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ABSTRACT

Pruning and quantization are typical approaches to reduce the computational cost
of convolutional neural network (CNN) inference. Although the idea of combin-
ing both approaches seems natural, it is surprisingly difficult to determine the ef-
fects of the combination without measuring performance on the specific hardware
that the user will use. This is because the benefits of pruning and quantization
strongly depend on the hardware architecture where the model is executed. For
example, a CPU-like architecture with no parallelization may fully exploit the
reduction of computations by unstructured pruning to improve speed, but a GPU-
like massive parallel architecture would not. Further, there have been emerging
proposals of novel hardware architectures, such as those supporting variable bit-
precision quantization. From an engineering viewpoint, optimization for each
hardware architecture is useful and important in practice, but this is in essence
a brute-force approach. Therefore, in this paper, we first propose a hardware-
agnostic metric for measuring computational costs. Using the proposed metric,
we demonstrate that Pareto-optimal performance, where the best accuracy is ob-
tained at a given computational cost, is achieved when a slim model with fewer
parameters is moderately quantized rather than a fat model with a huge num-
ber of parameters is quantized to extremely low bit precision, such as binary or
ternary. Furthermore, we empirically find a possible quantitative relation between
the proposed metric and the signal-to-noise ratio during stochastic gradient de-
scent (SGD) training, by which information obtained during SGD training pro-
vides an optimal policy for quantization and pruning. We show the Pareto frontier
is improved by 4x in a post-training quantization scenario based on these find-
ings. These findings not only improve the Pareto frontier for accuracy versus
computational cost, but also provide new insights into deep neural networks.

1 INTRODUCTION

Reducing execution cost of deep learning inference is one of the most active research topics for
applying superhuman recognition in embedded IoT devices and robots. A typical approach for em-
ploying memory- and computation-efficient components is separable convolution, which is a com-
bination of depth-wise and point-wise convolutions (Iandola_ef all, DOT&; [Zoph et all, POTR; [Zhang
ef-all, POTR; Howard ef all, POT7), structured/unstructured pruning of connections and activations,
and quantizing activation, weight, and their vectors (Sfock_ef all, P0TY; Jegou et all, PUTT; Gong
efall, D0T4). Among these, separable convolution and structured pruning are similar, in that sepa-
rable convolution can be viewed as convolutions pruned in a handcrafted manner. From a pruning
viewpoint, since the separable convolution structure results from applying aggressive pruning to
normal convolution, the result is drastic reductions in memory and computational cost at the ex-
pense of greatly decreased accuracy (Sfock ef-all, 2019). On the other hand, structured pruning and
quantization are seemingly orthogonal approaches that can be naturally combined (Tung & Mori,
POTR; Han ef all, POTA). However, their interactions are still not well-studied. For instance, the
use of a single-bit representation is being actively explored as an extreme quantization. Since a
nonnegligible accuracy drop is inevitable in extreme quantization, some papers have proposed in-
creasing the number of channels to compensate for the lack of expressivity (Cin—efall, 2OT7). In
other words, a quantization approach can further reduce the number of bits by compromising the
increase in number of channels, or the increase in number of computations. This indicates that, con-
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versely, reducing channels by pruning may limit capability for quantization. This discussion raises
a controversial question: which is better, a fat model with smaller bit width or a slim model with
larger bit width? Answering this question requires a metric that fairly measures the effects of both
pruning and quantization. One such metric in the literature is the inference speed when the model
is executed on specific hardware. This metric is useful or even ideal when the target hardware is
known in advance but strongly depends on features of the hardware architecture. [Yang et al] (Z01X)
searched for an optimal architecture using inference time as the optimization objective and found
different optimal architectures depending on the target device. For example, if the hardware cannot
handle extremely low bit-widths (1 or 2 bits), instead treating them as 8-bit integers with upper bits
filled with zeros, we cannot exploit the reduction of bit width to improve inference speed. From a
theoretical viewpoint, figuring out the extent to which we can reduce the computational complexity
of deep neural networks is another important open question.

The discussion so far urges us to develop a hardware-agnostic and theoretically reasonable metric for
measuring computational costs of neural network architectures. In this paper, we propose the Frobe-
nius norm of the effective value of weight parameters as one such metric. This metric is proportional
to the total energy when the model is executed on ideal hardware, where energy consumption for a
single multiply-accumulate (MAC) computation is proportional to the squared effective amplitude
of the individual weight parameter used for the MAC computation. The basic idea of the metric is
analogous to a highly efficient class-B amplifier circuit whose energy consumption is determined
by the instant signal amplitude (Sechi, T976). This metric successfully reflects the effects of both
quantization and structured/unstructured pruning in accordance with intuition.

