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ABSTRACT

We augment adversarial training (AT) with worst case adversarial training
(WCAT) which improves adversarial robustness by 11% over the current state-
of-the-art result in the `2 norm on CIFAR-10. We obtain verifiable average case
and worst case robustness guarantees, based on the expected and maximum values
of the norm of the gradient of the loss. We interpret adversarial training as Total
Variation Regularization, which is a fundamental tool in mathematical image pro-
cessing, and WCAT as Lipschitz regularization.

1 INTRODUCTION

We augment adversarial training (AT) with worst case adversarial training (WCAT) which improves
adversarial robustness by 11% over the current state-of-the-art result (Qian & Wegman, 2018) in the
`2 norm. The method also achieves results comparable to the state-of-the-art results of Madry et al.
(2017) in the `∞ norm. Moreover, our adversarial training step uses only one gradient evaluation
compared to seven steps in the Madry et al. (2017) work. The worst case adversarial training method
is described as follows. During adversarial training, the gradient of the loss is computed for each
perturbed image. WCAT records the largest of the gradients norms, and adds a penalty to the loss
proportional to this term. In many cases we observe that models trained with AT and WCAT have
improved test/validation error over the unregularized model.

In §2 we show that the norm of the gradient of the loss of the model is a measure of the robustness of
a model to adversarial examples. We obtain verifiable worst and average case robustness guarantees,
based on the expected and maximum values of the norm of the gradient of the loss. We then compute
these quantities empirically on trained models, and demonstrate that improving these quantities leads
to proportional improvements in adversarial robustness.

In §3 we interpret adversarial training as Total Variation (TV) Regularization, which is a fundamen-
tal tool in mathematical image processing. TV regularization was introduced for image denoising
(Rudin et al., 1992). It is a measure of the variation of a function, allowing for discontinuities. We
also show that WCAT corresponds to Lipschitz regularization, which appears in Image Inpainting
(Bertalmio et al., 2000) and function approximation (Crandall et al., 2001; Oberman, 2005). Lips-
chitz regularization was used in a recent proof of generalization of deep neural networks (Oberman
& Calder, 2018). Write `(x) = ` ◦ f(x) for the loss of the model. We show that training with AT
and WCAT is equivalent to minimizing

J [`] = E
(x,y)∼D

[`(x)]︸ ︷︷ ︸
expected loss

+ε E
(x,y)∼D

[‖∇x`(x)‖∗]︸ ︷︷ ︸
AT = TV regularization

+λ max
(x,y)∈D

‖∇x`(x)‖∗︸ ︷︷ ︸
WCAT = Lipschitz regularization

(1)

where ε is the size of the adversarial training perturbation, and λ is the WCAT multiplier. The dual
norm ‖ · ‖∗ corresponds to ‖ · ‖1 for attacks measured in `∞ and to ‖ · ‖2 for attacks measured in
`2,1 see §3.1.

1.1 ADVERSARIAL ATTACKS AND ADVERSARIAL TRAINING

The earliest and most successful defense is adversarial training (Szegedy et al. (2013); Goodfellow
et al. (2014); Tramèr et al. (2018); Madry et al. (2017)). Top entries in a recent adversarial defence

1We overload ‘`’ as notation for both the loss and for norms: the meaning should be clear from the context.
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competition (Kurakin et al. (2017)) used Ensemble Adversarial Training (Tramèr et al. (2018)),
where a model is adversarially trained with inputs generated by an ensemble of other models. For
more background, refer to the recent review Goodfellow et al. (2018) which discusses defences
against adversarial attacks and their limitations.

Adversarial attacks seek to find the minimum norm vector which leads to a misclassification by the
model. Finding the optimal attack is intractable (Athalye et al., 2018). An alternative which permits
loss gradients to be used is to consider the attack vector measured in a given norm which most
increases the loss, max‖a‖≤ε `(x+ a).

Adversarial training improves robustness to adversarial attacks by solving the minimax problem

min
w

E
(x,y)∼D

[
max
‖δ‖≤ε

`(f(x+ δ;w), y)

]
In practice, a tractable attack vector, a(x), is used, in place of the optimal δ, leading to

E
(x,y)∼D

[` (x+ a(x))] .

2 ROBUSTNESS GUARANTEES FROM THE LIPSCHITZ CONSTANT

Weng et al. (2018) and Hein & Andriushchenko (2017) showed that the Lipschitz constant of the
model can be used to establish rigorous worst-case bounds on adversarial robustness. In particu-
lar Weng et al. (2018) show that the Lipschitz constant of the model gives a certifiable minimum
adversarial distance: a successful attack on image x will have adversarial distance at least

δ ≥ min
j 6=i∗

fi∗(x)− fj(x)
2Lf

(2)

where Lf is the Lipschitz constant of the model, f , and i∗ is the correct label of x. Thus train-
ing models to have small Lipschitz constant should improve adversarial robustness (Hein & An-
driushchenko (2017); Tsuzuku et al. (2018)).
Remark 2.1 (Application of empirical Lipschitz constants). In theory, it is possible to extend the
data with a function whose Lipschitz constant matches that of the data see §C for more details.
We argue that a model whose Lipschitz constant better approximates the Lipschitz constant of the
data brings us closer to the ground truth. Lipschitz regularization brings the (estimated) Lipschitz
constant of a model close to the Lipschitz constant of the data on which it was trained. For example
on CIFAR-10, the Lipschitz constant for the dataset is 0.36. For a regularized model (ResNeXt-34,
see §5) the estimated Lipschitz constant was 1.32, but was 13.70 for an undefended model (the latter
two measured on the test/validation set).

