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ABSTRACT

Recurrent Neural Networks (RNNs) are powerful tools for solving sequence-based
problems, but their efficacy and execution time are dependent on the size of the
network. Following recent work in simplifying these networks with model pruning
and a novel mapping of work onto GPUs, we design an efficient implementation
for sparse RNNs. We investigate several optimizations and tradeoffs: Lamport
timestamps, wide memory loads, and a bank-aware weight layout. With these
optimizations, we achieve speedups of over 6× over the next best algorithm for
a hidden layer of size 2304, batch size of 4, and a density of 30%. Further, our
technique allows for models of over 5× the size to fit on a GPU for a speedup of
2×, enabling larger networks to help advance the state-of-the-art. We perform case
studies on NMT and speech recognition tasks in the appendix, accelerating their
recurrent layers by up to 3×.

1 INTRODUCTION

Many sequence-based problems, including Speech Recognition (Amodei et al., 2015) and Neural
Machine Translation (NMT) (Bahdanau et al., 2014), can be solved effectively with Recurrent
Neural Networks (RNNs). Appleyard et al. (2016) showed that these networks can run efficiently
on massively parallel processors such as GPUs, and Diamos et al. (2016) found that if the network
is small enough to fit in the register file of a GPU, a persistent approach can be used to increase
performance.

In parallel, many network compression methods (Han et al., 2016c; 2015; Guo et al., 2016) have
been shown to reduce the model size of both Convolutional Neural Networks (CNNs) and RNNs.
Recent work in this area has found that model pruning, in particular, can lead to significant reductions
in the number of important network parameters for RNNs (Narang et al., 2017; See et al., 2016)

We present an approach that combines both of these techniques into an efficient and expandable
approach. In particular, our work makes the following contributions:

• Larger sparse RNNs can be run more efficiently on GPUs.

• Sparse RNNs can be run with smaller batch sizes more efficiently on GPUs.

• Various optimizations on top of the naïve implementation, necessary to achieve high perfor-
mance.

• Case studies using our technique showing 1) generalization to LSTMs, 2) practical network
design considerations, and 3) speedups of up to 3× on two non-synthetic workloads.

A naïve implementation of the idea, presented in Section 3, leads to limited benefit; we present
a series of optimizations in Section 4 that help to achieve a high level of performance. Section 5
describes the experimental setup and results, and we discuss future work and our conclusions in
Sections 6 and 7. The appendix presents a case study on a machine translation task.

∗Indicates equal contribution
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2 RELATED WORK

2.1 RNNS

Recurrent Neural Networks (RNNs) are powerful tools for solving series-based problems, such as
NMT (Bahdanau et al., 2014; Hannun et al., 2014; Amodei et al., 2015; Luong et al., 2015), language
modeling (Mikolov et al., 2010), and various NLP tasks (Collobert et al., 2011). More complex
recurrent networks have been devised to build on the basic RNN structure, such as Long/Short Term
Memory networks (LSTMs) (Hochreiter & Schmidhuber, 1997) and Gated Recurrent Units (GRUs)
(Chung et al., 2014). Though we focus on RNNs in this work for simplicity, our approach can extend
to other recurrent network types, such as the LSTMs used in our case study. In particular, we build
on a recent GPU-based method storing recurrent weights on-chip (Diamos et al., 2016).

2.2 MODEL SIMPLIFICATION

Since neural networks are tasked with solving incredibly complex problems, they can become
incredibly complex models. So, considerable effort is spent simplifying network models so they run
more efficiently and can be deployed on smaller hardware. In this work, we focus on pruning, though
other orthogonal simplification techniques (such as quantization (Gong et al., 2014), weight sharing
(Chen et al., 2015), and tensor approximations (Cai et al., 2014)) are also possible.

Network pruning is the process of inducing sparsity in the weights of the network model (LeCun
et al., 1990; Hassibi et al., 1993) and can be used as a regularizer (Thodberg, 1991; Giles & Omlin,
1994; Han et al., 2017), a method of compression (Han et al., 2015; 2016c), or a way to reduce the
computational workload (Han et al., 2016b). Recent results show that this technique is applicable to
recurrent networks used in a variety of tasks, from speech recognition (Han et al., 2016a; Narang
et al., 2017) to machine translation (See et al., 2016) and image captioning (Han et al., 2016b).