Using the proposed metric, we empirically find that a slimmer model can achieve a far better Pareto
frontier in a lower computational cost region than can a fatter model after quantization, while a fat
model is advantageous for achieving higher accuracy in a larger computational cost region. Finally,
we perform experiments under a post-training quantization scenario (Banner_ef all, POTX) on Ima-
geNet dataset (Deng et all, 200Y) to verify the validity of our claim, namely that prune-then-quantize
is superior to quantize-only or prune-only for achieving a better Pareto frontier.

Further, since this metric is relevant to the signal-to-noise ratio (S/N), it is measurable during SGD
training, in which the absolute value of weights and the random walk of weight parameters corre-
spond to signal and noise, respectively. We observe that the dependencies of the metric on validation
accuracy seem to be correlated between those during training and those applying quantization after
training. From this observation, we point out some possibilities for which we could expect robust-
ness of a model for quantization from information obtained during training, we could determine
an optimal policy for quantization of that model, and we could develop a novel optimization or
regularization scheme.

The main contributions of this paper are as follows:

e We define a hardware-agnostic metric for measuring the computational cost of pruned and
quantized models.

e We empirically find that models with fewer parameters achieve far better accuracy in a low
computational cost region after quantization.

e We show a potential quantitative relation between quantization noise and perturbation of
weight parameters during SGD training.

And as implications, we hope to exploit our findings for

e thorough comparison of various neural network architectures using the proposed hardware-
agnostic metric,

e development of a method for extracting a quantization policy from information obtained
during SGD training, and

e development of a training algorithm or regularization scheme for producing robust models
based on the relation between quantization noise and perturbation of weight parameters
during SGD training.
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Figure 1: Left/Center: Computational cost strongly depends on the hardware architecture on which
the model is executed. Right: Proposed computational cost for analysis or theoretical research,
assuming an ideal hardware architecture.

2 EFFECTIVE SIGNAL NORM

We seek a metric that properly reflects the effects of both quantization and pruning. Convention-
ally, quantization effectiveness is evaluated according to the number of bits required to achieve a
given accuracy, or the accuracy achieved by using certain bit numbers for specific network architec-
tures (Sfock”efall, PITY). We cannot use this to compare efficiencies between different architecture
models (e.g., MobileNet versus ResNet-18). The number of MAC computations or parameters can
be used to compare different architectures, but the number of MAC computations does not consider
quantization and the number of parameters is not directly related to inference time.

Recently, the use of actual or estimated inference speeds as a metric for comparing network archi-
tectures has been proposed ([Yang et all, ZOTR; Wang et all, Z019a; Caief all, P0TY). This metric is
very useful when the target hardware is known in advance, and ideal for those who wish to use the
model that performs best on that hardware. However, this metric is strongly hardware dependent.
Indeed, [Yang et al] (P0T8); Wang et al] (20193); Cai_ef all (201Y) found that optimal architectures
for different types of target hardware are totally different. Considering interest in, for example, the
simplest realizable deep neural network model while achieving a required accuracy, there is a need
for a hardware-agnostic metric.

The metric for model evaluation should correlate with energy consumed when the model is exe-
cuted on ideal hardware. We assume that energy consumption by ideal hardware monotonically
decreases when the bit width is reduced by quantization and when the number of nonzeros in weight
parameters is reduced by pruning. For example, hardware with an 8-bit integer MAC array can-
not be further accelerated even if the bit width is reduced from 8 to 1 or 2 bits. Thus, the energy
consumption measured using such hardware does not satisfy the aforementioned requirement and
cannot be our metric. Hardware like a CPU, which processes each computation in serial, can natu-
rally exploit the structured or unstructured sparsity of weight parameters by skipping computations
with zeroed weights. However, because it is difficult to parallelize computations while maintaining
such a strategy, it is generally difficult to benefit from sparsity in GPU-like hardware employing
massively parallel MAC units. Hardware dedicated to sparse convolution (Cu_ef-all, Z0TY) tends to
show better performance only when sparsity is sufficiently high, due to relatively large overheads
for encoding and decoding sparse weight parameters in a special format.