2.1 ADVERSARIAL ROBUSTNESS BASED ON GRADIENTS OF MODEL LOSS

Here we obtain adversarial robustness bounds based on the gradient of the loss of the model. The
second and third terms in (1) estimate the average and worst case robustness. The first part of the
following result is the analogue of (2), with the model loss instead of the model (which is a scalar
instead of a vector). The second part of the result gives an average case robustness bound.
Lemma 2.2 (Worst-case and expected stability). Write `(x) = ` ◦ f(x) for the loss of the model.
Let a be any adversarial perturbation of norm ‖a(x)‖ ≤ ε. If `(x) is L-Lipschitz continuous then

`(x+ a) ≤ `(x) + Lε (3)

In addition, if TV (`) = E
(x,y)∼D

‖∇`(x)‖∗ ≤ R then

E
(x,y)∼D

[`(x+ a)] ≤ E
(x,y)∼D

[`(x)] +Rε+O(ε2) (4)

The proof is in §B.1
Remark 2.3 (Application of robustness guarantees). One possible use of the result is that we can
estimate adversarial robustness on unseen data drawn from the same distribution using the values of
the terms corresponding to AT and WCAT in (1)
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For example, we estimated the values of the terms corresponding to AT and WCAT in (1) for a
regularized model trained with (1) and for an undefended model. We expect the ratio of these
values between the models to be an effective predictor of the relative robustness of each model. The
regularized model had better values of AT and WCAT by factors of 3.3, and 9, respectively. The
median adversarial distance of the regularized model was better by a factor of 5, which lies between
those factors. See §5 for more empirical results.

3 REGULARIZATION INTERPRETATION OF AT AND WCAT

3.1 ADVERSARIAL TRAINING CORRESPONDS TO TV REGULARIZATION

The next result interprets adversarial training using either the one-step Signed Gradient attack vector
(Goodfellow et al., 2018) or the gradient attack vector as Total Variation regularization.
Lemma 3.1. Adversarial training using the ε-scaled one step attack vector is equivalent up to terms
of order ε2 to augmenting the loss with Total Variation regularization,

J [`] = E
(x,y)∼D

[` (x) + ε‖∇`(x)‖∗]

where the ‖ · ‖∗ is the dual norm to the norm measuring adversarial perturbations.

The proof is in §B.2.

3.2 WORST CASE AT CORRESPONDS TO LIPSCHITZ REGULARIZATION

The basis for this result is Rademacher’s Theorem (Evans, 2018, §3.1), which states that if a function
g(x) is Lipschitz continuous then it is differentiable almost everywhere and

Lip(g) = max
x
‖∇g(x)‖

We obtain an underestimate of Lip(g) by sampling the norm of the gradient on a subset of points.
Definition 3.2 (Method for estimating the Lipschitz constant). Let ` be a Lipschitz continuous
function. Then

max
x∈D
‖∇`(x)‖ ≤ Lip(`) (5)

During training, we apply (5) to `(x) and set D to be a mini-batch to obtain the WCAT term in (1).
When we estimate the Lipschitz constant of a trained model, we use the full test/validation dataset.
Remark 3.3. Regularization of the loss corresponds to partially regularizing the model, but at a much
lower cost. Since the loss is a scalar, regularizing by the Lipschitz constant of the loss is equivalent
to regularization of the model f in one direction. By the chain rule,

∇x `(f(x), y) = ∇f `(f(x), y)∇x f(x)

For example, when ` is the KL divergence, and when f = softmax(z(x)) then

∇x `(f(x), y) = (f(x)− y))∇x z(x)

Thus, in this case, regularizing `(x) corresponds to regularization of z(x) in the direction f(x)− y.

4 IMPLEMENTATION OF THE LIPSCHITZ CONSTANT OF A NETWORK

Data independent upper bounds on the Lipschitz constant of the model go back to Bartlett (1996).
These bounds are based on the product of the norm of the weight matrices, and neglect the effects
of the activation function. We summarize this upper bound as follows. Let W k be the weight matrix
of the k-th layer of a network f comprised of N layers, and suppose all non linearities of a network
are at most 1-Lipschitz. Then

Lipp,q(f) ≤
N∏
k=1

‖W k‖pk,pk−1
(6)
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with p0 = p and pn = q. Certain conditions on the pk’s must be met. For a proof with p, q = 2 see
Tsuzuku et al. (2018).

Recent works based on this estimate include: Cissé et al. (2017), using the distance to the nearest
orthonormal matrix; Miyato et al. (2018), using the 2-norm; Gouk et al. (2018), using either the
1-norm or∞-norm; and Qian & Wegman (2018), using the∞-norm. In these works, the estimate
is used to penalize the Lipschitz constant of the model during training, and so the the logarithm of
the estimate is used. Of these four papers, only the implementation of Gouk et al. accounts for
batch normalization. Since batch normalization multiplies each weight matrix by a diagonal scaling
matrix, the other works are missing important terms in their implementations.

A different method for estimating the Lipschitz constant of a pre-trained model was presented in
Weng et al. (2018), using statistical techniques from extreme value theory. This estimate accurately
captures the minimum adversarial distance needed to successfully misclassify an image. However it
requires at a minimum many tens of model evaluations for each image, and so is not tractable as a
Lipschitz penalty during training.