Different pruning techniques include fine-grained, unstructured pruning (Han et al., 2015); regular,
structured pruning at a small scale (Anwar et al., 2015; Li et al., 2016; Wen et al., 2016); and pruning
entire filters that results in a dense workload with smaller dimensions (Molchanov et al., 2017). In
this work, we assume the sparsity is unstructured so as to remain useful in the general case; there are
some simplifications that could be made if structure is guaranteed.

3 IMPLEMENTATION DETAILS

We draw heavily from Diamos et al. (2016), in which the authors use the large on-chip storage of
GPUs to hold the recurrent weights. This approach is briefly discussed here, followed by details of
how our sparse technique differs.

3.1 RNN OPERATION

A recurrent network’s operation is conceptually simple, and each time step can be expressed by
Equation 1:

ht = g (Urht−1 +Wxt + b) (1)

where Ur is the recurrent weight matrix, W is the input-to-hidden weight matrix, b is a bias term, and
g is an elementwise activation function. The input-to-hidden weight matrix (Wxt) calculation has no
dependency, so it can be processed in parallel and added to b, becoming b′. The formula simplifies to
Equation 2:

ht = g (Urht−1 + b′) (2)

3.2 PERSISTENT RNNS

In a persistent RNN implementation, weights Ur are stored in on-chip register files so each thread
keeps x× y (rows× columns) weights, while the activations (ht−1) are stored in shared memory.
Each row is processed by one warp. The number of thread blocks is set to the number of Streaming
Multiprocessors (SMs) in the system, and blocks work together processing all rows to perform each
matrix multiplication from Equation 2, shown in Figure 1.
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Figure 1: The mapping of work onto the GPU in a persistent approach; one row is processed by a
single warp.

There are 4 stages in a persistent RNN’s software pipeline: load, operate, reduce, and synchronize.

Load: the input activations in the current timestep are the output from previous timestep. All
threads within a block cooperate to load these activations from global memory to shared memory for
thread-level data re-use.

Operate: each thread holds x×y weights and executes acc[i]+ = weight[i][j]∗activation_shm[j]
computations x× y times to compute x accumulations. In particular, acc[x] and weight[x][y] are
stored in registers, and activation_shm[hiddensize] are stored in shared memory.

Reduce: after each thread in a warp finishes accumulating, threads belonging to the same row
perform a final accumulation through shared memory and output the final result to global memory.

Synchronize: all threads in different blocks are synchronized by a global barrier.

Overall performance is largely dominated by math throughput in the operate stage. Since the addresses
of 32 activations loaded by a warp are contiguous, there is no divergence in the shared memory load.
Similarly, in one thread, weights in different rows of the same column are used by a single activation,
so one thread can re-use this activation for many rows to amortize the shared memory load cost. To
meet FMA and shared memory throughput, one element loaded from shared memory should do at
least 4 FMA operations. So the best practice is that each thread holds more than 4 rows’ weights for
one column, which means one activation is re-used more than 4 times by current thread. In this way,
the math units are fully utilized and not starved by memory.

3.3 SPARSE PERSISTENT RNNS

We now describe our novel approach to support sparse, pruned RNNs with persistent weights. In
contrast to dense persistent RNNs, the data format of sparse persistent RNNs are <index, value>
pairs. One <index, value> pair represents the location and value of one nonzero weight, and each
thread keeps a fraction of the total nonzero weights. Additionally, in sparse persistent RNNs, all of
the nonzero elements in one thread must belong to the same row, and the number of thread blocks
depends on the hidden layer size and degree of sparsity, rather than being fixed to the number of
SMs available on the chip, as in the dense case. As before, the RNN’s weights are shared over all
timesteps, so <index, value> pairs are stored in on-chip storage to avoid re-loading weights each
timestep. Finally, there are again 4 stages in a sparse persistent RNN’s pipeline:

Load: same as the load stage of dense persistent RNNs.

Operate: each thread holds n nonzero weights (n <index, value> pairs) and executes acc+ =
value[i] ∗ activation_in_shm[index[i]] computations n times in series.

Reduce: within each block, after each thread finishes operating and stores its accumulation into
shared memory, several threads work together to generate one result for a row. All the blocks work
together to process all rows.