Therefore, the benefit of sparsity from pruning and low bit width from quantization largely depends
on the hardware architecture, so long as we consider only existing hardware. Because we require
a hardware-agnostic metric, we assume ideal hardware in which energy consumption is linearly
proportional to the number of nonzero weight parameters and monotonically depends on the bit
width of weight parameters, as shown in Figure [, setting aside the feasibility of such ideal hardware.

2.1 DEFINITION OF EFFECTIVE SIGNAL NORM

We define a metric called the effective signal norm (ESN) as

ESN = Y || f(Wiy) I3, (1
l
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with Wi, = |W'/A!]|+0.5, where W' is the weight tensor and Al is the quantization step size of the
Ith layer; and ¢! is a coefficient depending on the layer, in that if ¢! = 1, ESN is related to the number
of parameters (cf. memory footprint), and if ¢! is the number of computations per parameter at the /th
layer, ESN is related to the number of computations (cf. FLOP). f(-) is an element-wise function

that determines how the metric responds to the value of each weight parameter. We propose two
functions for f(-). The firstis f(W.,) = WL, based on the assumption that energy consumption

int>
increases with the square of the value for each weight parameter or for each computation. When

¢t = 1, the definition is
ESN, = > |[Wi,,[[7- 2)
!

This assumption is reasonable when we employ an analog (or in-memory) MAC computation en-
gine (Shafiee ef-all, POT6H; Miyashita et all, 20177), because energy consumption is proportional to the
square of the signal amplitude when the signal represents an analog quantity such as voltage or cur-
rent. Assuming ideal hardware, we adopt a definition where energy consumption varies according
to the instant amplitude (cf. class-B amplifier), which is more energy efficient than the case where
energy consumption is constant and the value is determined by the maximal amplitude (cf. class-A
amplifier) (Sechi, T978).

The second proposed function is f(W!,) = [log,(abs(W.,)) + 1], where log, (-) and abs (-) are
functions applied to each element of a tensor argument. This is based on the assumption that energy
consumption increases with the binary logarithm of the value for each weight parameter. When

¢t = 1, the definition is

ESNa = ) [[[log, (abs(Wi,)) + 11| 3)
l

In a digital circuit, a number is represented as a binary digit (bits), so the energy consumption for
moving or processing signals is roughly proportional to the number of bits, which is the binary
logarithm of the value. It is therefore reasonable to use Equation (B) for a digital circuit.

2.2 RELATION BETWEEN ESN AND S/N

The effective signal norm defined in Equation (I) is related to the signal-to-noise ratio (S/N)
when quantization noise is dominant and noise is approximated by a uniform distribution (Gray
&_Nenhoff, T99K).

W3 W[ W' [Jo
ESN, = . — S/N, — , 4
;<nwl—A-wfmu% ) =2 v
where [ is the layer index, S/N; is the signal-to-quantization-noise ratio of the /th layer as defined by
1112
S/N; = % and ||W'||o is the number of nonzero elements in the tensor W'. Appendix B
intlF
presents the derivation of Equation (#). This equation allows us to calculate ESN,, so long as S/N
is defined.

2.3 ESN, DURING TRAINING

For example, we can define S/N by regarding perturbation of weight parameters during training as
noise. Formally, we define the signal and noise at the jth epoch as

=D D IW IR, Ny =D (W — Wi I3 (5)
1 7 l 7

where Wéz is the weight parameters in the /th layer at the <th iteration in the jth epoch, and Wilnitj

is a snapshot of the weight at the beginning of the jth epoch. Then, Nj; is the effective value of
random walk noise for weight parameters in one epoch.
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Figure 2: Training curves of ESN,, (left) and validation accuracy (right) on CIFAR-10. In the right
graph, moving average curve between 3-epochs is overlapped on each plot.
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Figure 3: Relation between validation accuracy and ESN, during training and after quantization.
ESN,, of the former is computed using Equation (), and that of the latter is computed using Equa-
tion (2)

The left figure in Figure @ shows the ESN, curve during training, which is calculated by Equa-
tion (@), and S/N as defined by Equation (8). In this experiment, we use ResNet-20 (He ef al],
P0TH) on CIFAR-10 dataset (Krizhevsky, 2009). We use SGD with momentum 0.9, and we set the
mini-batch size to 100 and the initial learning rate to 0.1, which is shifted by 1/10 at epochs 80 and
120. We vary the weight decay factor from 5 x 10~ to 2 x 1073, indicated by different colors in
Figure D