4.1 COMPARING METHODS

Interpreting (5) as Lipschitz regularization leads to a more accurate and efficient method for esti-
mating the Lipschitz constant in a deep neural network, compared to other recent methods based on
the product of weight matrix norms, whose error grows exponentially in the number of layers. For
deep models, (6) has a large gap: on the models we considered, this estimate was no smaller than
1012 and as large as 1023. In contrast, our empirical results, which are a lower bound (see §D), give
values less than 10. The fact that the robustness guarantees of §2 using (5) give meaningful results
suggests that (5) is an accurate estimate for our purposes.

5 EMPIRICAL RESULTS

We studied image classification on the CIFAR-10 and CIFAR-100 datasets (Krizhevsky & Hinton
(2009)). We tested our methods on three networks, chosen to represent a broad range of architec-
tures: AllCNN-C (Springenberg et al. (2014)), having nine layers; a 34 layer ResNet (He et al.
(2016)); and a 34 layer ResNeXt (Xie et al. (2017)). Training and model details are provided in
Appendix A.

In §5.1 we define error curves, an error metric which allows for easy comparisons of model robust-
ness and attack strength across a full range of attack norms. Then in §5.2 we use these curves to rank
common attack methods. The curves illustrate a clear ranking of attack methods across models. The
change in attack ranking is based on the norm used: Iterative FGSM (`∞ PGD) is the most effective
attack when distance is measured in the `∞ norm; `2 PGD is the most effective attack when distance
is measured in the `2 norm. The attack ranking makes defence robustness easier to assess, since we
only need to check one attack per norm for each model. In §5.3 we compare the different choices of
adversarial defences discussed in this paper, which amounts to a combination of adversarial training
and Lipschitz regularization in the corresponding norm. Finally, in §5.4 we compare our results to
other works.

5.1 ERROR CURVES FOR MODELS AND ROBUSTNESS METRICS

The error curve of a model for a given attack measures the robustness of the model as a function of
the norm of the attack.
Definition 5.1. The error curve Cerr(ε) of the model f for the attack a is the probability over the
test data D that an attack of size ε leads to a misclassification

Cerr(ε) = PD{c(x+ a(x)) 6= c∗(x) | for an attack ‖a(x)‖X ≤ ε}
where c(x) is the model’s label at x and c∗(x) is the true label.

See Figure 1 for error curves for an undefended model over a variety of attacks.

We can compare how models or attacks perform using the model error curve. We report common
adversarial statistics, which can be read off the curve, in Table 1. For example the percent misclas-
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Figure 1: (1a) and (1b): Comparison of attack methods using error curves for undefended ResNeXt-
34, on the CIFAR-10 test set. A higher curve means more probability of error. The `2 projected
gradient method is the most effective attack when measured in `2; iterative FGSM (`∞ PGD) is the
most effective attack when measured in `∞. (1c): Comparison of Iterative FGSM and `2 gradient
ascent on a quadratic function in two dimensions.

sification at adversarial distance ε = 0 and 0.1 (in the 2-norm) are easily read off the error curve.
These values of ε correspond to the test error, and noise which is slightly smaller than a human per-
ceptible perturbation. We also report the median `2 distance which corresponds to the x-intercept of
50% error on the curve.

5.2 ATTACK EVALUATION

We attacked models on the test/validation set using seven untargeted attack methods: gradient attack;
projected gradient descent (constrained in `2); the Fast Gradient Sign Method (FGSM) (Goodfel-
low et al. (2014)); Iterative FGSM (I-FGSM) (Kurakin et al. (2016)), or projected gradient descent
in `∞; DeepFool (Moosavi-Dezfooli et al. (2016)); the Carlini-Wagner attack (Carlini & Wagner,
2017); and the Boundary attack (Brendel et al., 2018). The first six methods are first order gradient
based white-box attacks, while the last is a black-box attack. I-FGSM and the `2 projected gradient
attack are iterative gradient methods, whereas FGSM and the gradient attack are single step. All
attacks were implemented with Foolbox (Rauber et al. (2017)). Hyperparameters were set to Fool-
box defaults, except for the Boundary attack2. For each image and attack method, we calculated the
adversarial distance in `2 and `∞.

On each model, dataset, and regularization method, we tested all seven attack methods on the entire
test/validation set. We compared attack methods using the attack error curve. For example see
Figure 1, where we plot attack error curves for each attack method on an undefended model. We
plot the attack error curves in both Euclidean and `∞ distances.

When attack norms are measured in `∞, the most effective attack is Iterative FGSM (PGD in `∞).
Similarly, when attack norms are measured in `2, `2 projected gradient descent is the strongest
attack. See Figure 1 for an illustration. We observed the same ranking of attacks on all models and
defences studied. For this reason in what follows, we only report model statistics using projected
gradient descent corresponding to the distance metric used (either `2 or `∞).

5.3 EVALUATION OF DEFENCE METHODS

We tested many combinations of defence methods. We use the superscipts 0, 1, 2 to indicate the type
of adversarial training used: 0 for none, 1 for one step FGSM, and 2 for one step gradient ascent.
We used the superscript Lip for Lipschitz regularization, which measured the gradient in the same
norm as was used for adversarial training. For example J2−Lip indicates adversarial training and
Lipschitz regularization in the `2 norm.

