtr and validation examples
Dval. Both of them only contains the data from N classes which sampled from the appropriate
classes set randomly (for a task instance applied during training, the classes form a subset of the
training classes set Ctr). In most settings, the training set Dtr = {(xkn, ykn)|n = 1 . . . N ; k =
1 . . .K} consists of K data instances from each class, this processing usually called as a “shot”. The
validation set, Dval, consists of several other data instances from the same classes, this processing
is usually called as a “query”. An evaluation is provided for generalization performance on the N
classification task instance Dtr. Note that: the validation set of a task instance Dval (for optimizing
model during “outer loop”) is different from the held-out validation classes set Cval and meta-set
Sval (for model selection).

3.2 CREATING CLASSES BY ROTATING CLASSES

This work is to increase the size of the training classes set, M tr, by rotating all images within the
training classes set with 90, 180, 270 degrees. The size, M tr, is increased for three times. In the
Omniglot dataset consisting of handwritten words Santoro et al. (2016), this approach works well,
since it can rotate a handwritten word multiple of 90 degrees and treat the new one as another word;
in addition, it is really possible that the novel word is similar to some words, which are not included
in the training classes but existed. However, for natural images, it is not the same cause. For
examples, the images in the third line of Figure 1 are difficult to identify which images are rotated.
Moreover, the images are rarely rotated in the photos taken by humans.

Despite the two problems, the fundamental features of the novel images can provide useful informa-
tion. We assign novel classes that contain smaller weights than the original classes, so as to make
models prioritize learning the features of the original classes, and make the features of the novel
classes as a supplement to prevent the augmented data from taking up large capacity in the model.

The smaller weights are implemented in two ways, 1) lower probability and 2) delay selecting the
novel classes. For a class in a task instance, the probability of the class coming from the novel
classes is p, and the probability coming from the original classes is 1 − p. Besides, The initial p is
set to 0, then linearly rises from 0 to pmax after generating T task instances. The max probability
pmax is set lower than the proportion of the novel classes in all classes to make each novel class
have a lower probability than each original class. The whole process of Task Aug on a classes set is
summarized in Algorithm 1 and Figure 2.

3.3 ENSEMBLE

In this work, we also compare the methods with the training protocol with ensemble method Huang
et al. (2017) in addition to the standard training protocol, which choosing a model by the validation
set. The training protocol with an ensemble method use the models with different training epoch to
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Algorithm 1 Task Level Data Augmentation.

Require: Classes set C = {c1, c2, . . . , cM}; Max
possibility for Task Aug pmax; The delay to
Task Aug T; The current count t; The number
of ways, shots and queries N , K, H

1: t← t+ 1
2: p← pmax ∗min{1, t

T}
3: n ∼ Binomial(N, p)
4: Dtr,Dval ← {}, {}
5: V ← Sample N − n from {1, 2, · · · ,M}
6: for all v ∈ V do
7: D ← Sample K +H from cv
8: Dtr ← Dtr∪ First K of D
9: Dval ← Dval∪ Last H of D

10: end for
11: U ← Sample n from {M,M + 1, · · · , 4M}
12: for all u ∈ U do
13: v ← (u mod M) + 1
14: D ← Sample K +H from cv
15: r ← b u

M c
16: Rotate all x ∈ {x|(x, y) ∈ D} 90r degrees
17: Dtr ← Dtr∪ First K of D
18: Dval ← Dval∪ Last H of D
19: end for
20: return (Dtr,Dval)

c1 c2 cM

p

1-p
pmax∗
min{1, t

T
}

N -n from original classes

n from novel classes

Dtr

Dval

Figure 2: The process of generating a task
instance with Task Aug.

an ensemble model, in order to better use the models obtained in a single training process, and this
approach has been proved to be valid for meta-learning by experiments Liu et al. (2018). We adopt
this ensemble method. However, unlike Huang et al. (2017) and Liu et al. (2018) that we did not use
cyclic annealing for learning rate and any methods to select models. We directly took the average of
the prediction of all models, which are saved according to an interval of 1 epoch. In Section 4, the
methods with this ensemble approach are marked by “+ens”.

4 EXPERIMENTS

We evaluate the proposed method on few-shot learning tasks. In order to ensure fair, both the
results of baseline and Task Aug were run in our own environment. The comparative experiment
is designed to answer the following questions: (1) Is Task Aug able to improve the performance of
meta-learning? (2) How much should the probably for the novel classes be set? (3) Will converting
the novel data into the classes of the original data cause worse results, which are generated by being
rotated 90, 180, 270 degrees?