Synchronize: same as the synchronize stage of dense persistent RNNs.
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Overall performance is limited by shared memory throughput. Since the layout of the densly-packed
sparse matrix doesn’t match that of the original dense matrix anymore, the nonzeros in different rows
of the same storage column (as opposed to logical or layout column) require different activations.
This is decided by each weight’s index, which means each thread cannot be guaranteed to re-use
activations for nonzero weights, even though these nonzero weights may be located in the same
column. Futher, the 32 unique indices in a warp may point to 32 different shared memory locations,
which can lead to a maximum of 32 bank conflicts in shared memory. So, the performance of the
operate stage is limited by shared memory rather than math unit, and shared memory bank conflicts
become the main challenge for a sparse persistent RNN’s performance.

4 OPTIMIZATIONS

In this section, we identify and provide solutions for several shortcomings of the previously-described
implementation. The benefits of these optimizations are shown in Table 1.

First, we note that straightforwardly pruning a network does not consider the distribution of the
induced zeros. The number of nonzero weights in different rows can vary, and these arbitrary
distributions cause divergence and load imbalance. So, a baseline implementation must pad rows
with fewer than the maximum number of nonzero weights with <index, 0> pairs, forcing all rows to
have the same number of weights and, implicitly, the same workload. This technique wastes roughly
20% of the useful registers on unneeded zeros, but it still gives a performance improvement. The
behavior of the network does not change since this re-introduces pruned weights with a value of 0.

4.1 BANK CONFLICTS

To achieve high bandwidth, shared memory is divided into 32 banks that can each service one request
per cycle. With perfect request alignment, shared memory can achieve 32 requests per cycle, but
multiple column indices landing in the same bank cause conflicts. These bank conflicts are serialized
and are the main bottleneck of our sparse persistent RNN implementation, since in the operate stage,
the 32 indices of a warp may access 32 different shared memory locations, leading to up to 32 bank
conflicts. In this section, we introduce two methods to mitigate this inefficiency: wide memory loads
and bank-aware weight layout. After applying these two optimizations, the total shared memory bank
conflicts can be reduced by more than 80%.

Wide Memory Loads: In a dense persistent RNN, one activation can be reused by many weights in
the same column. Weight reuse across samples can occur if the input to the network is a minibatch of
size larger than one. Similarly, in a sparse persistent RNN, we can batch 4 activations from different
samples together and process them at a same time(minibatch size = 4). These 4 activations can
be loaded from shared memory at once by one ld.shared.v4 instruction (NVIDIA, 2017). As the
addresses of 4 activations are contiguous, they belong to 4 different shared memory banks. So, the
total bank conflicts can be reduced to at most 1/4. As activations are stored in shared memory, the
side-effect of using this wide memory load is that it consumes 4× the shared memory. Since max
hidden layer size is limited by the shared memory size, 4× shared memory usage means that the
maximum hidden layer size is reduced to 1/4. So for large hidden layers, we can use ld.shared.v2
instead. This only guarantees a bank conflict reduction of 2×, but it only incurs a 2× storage overhead.
This technique introduces a trade-off between efficiency and maximum supported hidden layer size.

Bank-Aware Weight Layout: Each thread holds n <index, value> pairs. In the operate stage, each
thread executes acc+ = value[i] ∗ activation_in_shm[index[i]] operations one by one. Since
both the activations and weight value use the same index, i, reordering nonzeros’ locations for each
row does not affect the final result, but it can change the access sequence to shared memory. We
can construct a better shared memory access sequence to reduce bank conflicts. Performing this
reordering only has to happen when the network’s sparsity pattern changes. For inference, this is
exactly once, and its benefit can be used for the whole lifetime of the network. Or, if training a sparse
network with modifications to the pruned weight distribution over time (Guo et al., 2016; Narang
et al., 2017; Zhu & Gupta, 2017), this cost can be amortized over all timesteps in the network for
however many training iterations the sparsity pattern is constant. Listing 1 in Appendix A shows
a greedy algorithm to generate a weight layout that reduces the amount of shared memory bank
conflicts.
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4.2 SYNCHRONIZATION

We considered two options for ensuring correct ordering between work from different thread blocks:
global synchronization and Lamport Timestamps (Lamport, 1974). Lamport timestamps add a
flag for each output value used to indicate whether or not the value has been computed. So, the load
stage can make partial progress as values are marked complete, allowing the operate stage to proceed
before all values are finished updating from the previous time step, as is required by global barriers.
A side effect of using Lamport timestamps is that it allows a software pipeline to be used over time
steps: as we process iteration n, we can load the states for iteration n+ 1. Later, in iteration n+ 1,
we need to make sure the flags loaded by this prefetch indicate valid data; this can sometimes require
another load for some values.