2 The Boundary attack is a computationally demanding attack. Instead of attacking all test images, we only
attacked the first 1000 images, for 5000 iterations.
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Figure 2: Adversarial robustness results against `2 PGD attacks using ResNeXt networks on CIFAR
10 and 100. The curves are for the undefended (baseline) model, and different regularizations,
showing the error rates at different attack vectors norms. The `2 PGD attack was the most effective
in the `2 norm.

We also considered adding a final sigmoid layer to the network, prior to the softmax. The choice
of sigmoid we choose is tanh, and is inspired by (but not equivalent to) tanh-estimators used in
classical statistics as a robust estimator (Hampel et al., 2011, Chapter 2). The intuition behind this
choice is to normalize the logit scores of the model, which we believe should improve robustness
to outliers. Outside of deep learning, tanh-estimators have been successfully used to normalize
scores and improve robustness, for example in machine learning biometrics (Jain et al. (2005)). See
Appendix A.1 for layer details.

Model robustness is evaluated on the entire test/validation set using the median adversarial distance
in both `2 and `∞, and the percent misclassified at adversarial `2 distance ε = 0.1. We chose ε = 0.1
because at this magnitude attacks are still imperceptible to the human eye. For ease of comparison
with other works, we also report percent misclassified at `2 distance ε = 1.5, and (on CIFAR-10)
`∞ distance ε = 8

255 . In addition we plot the attack error curve for each model. Table 1 and Figure
2 present a summary of results for ResNeXt-34. The best statistics are in bold. Complete results,
for all models, datasets, and adversarial defences, are presented in Appendix D.

Here we summarize our results for ResNeXt-34, the model studied with the greatest capacity using
the most effect attack in the `2 norm, `2 PGD. Refer also to Table 1 for a summary. Without adver-
sarial perturbations, all ResNeXt-34 models achieve roughly 4% test error on CIFAR-10. However,
the undefended (baseline, J0) model achieves 54% test error at adversarial `2 distance ε = 0.1. Ad-
versarial training via FGSM (J1) reduces test error to 24.6%, whereas `2 adversarial training (J2)
reduces test error to 13.5%. A combination of all defences (J2−Lip with tanh) further reduces test
error to 12.1%. The models are ranked in the same order when instead measured with median `2 ad-
versarial distance. The model with all defences has median adversarial distance six times that of the
undefended model. FGSM (J1) only doubles the median adversarial distance relative to the base-
line undefended model. Figure 2a illustrates that this ranking of defences holds over all distances of
adversarial perturbations.

We observe a similar ranking on CIFAR-100. See for Figure 2b. Unperturbed, all models achieve
between 21% and 22% test error. Without adversarial defences, ResNeXt-34 (4x32d) has a test error
of 74% at adversarial `2 distance ε = 0.1. Adversarial training alone brings the test error down to
56.3% and 53.7%, with respectively FGSM (J1) and `2 (J2) adversarial training. A combination of
all defences further reduces test error to 42.6%. Median `2 adversarial distance increased from 0.05
on the undefended model to 0.14 on the model with all defences.

The test/validation error of the regularized models is in many cases better than the baseline unde-
fended model. On CIFAR-10 AT and WCAT can improve test/validation error by nearly one percent
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Table 1: Adversarial statistics with ResNeXt-34. The columns ‖∇ `‖2 and ‖∇ f‖2,∞ report the
maximum observed norm on the test data.

Euclidean distance max test statistics

Dataset defense method median % Err at ‖∇ `‖2 ‖∇ f‖2,∞distance ε = 0.1

CIFAR-10

J0 (baseline) 0.09 53.98 85.21 13.70
J1 (AT, FGSM) 0.18 24.63 35.77 6.27
J2 (AT, `2) 0.30 13.54 32.13 5.22
J2−Lip & tanh 0.56 12.12 9.22 1.32

CIFAR-100

J0 (baseline) 4.74e−2 74.18 93.83 1.89
J1 (AT, FGSM) 8.08e−2 56.34 34.60 0.71
J2 (AT, `2) 8.61e−2 53.77 44.81 0.73
J2−Lip & tanh 0.136 42.58 17.97 0.35

(see AllCNN results in Table 3). On CIFAR-100 some regularized models perform slightly worse,
but typically the difference is no more than one or two percent.

In Table 1 we also report statistics measuring the model’s Lipschitz constant. For vector valued
functions, f , in order to measure the Lipschitz constant the induced matrix norm3 is used, com-
ing from the norms in the source and target spaces. Further statistics for all adversarial defences
and models are deferred to Appendix D. The columns ‖∇l‖2 and ‖∇f‖2,∞ give the maximum of
these norms over the test/validation set. Employing all defences significantly decreases the norm
of the model Jacobian on the test data, and hence improves model robustness. On CIFAR-10 the
model with all defences has Jacobian norm 10 times smaller than the undefended model, whereas
adversarial training only improves the Jacobian norm by a factor of three at most. Similarly on
CIFAR-100, adversarial training alone improves the norm of the Jacobian by a factor of no more
than three. However a combination of all defences decreases the norm of the model Jacobian by a
factor of six. These statistics indicate that 2-Lipschitz regularization of the loss, combined with `2
adversarial training, dramatically reduce the Lipschitz constant of a network measured in the 2,∞
norm.

Interestingly, 2-Lipschitz regularization of the loss also decreases the 1, 1 Jacobian norm of the
model (see Tables 4 and 6). Thus 2-Lipschitz regularization improves robustness to `∞ attacks as
well.