Interestingly, the ESN, curves look very similar to the validation accuracy curves shown in the
right figure in Figure . Both ESN, and validation accuracy steeply increase at the point where
the learning rate is decreased by 1/10, because decreasing the learning rate reduces perturbation (or
random walk) of weight values during one epoch, increasing S/N. We can also see that as the weight
decay factor increases, ESN, tends to decrease. This is also reasonable, because weight decay
decreases ||W||2 or the signal level, reducing S/N. More interestingly, even this trivial tendency
appears correlated with validation accuracy; for example, after a steep rise at epoch 80, both ESN,,
and validation accuracy gradually decrease, converging to stable values after overshooting. There is
a similar relation between the amount of overshoot and weight decay factor, namely, we observed a
larger overshoot with a smaller weight decay factor. These findings might be useful for developing
a novel optimization algorithm, but we leave this for future work.

The blue plots in Figure B show ESN, versus validation accuracy. In this experiment, we use
VGG7 (Simonyan & Zisserman, 2014) and ResNet-20 on CIFAR-10, and DenseNet-BC with [ =
100, £ = 12 (Huang et al], POT7) on CIFAR-100. We employ SGD with momentum 0.9 and set
the initial learning rate to 0.1, followed by cosine annealing without restart ([[ya Loshchilov,, 2017).
The mini-batch size and weight decay factor are respectively set to 125 and 5 x 10~%.

The red curve shows the ESN, versus validation accuracy curve when applying quantization to
weight parameters trained by the training process where the blue plots are obtained. As the figure
shows, the red and blue curves seem to be correlated. This suggests that the model acquires robust-
ness to quantization by having experienced similar perturbations due to a random walk during the
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Figure 4: Accuracy versus ESN(left) and ESN (right) for various network depths and widths.

training process. If so, the ESN, versus validation accuracy curve during training is available as a
loose boundary on accuracy degradation due to decrease of ESN,, by quantization. We discuss this
hypothesis in Section -7 again.

2.4 ESN VERSUS ACCURACY FOR VARIOUS MODEL SIZES

With our metric defined, we next attempt to investigate which is better, a model that is slim (with
the number of weight parameters and computations reduced by pruning) and mildly quantized (e.g.,
with 4-5 bits), or a model that is fat (with a large number of weight parameters and computations)
and radically quantized (e.g., with 1-2 bits). We evaluate six network architectures with different
depths and widths: ResNet-8, 14, 20 and VGG7 with different channel widths (1x, 0.5x, 0.25x%)
on CIFAR-10 dataset. In this experiment, we employ networks with originally small number of
parameters as slim models instead of pruning fat models. The network architecture of ResNet is
based on the original one without bottleneck architecture (He ef-all, POTH). The detailed network
architecture of VGG7 is shown in Appendix B.

Figure B shows validation accuracy versus ESN, and ESN,. Here, we consider differences in ESN,,
and ESN,. For simplicity, we assume that all weight parameters have the same value v > 1, and
that the number of weight parameters is /N. The definitions of ESN, and ESN, are expressed as
follows,

ESN, = v? x N, ESNy = [log, v+ 1] x N. (6)

Therefore, when we compare ESN, and ESNy, both are linearly proportional to the number of
weight parameters, whereas values of weight parameters affect the metric at squared and logarith-
mic scales, respectively. This means that ESN,, is more strongly dependent on the size of the values
than on the number of weight parameters, and the opposite is true for ESN. In other words, ESN,
is more sensitive to pruning than to quantization, and ESN,, is more sensitive to quantization than
to pruning. Figure B clearly shows these tendencies. We can see that even when using the ESN,,
metric, which is advantageous for quantization, the slimmer model shows better validation accuracy
in lower ESN regions. These experiments indicate that in lower ESN regions, or with lower energy
consumption by ideal hardware, especially when employing digital computing, it is an advisable
strategy to prune the model to the limit where the desired accuracy is achieved, and then to apply
quantization to obtain the highest possible accuracy. In contrast, it is a bad strategy to apply quan-
tization to a fat model, even if it shows much better accuracy than the pruned slim model before
quantization. Consequently, to the question posed at the beginning of this subsection—whether a
slim and mildly quantized model or a fat and radically quantized model is better—the answer is the
former one, which may in a sense raise a question on trends in quantization research. Note that the
above discussion also indicates that the importance of quantization will be relatively increased if
analog computing become practical in the future.