A basic implementation of Lamport timestamps uses one extra flag for every output value. This,
coupled with the software pipeline, quadruples the used buffer size: 2× the data for the flags, and
another 2× for the two concurrent pipeline stages. Our optimized version removes the flags by
initializing the output buffers for each time step to -0.0f. Once each element is updated, it is implicitly
valid by virtue of having a non negative zero value. (We convert all -0.0f result values to +0.0f to
avoid aliasing.) So, our final implementation only doubles the memory requirements.

Each method has its own advantages and disadvantages. For example, a global synchronization
requires several memory round trips to implement, but only needs to be called once per timestep.
Lamport timestamps ideally require no extra memory movement, but do require multiple checks
to ensure the loaded values are current. Also, to overlap the load and operate stages by preloading
activations requires double-buffering, so the shared memory usage is doubled and maximum effective
layer size is halved. Thus, we expose another tradeoff: larger layer sizes can be accommodated with
global barriers due to the reduced shared memory usage. We found Lamport timestamps to be faster
in our experiments, except for very large layer sizes (>5760).

Table 1: A naïve implementation has limited performance; our optimizations are necessary to achieve
good results. (Layer size = 1152, batch size = 4, density = 10%, #timesteps = 256.)

Configuration Speedup (vs. dense GEMM) Bank Conflict Penalty
Naïve 2.53× 1.3

Wide Memory Load 4.28× 1.0
Bank-Aware Layout 4.56× 0.3
Lamport Timestamps 5.44× 0.3

5 EXPERIMENTS

In this section, we describe the setup and experiments performed to show the benefits of our sparse
persistent RNN technique.

5.1 WORKLOADS

Sparsity: Recent efforts in pruning recurrent networks result in varying degrees of sparsity. Han
et al. (2016a) were able to prune 90% of the weights in a speech recognition LSTM. Similarly, the
recurrent layers of NeuralTalk (Karpathy & Li, 2014), a caption-generating network, have been
pruned to around 10% density (Han et al., 2016b) without loss of accuracy. A different way to use
pruning is to start with a model that is “too large" for the target hardware and prune it down to size. In
this way, it is possible to produce a network with the same effective number of parameters (nonzero
coefficients) that represents the sparse version of a much larger network. This has been shown to
be very fruitful for RNNs (Narang et al., 2017; Zhu & Gupta, 2017) with sparsities of up to 95%
for RNNs and GRUs. So, we will focus on sparsities around this common 90% target, from 80-99%
sparse.

Network size: Common sizes of today’s RNN hidden layers are 1024 to 3072. We also include larger
layer sizes since 1) larger sparse networks have been shown to outperform smaller dense networks
with similar capacities (Narang et al., 2017; Zhu & Gupta, 2017), and 2) network sizes in practice
have historically increased as improvements in processing hardware made them feasible (Gray et al.,
2017).
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Batch size: For deployment on edge devices, smaller batch sizes of 1 to 4 are common. In data
centers, inference batch sizes may be larger, and batches during training can be several hundred
inputs large. We focus on the lower end, as pruning is most commonly used for deployment.

Timesteps: The number of timesteps used by the network depends on the use case. Translation
tasks can use on the order of 10 time steps (context around the word being translated), but speech
recognition may use hundreds of timesteps (audio samples). So, we explore a wide range of timesteps.

5.2 ALGORITHMS

To show the benefits of our sparse persistent approach, we compare against three other algorithms
that can target a pruned RNN: dense GEMM (cuDNN 7.0.3), sparse GEMM (spMM in cuSparse
9.0), and a dense persistent approach (cuDNN 7.0.3). Note that the persistent approaches will not be
applicable to all layer sizes due to resource constraints, with the dense persistent kernels suffering
more quickly than our sparse approach. Our sparse persistent code is compiled in CUDA 9.0, and all
tests are run on a NVIDIA Tesla V100.