In Appendix D we report results for all models and combinations of defence methods. Of the
individual defences by themselves, adversarial training (J1 or J2) improves model robustness the
most. We find `2 adversarial training (J2) to be more effective than FGSM (J1) when attacks are
measured in `2. We observe the same ranking of defence methods for AllCNN and ResNet-34.
Adversarial training improves model robustness. However model robustness is further improved by
adding Lipschitz regularization of the loss, which empirically decreases the Jacobian norm of the
model on the test data.

In terms of training time, both adversarial training and Lipschitz regularization increase training
time by a factor of no more than four. In contrast, adding a final tanh layer to normalize the logits
is nearly free, and consistently improves model robustness by itself.

5.4 COMPARISON WITH OTHER WORK

On the CIFAR-10 dataset (as of revision) the current state-of-the-art `2 robustness is Qian & Weg-
man (2018). Without adversarial training, their method achieves 89.9% error at ε = 1.5. In contrast,
without adversarial training, Lipschitz regularization as implemented here achieves 78.42% error
at ε = 1.5, an improvement of over 11%. With adversarial training, our results are comparable to
Qian & Wegman (2018): they achieved 79.6% error at adversarial perturbation ε = 1.5, whereas
our method achieves 78.59%, an improvement of 1%. A direct comparison is difficult, since Qian
& Wegman used the Carlini-Wagner attack, which (with Foolbox defaults) is a weaker `2 attack

3The induced norm of a matrix A is defined as ‖A‖p,q = maxx 6=0
‖Ax‖q
‖x‖p (Horn et al., 1990, Chapter 5.6.4)
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than the attack used here (`2 PGD), so our results should be adjusted accordingly. (We applied the
Carlini-Wagner attack but we only recorded the results for the strongest attack).

After revision we ran comparisons for attacks measured in `∞. We only used one step adversarial
training. The current state-of-the-art on CIFAR-10 is Madry et al. (2017) which used seven steps
of `∞ PGD. The strongest attack achieves 54.2% error at ε = 8

255 . Our best model, trained with
J2−Lip regularization, is slightly worse, with 62.4% error at ε = 8

255 . We expect that multi-step
adversarial training would improve our results in this setting.
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A MODEL AND TRAINING DETAILS

We used standard data augmentation for the CIFAR dataset, comprising of horizontal flips, and
random crops of padded images, four pixels per side. Images are scaled to have pixel values in
[0, 1]. We used square cutout (Devries & Taylor (2017)) of width 16 on CIFAR-10, and width 8 on
CIFAR-100, but no dropout. Batch normalization was used after every convolution layer. We used
SGD with an initial learning rate of 0.1, momentum set to 0.9, and a batch size of 128. CIFAR-10
was trained for 200 epochs, dropping the learning rate by a factor of five after epochs 60, 120, and
180. On CIFAR-100, networks were trained for 300 epochs, and the learning rate was dropped by
a factor of 10 after epochs 150 and 225. For CIFAR-10 weight decay (Tikhonov/`2 regularization)
was set to 5e−4; on CIFAR-100 it was 1e−4.

For networks with Lipschitz regularization in the 2-norm, the Lagrange multiplier λ of the excess
Lipschitz term was set to λ = 0.1. With 1-norm Lipschitz regularization, the Lagrange multiplier
was scaled down by a factor of

√
n from the 2-Lipschitz Lagrange multiplier, where n is the input

dimension. Adversarially trained models were trained with images perturbed to an `2 distance of
ε = 0.01. We did not tune either of these hyperparameters.

For CIFAR-10, the ResNeXt architecture we used had a depth of 34 layers, cardinality 2 and width
32, with a basic residual block rather than a bottleneck. The branches (convolution groups) of the
blocks were aggregated via a mean, rather than using a fully connected layer. For CIFAR-100 the
architecture was the same, but had cardinality 4.

A.1 PRE-softmax SIGMOID LAYER

Prior to the final softmax layer, we found inserting a sigmoid activation function improved model
robustness. In this case, the sigmoid layer comprised of first batch normalization (without learnable
parameters), followed by the activation function t tanh(xt ), where t is a single learnable parameter,
common across all layer inputs.

Other possible defences discussed in Goodfellow et al. (2018) include input validation and prepro-
cessing, which would potentially allow adversarial samples to be recognized before being input to
the model, and architecture modifications designed to improve robustness to adversarial samples.
For more information we refer to the review (Goodfellow et al. (2018)) and the discussion of attack
methods in (Brendel et al. (2018)).

B PROOFS

B.1 PROOF OF LEMMA 2.2

Proof. By Lipschitz continuity of `
|`(x+ a)− `(x)| ≤ L‖a‖ = Lε

There are two cases for the left-hand side, depending on the sign. In both cases we obtain (3).

Using Taylor’s theorem
`(x+ a(x)) = `(x) +∇`(x) · a(x) +O(ε2)

≤ `(x) + ‖∇`(x)‖∗‖a(x)‖+O(ε2) by dual norm §3.1

≤ `(x) + ε‖∇`(x)‖∗ +O(ε2)
Taking expectations, we obtain (4).
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Table 2: Lipschitz constants of common training sets. CIFAR-100 has several duplicated images
with different labels, these were removed from the calculation.