2.5 TRAINING UNDER LOW-ESN CONDITIONS

We next observe how the weight parameters evolve in the training process. Figure B shows from
left to right the loss, ESN,, and number of pruned filters (output channels). In this experiment, we
train ResNet-20 on CIFAR-10 dataset with initial weight parameters of a trained model. We employ
SGD with momentum 0.9, weight decay factor 5 x 10~4, and mini-batch size 200, updating for 20
epochs. The learning rate (LR) is constant, with a value varied from 0.32 to 1.81 for each training.
Note that we do not intentionally prune filters in this experiment; rather, filter pruning spontaneously
occurs along with sequential updates of weight parameters by SGD. The center graph shows that as
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(LR) conditions. ESN,, is calculated by Equations (&) and (8).
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the learning rate increases, ESN, decreases due to the larger noise. The number of pruned filters
after epoch 20 is larger with the larger learning rate, which corresponds to smaller ESN,. In the
training process, rather than continuing to increase at a constant rate throughout the training process,
the number of pruned filters steeply increases within a few epochs and then is maintained without
noticeable change.

This indicates that under a small ESN,, condition controlled by the learning rate, the optimizer finds
a solution for reducing the number of parameters by pruning filters and prioritizing increases in am-
plitude of the remaining parameters, rather than letting all parameters survive with small amplitude.

2.6 PRUNE then QUANTIZE

In the previous two subsections, we empirically showed that achieving optimal accuracy in a low
ESN region requires preparation of a slim model before applying quantization. A slim model can
be generated by pruning a fat model or by designing a slim architecture. Based on the lottery
ticket hypothesis (Frankle & Carbin, P(0T9), where a fat or overparameterized network can have
higher potential for finding better optimal parameters by SGD training, we adopt the former method,
namely, pruning weight parameters from a pretrained fat model. We apply ADMM regularization
for structured pruning (Wang et al], 20T9h), since this achieves state-of-the-art performance.

In this experiment, we evaluate ResNet-20 on CIFAR-10 dataset. We update pretrained weight
parameters through the SGD algorithm with alternating direction method of multipliers (ADMM)
regularization (Wang et al], Z0T9h) for a few additional epochs. We then fine-tune the resulting
pruned model over 160 epochs. In this fine tuning, we employ SGD with momentum 0.9 and set
the mini-batch size to 100 and the initial learning rate to 0.1, followed by cosine annealing without
restart. The weight decay factor is set to 5 x 10~%. Since the weight parameters are not yet quantized
in this phase, we update all parameters, except that we set weights for the filters (output channels)
and channels (input channels) pruned in the previous phase to zero. Finally, we apply quantization.

As Figure B shows, the Pareto frontier significantly improves by applying prune-then-quantize (red),
as compared to applying extreme quantization (green). The right graph in Figure B shows a his-
togram of the maximal bit width under each filter (output channel) of the three models indicated by
the broken line in the center graph (ESN,; = 39M(bits)). Since the pretrained model has 800 filters
before pruning and quantization, summations of frequencies for each color are 800. In the pruning
only (blue) case, the weight parameters in 555 filters, the largest number among the three methods,
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Figure 7: Relation between random walk during SGD and quantization noise. Loss often steeply
decreases when LR is shifted by (e.g., 1/10). In this situation, loss before shifting LR is possibly
governed by random walk noise due to the large LR, as shown in the left figure. When we quantize
weight parameters of the trained model, however, the loss or accuracy should be determined by noise
induced by quantization, as shown in the right figure. If we can assume that the loss landscapes of
the two cases should not diverge too much, the loss (or accuracy) after quantization is possibly
predicted by the dependency of loss (or accuracy) on ESN,, during training.

are pruned (represented as 0 bits). Most of remaining filters are 8 bits. In the quantization only
(green) case, the number of pruned filters is a low 77, while the bit width of most remaining filters is
1 bit. In the proposed prune-then-quantize mixed (red) case, the number of pruned filters is 288 and
the bit widths of most remaining filters are 3 or 4 bits, so the remaining filters are mildly quantized.
As this case shows, while the ESN; values are similar, the validation accuracies differ depending on
the number and bit width of the weight parameters. The prune-then-quantize mixed method prop-
erly produces a pruned and mildly quantized model, which achieves far better validation accuracy,
especially in the low ESN region, as compared to the model produced by extremely quantizing a fat
model without pruning.