4.1 EXPERIMENTAL CONFIGURATION

4.1.1 BACKBONE

Following Lee et al. (2019); Oreshkin et al. (2018); Mishra et al. (2017), we used ResNet-12 network
in our experiments. The ResNet-12 network had four residual blocks which contains three 3 × 3
convolution, batch normalization and Leaky ReLU with 0.1 negative slope. One 2× 2 max-pooling
layer is used for reducing the size of the feature map. The numbers of the network channels were 64,
160, 320 and 640, respectively. DropBlock regularization Ghiasi et al. (2018) is used in the last two
residual blocks, the conventional dropout Hinton et al. (2012) is used in the first two residual blocks.
The block sizes of DropBlock were set to 2 and 5 for CIFAR derivatives and ImageNet derivatives,
respectively. In all experiments, the dropout possibility was set to 0.1. The global average pooling
was not used for the final output of the last residual block.
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Table 1: The average accuracies (%) with 95% confidence intervals. ∗CIFAR-FS results from
Bertinetto et al. (2018). †Result from Lee et al. (2019). The best results are highlighted.

Method CIFAR-FS 5-way FC100 5-way
1-shot 5-shot 1-shot 5-shot

MAML∗ Finn et al. (2017) 58.9±1.9 71.5±1.0 - -
R2-D2 Bertinetto et al. (2018) 65.3±0.2 79.4±0.1 - -
TADAM Oreshkin et al. (2018) - - 40.1±0.4 56.1±0.4
ProtoNets† Snell et al. (2017) 72.2±0.7 83.5±0.5 37.5±0.6 52.5±0.6
MTL Sun et al. (2019) - - 45.1±1.8 57.6±0.9
M-SVM Lee et al. (2019) 72.8±0.7 85.0±0.5 47.2±0.6 62.5±0.6
M-SVM (+ens+val) (our) 76.75±0.46 88.38±0.33 49.83±0.45 67.14±0.42
R2-D2 (+ens+val) (our) 77.66±0.46 88.33±0.33 50.91±0.45 67.46±0.42

4.1.2 BASE LEANERS

We used ProtoNets Snell et al. (2017), MetaOptNet-SVM Lee et al. (2019) (we write it as M-SVM)
and Ridge Regression Differentiable Discriminator (R2-D2) Bertinetto et al. (2018) as basic methods
to verify the effective of Task Aug.

For ProtoNets, we did not use a higher way for training than testing like Snell et al. (2017). Instead,
the equal number of shot and way were used in both training and evaluation, and its output multiplied
by a learnable scale before the softmax following Oreshkin et al. (2018); Lee et al. (2019),

For M-SVM, we set training shot to 5 for CIFAR-FS; 15 for FC100; and 15 for miniImageNet;
regularization parameter of SVM was set to 0.1; and a learnable scale was used following Lee et al.
(2019). We did not use label smoothing like Lee et al. (2019), because we did not find that label
smoothing can improve the performance in our environment. This was also affirmed from the Lee
et al. (2019) author’s message on GitHub, that Program language packages and environment might
affect results of the meta-learning method.

For R2-D2, we set the same training shot as for M-SVM, and used a learnable scale and bias fol-
lowing Bertinetto et al. (2018). It was different from Bertinetto et al. (2018) we used a fixed reg-
ularization parameter of ridge regression which was set to 50 because Bertinetto et al. (2018) has
confirmed that making it learnable might not be helpful.

Last, for all methods, each class in a task instance contained 6 test (query) examples during training
and 15 test (query) examples during testing.

4.1.3 TRAINING CONFIGURATION

Stochastic gradient descent (SGD) was used. Following Sutskever et al. (2013), we set weight
decay and Nesterov momentum to 0.0005 and 0.9, respectively. Each mini-batch contained 8 task
instances. The meta-learning model was trained for 60 epochs, and 1000 mini-batchs for each epoch.
We set the initial learning rate to 0.1, then multiplied it by 0.06, 0.012, and 0.0024 at epochs 20, 40
and 50, respectively, as in Gidaris & Komodakis (2018). The results, which are marked by “ens”
were used the 60 models saved after each epoch to become an ensemble model. For the final epoch,
the training classes set was augmented by the validation classes set. We chose the model at the epoch
where we got the best model during training on the training classes set only. The results of the final
run are marked by “+val” in this subsection.

For data augmentation, we adopted random random crop, horizontal flip, and color (brightness, sat-
uration, and contrast) jitter data augmentation following the work of Gidaris & Komodakis (2018);
Qiao et al. (2018). We set pmax to 0.5 for CIFAR-FS and FC100; 0.25 for miniImageNet; and T
was set to 80000 for all experiments.
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Table 2: Comparison to the average accuracies (%) with 95% confidence intervals between the
methods with and without Task Aug on CIFAR-FS 5-way. The results are better than its compared
results are highlighted.