Dataset MNIST FashionMNIST CIFAR-10 CIFAR-100
Lip2,∞(D) 0.417 0.626 0.364 1.245

B.2 PROOF OF LEMMA 3.1

The following result shows that Signed Gradient (Goodfellow et al., 2014) attack, and the normalized
gradient attack are nearly optimal in the following sense.
Lemma B.1. Write `(x) = `(f(x), y). The attack vector directions

(a)i =
∇`(x)i
|∇`(x)i|

, and a =
∇`(x)
‖∇`(x)‖2

,

are nearly optimal the `∞ and `2 norm, respectively, in the sense that

`(x+ εa) = max
‖b‖p≤ε

`(x+ b) +O(ε2), p =∞, 2, respectively

and moreover,

`(x+ εa) = `(x) + ε‖∇`(x)‖p +O(ε2), p = 1, 2, respectively (7)

First observe that the proof of Lemma 3.1 follows by taking expectations in (7). Next we prove
Lemma B.1.

The optimal attack solves
max
‖a‖≤ε

`(x+ a) (8)

Proof. Use the Taylor expansion

`(x+ εa) = `(x) + εa · ∇x`(x) +O(ε2)
Thus, the optimal attack vector defined by (8) in a generic norm ‖ · ‖ can be approximated to order
ε2 by solving the problem

max
‖a‖≤1

∇x`(f(x), y) · a

According to (Boyd & Vandenberghe, 2004, A.1.6), the equation

max
‖a‖≤1

b · a = ‖b‖∗

where the norm on the right hand size is the dual norm. Thus

max
‖a‖≤ε

∇x`(f(x), y) · a = ε‖∇x`(f(x), y)‖p, p = 1, 2 respectively.

C LIPSCHITZ CONSTANT OF DATA AND OPTIMAL EXTENSIONS

Define the Lipschitz constant of the data (in the 2,∞ norm) to be

Lip2,∞(D) = max
x1,x2∈D

{
‖c∗(x1)− c∗(x2)‖∞
‖x1 − x2‖2

∣∣∣∣ c∗(x1) 6= c∗(x2)

}
Table 2 lists the Lipschitz constant of the training data for common datasets, which are all small: all
but one are below 1 in the 2,∞ norm.

The Lipschitz extension theorem (Valentine, 1945) says that given function values {f(x)}x∈D, there
exists an extension fext which perfectly fits the data, and has the same Lipschitz constant, provided
the appropriate norm are used on the X and Y spaces. This can be done using, for example, the 2-
norm for X and the∞ norm on the label space. In other norms, we can also make an extension, but
the Lipschitz constant may increase (Johnson & Lindenstrauss, 1984). Of course, such a function
may not be consistent with a given architecture.

See Table 2, where we present the Lipschitz constant of common datasets.
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Table 3: CIFAR-10 adversarial statistics

Euclidean adversarial distance `∞ adversarial distance

Model defense method % Err at median % Err at median % Err at
ε = 0 distance ε = 0.1 ε = 1.5 distance ε = 8

255

AllCNN

J0 6.01 0.13 38.11 94.10 4.3e−3 98.89
J0−Lip1 6.37 0.22 23.5 94.32 6.3e−3 89.83
J0−Lip2 6.26 0.17 29.27 94.02 5.3e−3 91.19
J0 & tanh 5.41 0.19 32.61 89.51 6.8e−3 80.91
J0−Lip1 & tanh 5.69 0.24 21.85 95.63 7.1e−3 84.71
J0−Lip2 & tanh 5.45 0.21 25.04 90.8 6.8e−3 84.45
J1 5.30 0.21 24.4 92.4 6.5e−3 87.40
J1−Lip1 6.08 0.24 21.61 92.99 7.1e−3 88.13
J1 & tanh 5.05 0.26 22.25 95.91 8.8e−3 75.78
J1−Lip1 & tanh 5.47 0.29 18.85 92.52 8.8e−3 80.45
J2 5.90 0.29 17.09 86.38 9.4e−3 81.13
J2−Lip2 5.84 0.29 16.86 88.63 9.2e−3 83.10
J2 & tanh 5.10 0.38 16.19 81.58 13.4e−3 68.97
J2−Lip2 & tanh 5.27 0.35 15.00 83.46 11.8e−3 73.73

ResNet34

J0 6.00 0.09 56.00 100 2.3e−3 100
J0−Lip1 6.81 0.19 24.75 100 5.2e−3 100
J0−Lip2 5.43 0.17 27.08 100 4.8e−3 100
J0 & tanh 5.54 0.20 34.44 97.41 7.7e−3 89.90
J0−Lip1 & tanh 7.3 0.25 25.56 94.82 7.3e−3 88.67
J0−Lip2 & tanh 6.14 0.21 28.66 94.47 6.7e−3 88.59
J1 5.68 0.16 30.31 100 4.4e−3 97.87
J1−Lip1 7.02 0.22 22.46 100 5.9e−3 95.96
J1 & tanh 5.94 0.24 25.96 99.51 8.4e−3 92.33
J1−Lip1 & tanh 6.87 0.28 21.47 96.21 8.4e−3 88.94
J2 5.57 0.25 18.19 99.95 7.4e−3 99.09
J2−Lip2 5.65 0.28 16.74 99.99 7.9e−3 87.72
J2 & tanh 5.52 0.46 17.45 93.2 17.1e−3 71.55
J2−Lip2 & tanh 5.81 0.40 15.84 91.27 14.3e−3 77.71

ResNeXt34
(2x32d)