5.3 RESULTS
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Figure 2: Different algorithms processing a pruned recurrent layer with a variety of workloads with
the following baseline configuration: density of 10%, layer size of 1792, batch size of 4, and 256
timesteps (emphasized in each subplot). Subplot a) varies the density, b) varies the layer size, c)
varies batch size, and d) varies the number of timesteps. Annotated values show the speedup of our
technique over the next-best algorithm.

We use a layer size of 1796, density of 10%, batch size of 4, and 256 time steps as a baseline for
Figure 2. Figure 2 (a) shows the effect of varying the density of the network. For a density of 10%, a
dense persistent RNN achieves a 4.1× speedup over dense GEMM, while a sparse persistent RNN
can achieve a 7.3× speedup over the same dense GEMM. When the density decreases to 1%, our
approach achieves a 15.0× speedup over dense GEMM.

Figure 2 (b) shows the effect of layer size on performance. Dense persistent RNNs fail after a layer
size of 1792 due to insufficient registers, and the same is true for sparse persistent RNNs and a layer
size of 5632 at 10% density. As the layer size grows, increased pressure on shared memory and the
necessary switch to using global barriers for synchronization limit performance.

Figure 2 (c) shows how the batch size affects performance. Dense GEMM cannot fully utilize the
GPU with a small batch size, so the other algorithms all outperform this simple approach. Our
technique scales well to larger batch sizes, as opposed to dense persistent kernels.

Figure 2 (d) shows that the number of timesteps does not significantly affect relative performance.
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A larger network with the same number of nonzero parameters is expected to outperform the smaller,
dense network (Narang et al., 2017; Zhu & Gupta, 2017; Gray et al., 2017). So, we perform two
experiments to show how our sparse persistent RNN technique can take advantage of this observation:

First, we vary the density of two large layer sizes, showing very large models resident on the GPU.
In Figure 3 (a), we show a layer size of 2304 and vary the density. For a density of 10%, our
sparse persistent RNN achieves a 9.9× speedup over dense GEMM. Even at higher densities, we
can improve performance by more than a factor of the sparsity by allowing a persistent approach to
be used. Pushing the model size further, Figure 3 (b) shows our sparse persistent RNN approach
allowing for an extremely large network with a high sparsity. For a density of 1% and a layer size of
5760, our sparse persistent RNN can achieve a 10.6× speedup over dense GEMM. At 5% density,
though, the overhead of the loading phase outweighs benefits of a persistent approach, and a sparse
GEMM becomes faster.

Second, we fix the number of nonzero parameters present in the layer (1.32 million) and increase the
layer size from 2304 (25% dense) to 11520 (1% dense) in Figure 4. As in prior work that explored
this change in workload (Narang et al., 2017; Gray et al., 2017), a sparse GEMM can outperform a
dense GEMM. Our sparse persistent approach can improve performance even further.
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Figure 3: Relative performance of algorithms processing a pruned RNN with a large layers. Common
parameters are: batch size=4, timesteps=256.
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Figure 4: Various network sizes with a fixed number of nonzero parameters; i.e., larger layers are
sparser. Note the log scale on the vertical axis.

5.4 DISCUSSION

Sparse persistent RNNs increase the performance of pruned networks, but without a series of opti-
mizations we described in Section 4, the improvement is much lower. An optimized implementation is
critical to achieve peak performance. After these optimizations, we see that our approach works best
for sparser workloads, and, for most layer sizes, 10% density is sufficient to beat all other approaches,
though for smaller layer sizes (up to 2304), our approach is the winner even up to a density of 30%.
Different batch sizes can affect the efficiency of all techniques; in general, dense GEMMs and our
approach scale the best, which tempers the benefit offered by other algorithms. Finally, the number
of timesteps is largely immaterial to the relative performance of the various techniques.
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We have described an efficient algorithm for recurrent layers. To exploit this algorithm, one must first
prune the recurrent layers of a target network. We perform this pruning during the training process
for a nureal machine translation network (Klein et al., 2017), and we look to past work (Narang
et al., 2017) that has pruned a commercial speech recognition network, Deep Speech 2 (Amodei
et al., 2015). The results on these real workloads are promising: for a given accuracy, we show a
speedup of between 2.0× to 3.1× in the machine translation network’s recurrent layers pruned with
load-balancing in mind, and a speedup of 1.2× to 2.9 on Deep Speech 2’s recurrent layers pruned
without load-balancing. Please refer to Appendix B for more details about the training processes and
a full discussion of the results.