2.7 ESN, FOR QUANTIZATION

As Section 23 showed, there is a possible quantitative relation between ESN,, during model training
and ESN,, of the pruned and quantized version of that model after training. This finding inspires
us to exploit ESN, information obtained during training to determine the quantization policy, for
example, how many bits to allocate for each layer. Figure [ shows the intuition behind this idea,
namely straightforward use of the ESN,, values for each layer at a certain epoch during training as
targets for quantization. Appendix B describes a preliminary experiment for verifying this idea.

3 EXPERIMENT ON IMAGENET

To verify the validity of our claims, we performed experiments under a post-training quantization
scenario (Banner_ef all, P0T¥) on ImageNet dataset (Deng et all, P109). Post-training quantization
assumes a use-case scenario where a user (e.g., at an edge side) quantizes a given pretrained CNN
model with a limited number of unlabeled training samples for obtaining a lightweight model suited
to a particular situation. As concluded in Section 74, in a low ESN region or with low energy
consumption, we can achieve higher accuracy by quantizing a slim model than by quantizing a fat
model, even if the latter is more accurate. To provide optimal accuracy in a low computational-
cost region, we apply the proposed prune-then-quantize method to the post-training quantization
scenario.

Figure B shows the result of applying our method to ResNet-18 and ResNet-50 on ImageNet dataset.
We used pretrained models™ as basic models with 1x channel width, and prune the models to
various channel widths (0.25x%, 0.5%, and 0.75x). In this experiment, we determine which filters
(output channels) to prune based on the signal norm of weights calculated by Equation (8). We prune
filters in order from the smallest signal norm, and tune each model for the pruned structure through
the SGD algorithm over 4 epochs. The mini-batch size is set to 64, and the learning rate is initialized

"https://download.pytorch.org/models/resnet18-5c106cde.pth,
*https://download.pytorch.org/models/resnet50-19c8e357.pth
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Figure 8: (Left/center) top-1 accuracy on ImageNet versus ESN, 4 and (right) estimated ESN/,
applying the prune-then-quantize method to (upper) ResNet-18 and (lower) ResNet-50.

to 0.1 and divided by 10 at epochs 2 and 3. We then quantize each model. For quantization, we only
fine-tune statistic parameters in BatchNorm layers (called running_mean and running_var in
pytorch (Paszke efall, POT7)) with no labeled data (Sasakiefall, 2019), which is the same condition
as conventional work (Banner ef all, OTX).

In addition to evaluations by ESN, and ESN, to compare our method with the conventional work,
we estimate its computational cost using Equation () with ¢! and f(-) properly defined, as

ESN; =3 > MAC,, x [logy(max(abs(W}i"))) + 11, 7

I m

where MAC, ,, is the number of computation per filter and Wf;l’? is the mth filter of W! .. By
applying the max(-) function, we restrict the number of bits to be same in each filter.

We apply this metric? to a recently proposed efficient MAC array architecture capable of handling
variable bit precision (Maki ef-all, DOTR).

As Figure B shows, significantly using slim models after pruning some filters improves the Pareto
frontier as compared to Banner ef all (Z0IX). For example, in ResNet-18, 57 % top-1 accuracy
is achieved at 2x lower computational cost, and in ResNet-50, 63 % top-1 accuracy is at 4x lower
computational cost. These results suggest that we should adopt a slim model to achieve best accuracy
in low computational cost regions, instead of quantizing weight parameters to an extremely low bit
precision.

4 CONCLUSION

We proposed a hardware-agnostic metric called the effective signal norm (ESN) to measure compu-
tational costs. Using this metric, we demonstrated that a slim model with fewer weight parameters
achieves better Pareto frontier performance in low computational cost regions than does an extremely
quantized fat model. We also showed a possible quantitative relation between weight perturbation
during SGD training and quantization noise or robustness against quantization.

By defining this metric, on the hardware architecture side we can aim at realizing hardware whose
energy consumption is proportional to the metric. On the algorithmic side, we can reduce the metric.
We therefore expect consensus-sharing regarding the metric for computational cost to accelerate
research progress for both algorithms and hardware architectures.

3In Makiefall (ZOIR), this metric is defined as “MAC x bit”, which is essentially same as ESN/,.