Method 1-shot 5-shot
Baseline Task Aug Baseline Task Aug

ProtoNets Snell et al. (2017) 71.88±0.52 74.15±0.50 84.14±0.36 85.37±0.35
ProtoNets (+ens) 73.95±0.51 75.89±0.48 85.72±0.35 87.33±0.33
ProtoNets (+val) 73.20±0.51 75.10±0.49 85.29±0.35 86.53±0.34
ProtoNets (+ens+val) 76.05±0.49 77.28±0.47 86.88±0.34 88.24±0.33
M-SVM Lee et al. (2019) 71.52±0.51 72.95±0.48 84.01±0.36 85.91±0.36
M-SVM (+ens) 74.12±0.50 75.85±0.47 85.85±0.34 87.73±0.33
M-SVM (+val) 72.42±0.50 73.13±0.47 84.94±0.36 86.94±0.34
M-SVM (+ens+val) 75.91±0.48 76.75±0.46 87.15±0.34 88.38±0.33
R2-D2 Bertinetto et al. (2018) 72.27±0.51 74.42±0.48 84.60±0.36 86.02±0.35
R2-D2 (+ens) 75.06±0.50 76.51±0.47 86.11±0.34 87.63±0.34
R2-D2 (+val) 73.52±0.50 76.02±0.47 85.39±0.36 86.73±0.34
R2-D2 (+ens+val) 76.40±0.49 77.66±0.46 87.04±0.34 88.33±0.33

Table 3: Comparison to the average accuracies (%) with 95% confidence intervals between the
methods with and without Task Aug on FC100 5-way. The results are better than its compared
results are highlighted.

Method 1-shot 5-shot
Baseline Task Aug Baseline Task Aug

ProtoNets Snell et al. (2017) 37.53±0.40 39.07±0.40 51.43±0.39 54.49±0.40
ProtoNets (+ens) 40.04±0.41 42.23±0.42 54.24±0.40 57.47±0.40
ProtoNets (+val) 43.63±0.43 45.85±0.45 61.16±0.42 61.05±0.41
ProtoNets (+ens+val) 47.16±0.46 48.05±0.46 63.64±0.43 65.63±0.42
M-SVM Lee et al. (2019) 40.50±0.39 40.54±0.39 54.83±0.40 56.88±0.41
M-SVM (+ens) 43.24±0.42 44.00±0.42 58.49±0.41 60.01±0.41
M-SVM (+val) 46.72±0.45 47.13±0.44 62.99±0.42 63.52±0.41
M-SVM (+ens+val) 49.50±0.46 49.83±0.45 66.37±0.42 67.14±0.42
R2-D2 Bertinetto et al. (2018) 40.66±0.41 41.34±0.41 55.85±0.39 55.83±0.39
R2-D2 (+ens) 43.27±0.42 44.45±0.43 58.01±0.40 59.82±0.41
R2-D2 (+val) 47.12±0.44 47.78±0.44 63.32±0.40 63.73±0.43
R2-D2 (+ens+val) 49.92±0.45 50.91±0.45 65.58±0.42 67.46±0.42

4.2 EVALUATION ON CIFAR DERIVATIVES

The CIFAR-FS Bertinetto et al. (2018) containing all 100 classes from CIFAR-100 Krizhevsky
et al. (2010) is proposed as few-shot classification benchmark recently. These classes are randomly
divided into training classes, validation classes and test classes. The three types contain 64, 16 and
20 classes, respectively. There are 600 nature color images of size 32× 32 in each class.

The FC100 Oreshkin et al. (2018) are also derived from CIFAR-100 Krizhevsky et al. (2010), and
the 100 classes are grouped into 20 superclasses. The training, validation, and testing classes contain
60 classes from 12 superclasses, 20 classes from 4 superclasses, and 20 classes from 4 superclasses,
respectively. The target is to minimize the information overlap between classes to make it more
challenging than current few-shot classification tasks. Same as CIFAR-FS, there are 600 nature
color images of size 32× 32 in each class.

Results. In Table 1, we compare our results with the previous studies, and the table shows that the
highest accuracies of our experiments exceeded the current state-of-art accuracies from 3% to 5%.
Besides, Table 2 and Table 3 summarize the results on the CIFAR-FS and FC100 5-way tasks, and
in most cases our method rises accuracy by 0.5%-3%.
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Table 4: The average accuracies (%) with 95% confidence intervals on miniImageNet. ∗Result from
Lee et al. (2019). The best results are highlighted. Here only list the best results of previous works
due to the shortage of space.

Method 1-shot 5-shot
Gidaris & Komodakis (2018) 56.20±0.86 73.00±0.64
TADAM Oreshkin et al. (2018) 58.50±0.30 76.70±0.30
LEO Rusu et al. (2018) 61.76±0.08 77.59±0.12
ProtoNets∗ Snell et al. (2017) 59.25±0.64 75.60±0.48
M-SVM Lee et al. (2019) 64.09±0.62 80.00±0.45
M-SVM (+ens+val) (our) 65.38±0.45 82.13±0.31
R2-D2 (+ens+val) (our) 65.95±0.45 81.96±0.32

Table 5: Comparison to the average accuracies (%) with 95% confidence intervals between the meth-
ods with and without Task Aug on miniImageNet 5-way. The results are better than its compared
results are highlighted.