J0 4.07 0.09 53.98 100 2.7e−3 100
J0−Lip1 5.36 0.22 20.35 100 5.9e−3 99.97
J0−Lip2 4.28 0.21 19.13 100 5.8e−3 99.96
J0 & tanh 4.05 0.34 23.97 87.75 13.4e−3 73.33
J0−Lip1 & tanh 4.70 0.33 18.7 86.46 10.5e−3 78.39
J0−Lip2 & tanh 4.18 0.33 19.64 78.42 11.1e−3 72.46
J1 3.87 0.19 23.26 100 5.6e−3 92.74
J1−Lip1 5.02 0.25 17.16 100 6.93e−3 91.83
J1 & tanh 4.16 0.36 20.44 92.87 12.8e−3 75.60
J1−Lip1 & tanh 4.84 0.34 16.92 89.23 10.8e−3 81.88
J2 3.58 0.30 13.54 99.92 9.0e−3 98.34
J2−Lip2 4.13 0.31 12.52 99.89 9.1e−3 98.10
J2 & tanh 3.80 0.61 12.71 87.19 23.2e−3 62.44
J2−Lip2 & tanh 4.08 0.56 12.12 78.59 20.4e−3 63.82

D FURTHER EXPERIMENTAL RESULTS

Here we present complete results for all regularization types studied, on all models and datasets
considered. Adversarial distances reported in `2 were generated using `2 PGD; distances in `∞
were generated using `∞ PGD (Iterative FGSM).
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Table 4: CIFAR-10 stability statistics. Each column reports the maximum observed norm over the
test data.

Model defense method ‖∇ `‖2 ‖∇ f‖2,∞ ‖∇ `‖1 ‖∇ f‖1,1

AllCNN

J0 13.88 2.12 490.38 0.71
J0−Lip1 8.41 1.07 249.00 0.66
J0−Lip2 8.71 1.29 308.19 0.53
J0 & tanh 13.94 1.70 460.83 0.54
J0−Lip1 & tanh 9.45 1.44 345.78 0.60
J0−Lip2 & tanh 6.88 0.88 225.87 0.32
J1 12.84 1.70 374.02 0.65
J1−Lip1 7.62 1.03 250.18 0.57
J1 & tanh 13.88 1.95 409.48 1.16
J1−Lip1 & tanh 7.93 1.15 280.40 0.78
J2 6.15 0.85 214.54 0.57
J2−Lip2 5.11 0.79 186.21 0.43
J2 & tanh 9.08 1.30 322.52 0.74
J2−Lip2 & tanh 7.94 1.16 256.49 0.68

ResNet34

J0 73.73 11.67 2702.20 3.97
J0−Lip1 15.19 2.58 604.91 0.78
J0−Lip2 20.56 3.12 772.40 0.94
J0 & tanh 36.88 4.75 1307.94 1.41
J0−Lip1 & tanh 9.29 1.29 341.03 0.47
J0−Lip2 & tanh 7.69 0.99 294.28 0.33
J1 32.55 4.87 1203.04 1.76
J1−Lip1 12.31 1.93 451.99 0.83
J1 & tanh 22.71 3.16 897.02 1.26
J1−Lip1 & tanh 8.77 1.18 297.64 0.68
J2 18.25 2.91 703.43 0.95
J2−Lip2 12.61 1.88 476.62 0.76
J2 & tanh 14.98 2.06 546.27 0.70
J2−Lip2 & tanh 7.40 1.25 260.89 0.51

ResNeXt34
(2x32d)

J0 85.21 13.70 2729.44 4.06
J0−Lip1 15.32 2.30 533.59 1.22
J0−Lip2 21.39 3.22 829.35 1.90
J0 & tanh 43.65 5.87 1598.69 2.32
J0−Lip1 & tanh 10.09 1.49 339.86 0.89
J0−Lip2 & tanh 8.32 0.96 322.39 0.46
J1 35.77 6.27 1313.00 1.88
J1−Lip1 14.26 2.16 469.37 1.37
J1 & tanh 24.98 3.74 840.59 1.46
J1−Lip1 & tanh 9.14 1.32 308.25 0.63
J2 32.13 5.22 1064.98 2.11
J2−Lip2 14.10 2.14 483.84 1.26
J2 & tanh 18.90 2.40 663.96 0.89
J2−Lip2 & tanh 9.22 1.32 341.11 0.59
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Table 5: CIFAR-100 adversarial statistics

Euclidean distance `∞ distance

Model defense method % Err at median % Err at median % Err at
ε = 0 distance ε = 0.1 distance ε = 1

255

AllCNN

J0 25.25 6.2e−2 63.58 1.8e−3 72.76
J0−Lip1 26.31 8.9e−2 53.27 2.4e−3 63.31
J0−Lip2 25.89 7.8e−2 56.45 2.2e−3 66.29
J0 & tanh 26.06 6.1e−2 64.77 1.9e−3 72.23
J0−Lip1 & tanh 26.4 8.8e−2 54.9 2.2e−3 65.16
J0−Lip2 & tanh 26.23 7.9e−2 56.26 2.3e−3 63.83
J1 25.81 8.9e−2 56.26 2.4e−3 63.76
J1−Lip1 25.81 10.7e−2 49.65 2.8e−3 58.99
J1 & tanh 25.81 8.8e−2 55.03 2.2e−3 65.24
J1−Lip1 & tanh 26.55 9.9e−2 50.42 2.7e−3 59.6
J2 25.64 8.6e−2 53.85 2.5e−3 62.76
J2−Lip2 25.60 9.7e−2 50.71 2.7e−3 59.50
J2 & tanh 26.27 8.2e−2 54.81 2.5e−3 63.10
J2−Lip2 & tanh 26.05 8.7e−2 53.24 2.5e−3 61.50