6 FUTURE WORK

Currently, we use two 32-bit registers to store a <column_index, value> pair. However, most layers
are not large enough to require more than 16 bits of index data, so two column indices can be
compressed into a 32-bit register, freeing up registers for more nonzeros. Similarly, we could use a
lower-precision data type such as fp16 for the weights themselves to achieve the same result.

The current maximum layer size for our approach on a V100 GPU is 11520, shown in Figure 4; this
limit is imposed by the 96KB shared memory usage per block. To support this layer size, we must
swap Lamport timestamps for a global barrier to halve shared memory use and double the maximum
layer size. The bottleneck for 1% density and a layer size of 11520 is loading activations into shared
memory, rather than the operate stage. If we were to split one row among multiple blocks and each
block only required a fraction of the output activations, the further reduced shared memory useage
would allow for large layers to be more efficient. Using a lower-precision data type for the activations
would remove the shared memory bandwidth and storage burden and achieve a similar result. Our
work can be extended to multiple GPUs, allowing for larger layer sizes and more nonzero parameters.

Load balancing (due to non-uniform sparsity) is handled today with zero-padding, though several
other approaches exist. Without altering the network, we can define a number of classes for different
amounts of sparsity and handle each class separately, assigning each row to one class or another
based on its sparsity. If we have some control over the network itself, Han et al. (2016a) have shown
that load-balance aware pruning is an option, or the rows with fewer than the maximum number of
nonzeros could have nonzero values re-instated to improve network accuracy ( Han et al. (2017)) with
no impact to performance. Without considering accuracy, we found that for a 25% dense layer of size
2304, batch size of 4, and 256 timesteps with both straightforward (unbalanced) and load-balanced
pruning, and no code modifications to take advantage of any regularity, sparse GEMM’s performance
does not change with load-balancing, but our approach’s benefit over a dense GEMM increases
from 1.14× to 1.94×. Accuracy and performance results with this technique applied to a machine
translation network are in the appendix, but the other load-balancing approaches remain future work.

7 CONCLUSION

We introduced sparse persistent RNNs, an efficient new algorithm for accelerating pruned recurrent
networks. Further, we explored several optimizations that were needed to achieve these results on
V100, a recent GPU. Our optimized technique allows for 7.3×, 3.4×, and 1.8× speedups against
dense GEMM, sparse GEMM, and dense persistent implementations for a hidden layer of size 1792,
batch size of 4, and a density of 10%. We show that much larger networks can be deployed onto
a GPU of a fixed size with performance increases of around 5× over the next best solution for a
density of 1-30% on a layer size of 2304; notably, this sparsity range includes denser workloads
than typically perform worse with sparse optimizations. We also show promising results on much
larger layers - 7168 and 11520 achieve speedups of 1.9× for 2.6% and 1% densities, respectively.
Our approach speeds up pruned NMT and speech recognition networks’ recurrent layers by up to 3×.
Finally, load-balanced pruning can significantly improve a network’s throughput, and our technique
is necessary to achieve both high performance and accuracy in some recurrent layers, as detailed in
the case studies in our appendix.
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APPENDIX A: ALGORITHM FOR BANK-AWARE WEIGHT LAYOUT

As discussed in Section 4, we decouple the physical weight layout from the logical view. Here, we
share the greedy algorithm we used, which is one possible approach.