Under review as a conference paper at ICLR 2020

5 RELATED WORKS

Quantization Courbariaux & Bengio (Z016); Rastegari et all (2016); Zhu_ef-all (ZOI7) quantize
weight parameters and activations as 1 or 2. Since such extreme quantization deteriorates accuracy
to a nonnegligible extent, quantization methods with, for example, 4-8 bits are also actively ex-
plored (Banner_ef all, POTE; Cin"ef all, POT7) to avoid the accuracy drop. Miyashita et al] (20T6)
attempts to quantize weight parameters and activations in a logarithmic domain, aiming not only at
reducing information loss but also replacing multiplication with bit-shift to simplify computation. To
reduce the average bit width as much as possible while maintaining accuracy, and to exploit it to ac-
celerate inference speed, Maki_efall (Z01T8) proposes variable bit-width quantization co-optimized
with hardware architecture. Although nonuniform quantization ([[ung & Mori, POI8; Han ef all,
2016) and vector or product quantization (Gong et all, Z0T4; Jegou et all, POTT; Stock ef all, POTY)
are also actively studied, these approaches are effective for reducing the memory footprint but not for
directly reducing computational costs. Use cases include quantization-aware training (Conrbarianxi
& Bengid, 2016; Rastegari et all, 2016; Zhu ef all, POT7; Cin_ef all, PO177; Zhang et al], ZOTX) and
post-training quantization (Banner_ef all, DOTR). Quantization-aware training achieves better accu-
racy with lower bit widths, and is almost inevitable for those with extreme quantization. However,
it tends to incur higher training costs in most cases. The post-training quantization scenario, which
is executable with less computational resources and a smaller training dataset, has potentially more
applications, so we also target this scenario.

Pruning Pruning methods include structured pruning, which prunes whole layers, filters, or chan-
nels to maintain a regular structure so that computations are easily parallelized, and unstructured
pruning, which randomly prunes individual weight parameters. Since it is difficult to benefit from
unstructured pruning unless sparsity is sufficiently large, due to its incompatibility with paralleliza-
tion (Cirefall, ZOTY), we target structured pruning. Many pruning methods have also been proposed,
such as criteria-based approaches (CeCun ef all, T990), regularization-based approaches (Han et all,
20719; Wang et all, P0IT9R), and methods employing reinforcement learning (Zhong et all, PUTE). In
this paper, we argue that a pruned slim model performs better after quantization in lower computa-
tional cost regions. Any pruning method can be applied to produce a pruned slim model.

Metric for measuring cost In most quantization papers, the standard metric is accuracy achieved
under a certain bit width. For pruning, the standard metric is the number of parameters or the
number of computations (FLOP). Some papers use inference time when the model runs on specific
hardware (Caiefall, P01Y; [Yang et all, Z0TR), but this metric is strongly hardware-dependent. In this
paper, we propose a hardware-agnostic metric.

Noise during training Relations between learning rate, batch size, and noise during training are
widely discussed (Keskarefall, P0T7; Xing et all, POTR). To make the model more robust to quantiza-
tion, some papers propose intentional addition of noise to gradient or weight parameters (Spallanzani
ef all, P0T9; Baskin ef all, POTXE;H).
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A DETAILS OF THE QUANTIZATION PROCESS

We basically apply a midrise-type quantization (Gershd, T977), but modify it as follows. In the
quantization phase, we prune filters in which all weight parameters are within +A /2, as described
in the following pseudocode with Numpy (Oliphani, Z006) notation.

# Quantize

# W: (filter (out_ch), channel (in_ch), ky, kx)
pruned = numpy.all (abs (W) < delta/2, axis=(1,2,3))
W_int = numpy.floor (W/delta) + 0.5

W_int[pruned, :, :, :] =0

B ESN, FOR OPTIMAL QUANTIZATION POLICY

We attempt to exploit the ESN,, obtained during training to determine a quantization policy using
VGG7 where numbers of filters in all convolutional layers are reduced to 0.25x on CIFAR-10.
The left figure in Figure @ show the validation accuracy versus ESN, during training and after
quantization. As an initial policy, we apply the same bit width for all layers. The results shown in
gray do not fit the blue plot during training, possibly indicating the policy is suboptimal. We next
investigate the ESN,, of each layer and find that the misfit is caused by the sixth layer, as shown
in the right figure. When we consider validation accuracy versus the sixth-layer ESN,, shown
in green symbols, validation accuracy after quantization deteriorates at a much higher ESN,, than
during training. An interpretation is that since this deterioration is caused by other layers (e.g., the
first) rather than the sixth layer, weight parameters in the sixth layer should be more aggressively
quantized. Based on this observation, we modify the quantization policy such that the bit width of
the sixth layer become smaller than that in other layers, thereby improving performance as shown
by the red plot in the left figure. This preliminary experimental result suggests we can use ESN,
information during training to find an optimal quantization policy.