Method 1-shot 5-shot
Baseline Task Aug Baseline Task Aug

ProtoNets Snell et al. (2017) 58.67±0.48 60.52±0.48 75.24±0.37 77.00±0.36
ProtoNets (+ens) 62.12±0.48 63.69±0.47 78.11±0.34 79.77±0.34
ProtoNets (+val) 60.13±0.48 62.22±0.49 76.98±0.36 77.59±0.37
ProtoNets (+ens+val) 63.84±0.48 65.04±0.48 79.54±0.35 80.60±0.34
M-SVM Lee et al. (2019) 60.02±0.45 62.12±0.44 77.85±0.34 78.90±0.34
M-SVM (+ens) 63.44±0.45 64.56±0.44 80.18±0.32 81.35±0.32
M-SVM (+val) 61.58±0.45 63.14±0.45 78.65±0.34 79.97±0.33
M-SVM (+ens+val) 64.74±0.45 65.38±0.45 81.39±0.32 82.13±0.31
R2-D2 Bertinetto et al. (2018) 60.57±0.44 62.32±0.45 77.44±0.34 78.81±0.34
R2-D2 (+ens) 63.72±0.44 64.79±0.45 79.90±0.33 81.08±0.32
R2-D2 (+val) 62.82±0.45 62.64±0.44 78.61±0.35 79.58±0.33
R2-D2 (+ens+val) 65.50±0.45 65.95±0.45 81.34±0.32 81.96±0.32

We can observe that: some results without the ensemble approach Huang et al. (2017) of baseline and
Task Aug are close, but the advantage of Task Aug is still obvious on the results with the ensemble
approach. We suspect that the scale of backbone limits the performance of the best model. A
larger scale backbone is needed for the training process with Task Aug. For the results of ensemble
approach, since Task Aug reduces the over-fitting, more models during the training process have
good performance, which provide ensemble with models of higher quality.

4.3 EVALUATION ON MINIIMAGENET

The miniImageNet Vinyals et al. (2016) is one of the most popular benchmark for few-shot clas-
sification, which contains 100 classes randomly selected from ILSVRC-2012 Russakovsky et al.
(2015). The classes are randomly divided into training classes, validation classes and test classes,
and them contain 64, 16 and 20 classes, respectively. There are 600 nature color images of size
84 × 84 in each class. Since Vinyals et al. (2016) did not release the class splits, we use the more
common split proposed by Ravi & Larochelle (2017).

Results. Table 4 shows that the highest accuracies of our experiments exceeded the current state-
of-art accuracies from 1% to 2%. Table 5 summarizes the results on the miniImageNet 5-way tasks,
and in most cases our method rises accuracy by 0.5%-2%.
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Figure 3: The accuracies (%) on meta-test sets with varying probability pmax for the novel class-
es.The 95% confidence interval is denoted by the shaded region. In general, the performance of Task
Aug on most of the regimes is better than Data Aug and baseline.

4.4 EFFICIENCY OF THE PROBABILITY FOR TASK AUG

To identify whether the rotation multi 90 degrees for Task Aug is better than that for Data Aug, we
analyzed the experiment on CIFAR-FS and miniImageNet. The linear rising of p was also used for
Data Aug, and T = 80000 for both Task Aug and Data Aug. In the analysis, the training classes
set was not augmented by the validation classes set. As shown in Figure 3, we observed that: with
pmax, the accuracy rises at first, reaches the peaks between 0.25 and 0.5, then declines and reaches
baseline when pmax = 0.75 at the end, which is the proportion of the novel classes in all classes.
On the other hand, the rotation multi 90 degrees for Data Aug can not improve or even cause worse
performance.

5 CONCLUSION

We proposed a Task Level Data Augmentation (Task Aug), a data augmentation technique that
increased the number of training classes to provide more diverse few-show task instances for meta-
learning. We proved that Task Aug was valid for CIFAR-FS, FC100, and miniImageNet, and ex-
ceeded the result of the previous works. Task Aug achieved the performance by rotating the images
90, 180 and 270 degrees. This method is simple and cost-effective. With the ensemble method, we
exceeded the state-of-the-art result over a large margin.

Future work will focus on searching different network structures for meta-learning, since the training
with Task Aug would require more large model. Besides, we will try to apply Task Aug to other few-
shot learning tasks to verify its effectiveness. Another interesting topic is to build other approaches
for Task Aug, such as swapping channel order, picture blend or even auto augmentation.
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