Algorithm 1: Optimize a row of nonzero weights to minimize bank conflicts
Invoked for each row independently
Input :RowX(0..N − 1) where RowX(i) = < indexi, valuei >
Initialization: Color(0..31) with (X%32 .. (X+31)%32)
Output :Rowaware

X (0..N − 1)
————————————————————————————————————————

for <index,value> pair in RowX do
index_t = index ;
bank = index_t%32 ; . find its bank
while Color(bank) > N do

index_t++ ; . Color(bank) is occupied. Use a unfilled Color
bank = index_t%32 ;

end
Rowaware

X (Color(bank)) =< index, value > ;
Color(bank) = Color(bank) + 32 ; . Update Color(bank)’s next location

end

APPENDIX B: CASE STUDIES

Having described our efficient algorithm for accelerating pruned recurrent layers, we now perform
case studies showing its utility, as well as its generality. The results in the main body are for RNNs
only, but in this first section, we show performance results for LSTM (Hochreiter & Schmidhuber,
1997) layers. Implementation differences are fairly straightforward. Instead of one gate in an RNN,
each thread must be responsible for four gates in an LSTM. As a result, each thread’s weights belong
to one of four rows of the original weight matrix, and each row requires a different activation function.
The increased gate count results in an increased number of weights for the same layer size. Dense
persistent approaches will not be available for an LSTM of layer size of 1024 as a result (on the V100
GPU used for the experiments in this section).

We first explore pruning a neural machine translation network to see how accuracy changes with
sparsity. More importantly, we care about execution speed and accuracy; sparsity is merely one way
to trade off speed for accuracy. (Layer size is much more straightforward.) We outline our simple
pruning and training procedures here. Next, we use results from prior work that pruned a productized
speech recognition network. We show that our technique allows for higher performance for a given
accuracy; without our technique, sparsity may not lead to any gains whatsoever.

1. NEURAL MACHINE TRANSLATION

A. SETUP

We use OpenNMT (Klein et al., 2017) to perform translation from English to German using the
WMT15 data set as our training data and the newstest2013 data set for validation. The common
network architecture is a 2-layer (for both encoder and decoders) LSTM; our only variation from
network to network is the layer size. This can be reproduced by following the excellent tutorial. We
trained each network with only two GPUs. Performance results were gathered on a single NVIDIA
Tesla V100 accelerator.

B. PRUNING STRATEGIES

Each of our pruned networks use a magnitude-based pruning scheme, in which we consider only the
magnitude of the weight when deciding which weights to prune. See et al. (2016) found that different
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pruning methods affect accuracy differently, and we look at two options: naïve and row-balanced. In
both cases, each layer of the network is pruned to the same target density.

Naïve pruning does not consider where the weight is within a layer; that is, all gates and all rows are
considered to be the same. The effect of this strategy, as noted in past work, is that the forget gate
is much sparser than the other gates in an LSTM; intuitively, the relative lack of constraints on the
sparsity should be less of a burden on the network’s convergence.

Row-balanced pruning has the constraint that each row in a layer must have the same number of
nonzero values. The effect of this strategy is that the weights are naturally more load-balanced for
use with our approach, which should allow for higher performance (as evidenced in Section 6).

When examining the effective density of the naïve-pruned layers after padding with zeros for load-
balancing (see Section 4), we found that the amount of remaining sparsity was not sufficient to exploit
with a sparse method1. Further, the difference between the network accuracy of the two pruning
options was negligible: less than 0.1 BLUE points in each case. So, we focus only on row-balanced
pruning.

C. TRAINING PROCESS

For all networks, we train for the default 13 epochs, with all other hyperparameters unchanged from
the default.

Sparse techniques are not limited to inference; recent work has shown that training with pruned
weights is a viable option (Guo et al., 2016; Narang et al., 2017; Zhu & Gupta, 2017). For our
experiments, we adopt a simple methodology: after one-half epoch of training, we prune immediately
to the target density. Like Guo et al. (2016), we continue to update a "master copy" of un-pruned
parameters during the backwards pass, but the pruned weights are used for computation during
the forwards and backwards passes. As all the weights are updated, the weights pruned during
one pruning step may be re-introduced in the following pruning step, changing the sparsity pattern
between pruning phases.

This pruning step could impose a large overhead, so we only prune every half-epoch for a total of 21
pruning steps. Thus, the first half epoch is fully dense, the sparsity pattern changes every half-epoch
through the end of epoch 11, and epochs 12 and 13 fine-tune the final sparsity pattern.

D. ACCURACY RESULTS
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Figure 5: Training with sparsity can yield a higher accuracy for a given number of nonzero parameters
(“Effective Layer Size").