ResNet34

J0 27.42 2.6e−2 90.41 0.07e−3 94.86
J0−Lip1 29.44 6.8e−2 62.38 1.7e−3 74.52
J0−Lip2 28.18 4.8e−2 70.94 1.4e−3 81.88
J0 & tanh 40.72 1.5e−2 81.19 0.05e−3 82.63
J0−Lip1 & tanh 29.87 6.9e−2 60.83 1.7e−3 71.11
J0−Lip2 & tanh 38.61 3.6e−2 68.34 1.0e−3 74.60
J1 28.81 5.8e−2 66.59 1.4e−3 78.09
J1−Lip1 29.51 7.9e−2 56.73 2.0e−3 68.03
J1 & tanh 29.38 5.9e−2 62.45 1.6e−3 71.31
J1−Lip1 & tanh 30.25 7.9e−2 55.6 2.1e−3 64.61
J2 28.21 5.6e−2 66.12 1.5e−3 75.84
J2−Lip2 28.21 6.9e−2 66.12 1.8e−3 70.15
J2 & tanh 29.19 5.6e−2 64.51 1.7e−3 71.37
J2−Lip2 & tanh 28.01 7.1e−2 58.40 2.1e−3 66.08

ResNeXt34
(4x32d)

J0 21.24 4.7e−2 74.18 1.4e−3 81.52
J0−Lip1 23.62 9.9e−2 51.05 2.6e−3 62.45
J0−Lip2 21.97 10.8e−2 47.64 3.2e−3 55.51
J0 & tanh 21.05 9.4e−2 52.28 1.3e−3 74.88
J0−Lip1 & tanh 23.39 11.7e−2 46.99 3.2e−3 56.12
J0−Lip2 & tanh 21.05 9.4e−2 52.28 2.7e−3 60.90
J1 22.06 8.8e−2 53.09 2.5e−3 63.71
J1−Lip1 23.50 11.8e−2 47.22 3.1e−5 56.23
J1 & tanh 22.88 8.7e−2 53.71 2.5e−3 62.30
J1−Lip1 & tanh 23.23 13.7e−2 43.59 3.7e−3 51.48
J2 21.57 8.6e−2 53.77 2.6e−3 61.72
J2−Lip2 21.73 11.2e−2 46.79 3.2e−3 55.92
J2 & tanh 21.01 9.9e−2 50.33 3.1e−3 55.87
J2−Lip2 & tanh 21.47 13.6e−2 42.58 4.0e−3 48.98
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Table 6: CIFAR-100 stability statistics. Each column reports the maximum observed norm over the
test data.

Model defense method ‖∇ `‖2 ‖∇ f‖2,∞ ‖∇ `‖1 ‖∇ f‖1,1

AllCNN

J0 27.52 0.45 971.82 0.15
J0−Lip1 15.20 0.29 539.26 0.09
J0−Lip2 20.36 0.32 744.05 0.10
J0 & tanh 8.94 0.12 344.42 0.05
J0−Lip1 & tanh 20.20 0.34 727.95 0.10
J0−Lip2 & tanh 6.42 0.08 207.62 0.03
J1 17.78 0.37 614.76 0.11
J1−Lip1 15.67 0.26 561.61 0.08
J1 & tanh 23.88 0.40 846.45 0.13
J1−Lip1 & tanh 15.71 0.26 503.44 0.09
J2 19.94 0.34 758.63 0.11
J2−Lip2 16.22 0.27 569.32 0.08
J2 & tanh 23.18 0.38 809.10 0.11
J2−Lip2 & tanh 19.43 0.31 710.88 0.10

ResNet34

J0 88.75 1.59 3235.35 0.76
J0−Lip1 16.73 0.31 608.20 0.11
J0−Lip2 27.61 0.47 1036.65 0.16
J0 & tanh 27.11 0.38 951.95 0.19
J0−Lip1 & tanh 15.74 0.30 591.40 0.09
J0−Lip2 & tanh 7.87 0.09 301.96 0.03
J1 25.99 0.51 994.92 0.19
J1−Lip1 15.19 0.28 534.66 0.11
J1 & tanh 24.02 0.41 811.88 0.18
J1−Lip1 & tanh 13.38 0.24 511.13 0.08
J2 31.09 0.45 1054.41 0.33
J2−Lip2 18.04 0.35 669.75 0.11
J2 & tanh 27.84 0.44 964.46 0.14
J2−Lip2 & tanh 16.81 0.27 639.93 0.08

ResNeXt34
(4x32d)

J0 93.83 1.89 3130.45 0.69
J0−Lip1 22.53 0.36 774.36 0.18
J0−Lip2 25.46 0.43 882.66 0.16
J0 & tanh 50.69 0.64 1401.32 0.29
J0−Lip1 & tanh 19.67 0.40 712.80 0.15
J0−Lip2 & tanh 9.91 0.12 352.78 0.04
J1 34.60 0.71 1240.98 0.23
J1−Lip1 21.66 0.36 816.33 0.14
J1 & tanh 41.69 0.74 1591.90 0.27
J1−Lip1 & tanh 15.81 0.28 564.42 0.10
J2 44.81 0.73 1683.28 0.27
J2−Lip2 27.58 0.46 1033.29 0.15
J2 & tanh 40.04 0.72 1398.56 0.23
J2−Lip2 & tanh 17.97 0.35 642.79 0.13
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