C RESNET-18 VERSUS RESNET-50

The proposed metric allows us to compare different network architectures. In Figure M, we com-
pare the Pareto frontier of validation accuracy versus ESN,, /4 curves for ResNet-18 and ResNet-50.
The plots in Figure [ are extracted from Figure B. This result shows that ResNet-50 has a better
Pareto frontier than does ResNet-18. One convincing reason is that ResNet-50 employs a parameter-
efficient bottleneck structure, whereas ResNet-18 does not. In contrast, ResNet-18 shows better
performance for ESN; < 2G, partly due to the higher sensitivity of ESN, to the number of parame-
ters. This suggests use of ResNet-18 when employing digital computing in this ESN, region. Such
comparisons enabled by the proposed metric are useful when searching for or developing efficient
structures.
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Figure 9: Relation between validation accuracy versus ESN,, during training and after quantization.
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Figure 10: Comparison of ResNet-18 and ResNet-50 with respect to top-1 accuracy on ImageNet
versus ESN,, /4 (left/right).
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Figure 11: Comparison of other methods with respect to top-1 accuracy on ImageNet versus esti-
mated ESNY,.

D COMPARISON WITH OTHER METHODS

In Figure [, we superimpose results from other works on Figure B. Cin'efall (201°7) and
(201R) show better accuracy in smaller ESN/, regions than ours, but these apply quantization-aware
training, whereas our result is obtained by post-training quantization. Although we expect that the
findings presented in this paper will also improve performance of quantization-aware training, we
leave an explicit demonstration of this to future works.

E DERIVATION OF EQUATION (&)

The mean squared noise energy N due to quantization over the all elements in a tensor W is com-
puted as

N =[|W— A Wiw|[7:/[IW][[o, ®)

where Wi, = |W/A| + 0.5, A is the quantization step size and ||W|| is the number of nonzero el-
ements in W. When quantization noise is approximated by a uniform distribution, the mean squared

noise energy is (Gray & Neuhoff, T99R)

A2 2
N = R )
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From Equations (8) and (B),

12

A% = ||W— AWy |3 x . 10
Then,
2 o WG W% Wi
lent”F ||W/AHF - A2 - ||W_A'Wint|‘%:* 12 ° (11)

Here we again assume that quantization noise is uniformly distributed. In this equation, since ||W||

2
and ||W — A - W||2 are respectively the signal and noise norm, the term % is considered
to be S/N, and thus,
(W% _1Wllo [1WIlo

Wi |7 = =S/N - (12)

IW—A-Wi|[7 12 12

We obtain Equation (B) by summing this value over all layers.
F DETAILS OF NETWORK ARCHITECTURES

The network architecures of VGG7 (1x, 0.5x, 0.25%) which we use in section 4 are shown in
table . These architectures are based on the original model of VGG (Simonyan & Zissermarn, 2014).

Table 1: Detailed network architecture of VGG7 for CIFAR-10. C; and Cp represent the number
of input and output channels, respectively in conv-layer. In fc-layer, they represent the number of
input and output neurons

Layer name \éCjG [(150) Vg; G ([0'?;;) VCC’}I G ([0’205;) kernel size | padding | stride
convl 3 128 3 64 3 32 3x3 1 1
conv2 128 | 128 | 64 64 32 32 3x3 1 1

maxpool 128 | 128 | 64 64 32 32 2x2 0 2
conv3 256 | 256 | 128 | 128 64 64 3x3 1 1
conv4 256 | 256 | 128 | 128 64 64 3x3 1 1

maxpool 256 | 256 | 128 | 128 64 64 2x2 0 2
convs 512 | 512 | 256 | 256 | 128 128 3x3 1 1
conv6 512 | 512 | 256 | 256 | 128 128 3x3 1 1

maxpool 512 | 512 | 256 | 256 | 128 128 2x2 0 2

fc 8192 | 10 | 4096 | 10 | 2048 10 - - -
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