Figure 5 shows the accuracy of various networks trained with and without sparsity, and the first four
columns of Table 2 show the detailed results. As expected, network accuracy increases with layer
size, and, as demonstrated in other work, a large and sparse network can outperform a smaller dense
network with the same number of nonzero parameters (“Effective Layer Size"). One interesting result

1This is not necessarily the case when considering each gate separately, or for vanilla RNNs.
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suggests the scalability of these results: a larger, sparser network (layer size of 1448 at 4.7% density
for an effective size of 322) out-performed a slightly-smaller, not-as-sparse network (layer size of
1024 at 12.5% density for an effective size of 362). This is why the upper tail of the “sparse" curve in
Figure 5 dips down; in truth, the method should continue to scale. Omitting the 1448 layer size result
would show monotonically increasing accuracy, as would ordering the accuracies by underlying
(unpruned) layer sizes for these densities, as shown in Table 2.

Even with our relatively simple training procedure, network accuracy was within a reasonable distance
of the dense baseline, only 0.4 BLEU worse at the largest (and most accurate) configuration. We note
that these accuracy results were achieved with a very simple method and can likely be improved by:

• More elaborate pruning schedules during training

• Performing a sensitivity analysis and pruning layers to different densities

• Pruning gates within a layer to different densities

• Pruning only the recurrent weights, rather than the recurrent and feed-forward weights

• Adjusting hyperparameters, such as dropout

• Performing more fine-tuning of the final network (at the cost of extra training time)

Table 2: BLEU Scores and Execution Times of Various Configurations
Network Layer Size Density Eff. Size BLEU ms (GEMM) ms (Persistent)

Dense

256 100% 256 21.97 1.74 1.11
362 100% 362 23.06 2.05 1.14
512 100% 512 23.81 3.00 1.12
768 100% 768 24.62 3.55 1.26

1024 100% 1024 24.96 4.34 3.65
1448 100% 1448 25.18 7.21 –

Sparse

256 12.5% 90 21.15 2.44 0.33
512 6.25% 128 23.21 2.21 0.37
768 4.17% 156 24.19 2.19 0.48

1024 4.7% 222 24.60 1.87 0.55
1024 12.5% 362 24.67 3.19 0.63
1448 4.7% 322 24.78 3.39 0.78

E. PERFORMANCE RESULTS

While these accuracy results are not necessarily a surprise, a missing part of most treatments of
this behavior is the throughput of the network on a given architecture. To show that a large, sparse
network is not only a good tradeoff for accuracy but also for performance, we compare different
layers’ performance with all state-of-the-art algorithms that support each particular layer size. In
particular, we use a dense GEMM (cuBLAS), dense persistent GEMM (cuDNN), sparse GEMM
(cuSPARSE), and our sparse persistent GEMM. We profile these LSTM recurrent kernels on an
NVIDIA V100 GPU. An important note is that this gives us access to 96KB of shared memory
per thread block, in turn allowing for larger layer sizes to be supported more efficiently. Table 2
has the details for each layer size; our approach’s performance on the sparse network is given with
emphasis. Note that these absolute improvements are for a single layer; a production network
would be composed of multiple layers. More importantly, the relative improvement can lead to a
proportional speedup in training time, which can be days or weeks for large networks.

Our findings in Figure 6 show that while a pruned version of a network can run significantly faster
than the dense version of that same network size (see our main text), the same accuracy could be
obtained with a smaller, dense network. If this small, dense network is able to be implemented with
a persistent kernel, then it can be more performant – without our technique. cuSPARSE is very
effective at outperforming dense GEMM at network sizes that a dense persistent approach cannot
handle, but our technique pushes this sparse/dense crossover point much lower. Now, sparse networks
can outperform dense ones, even at smaller effective layer sizes.
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Figure 6: Our efficient algorithm can be used on pruned workloads; for a given performance target,
pruned networks using a sparse persistent approach provide the best BLEU score. Likewise, for a
given network accuracy, a pruned network accelerated with our algorithm gives the highest throughput.
The size of each marker is proportional to the size of the underlying (unpruned) hidden layer.

2. SPEECH RECOGNITION

Deep Speech 2 (Amodei et al., 2015) is a state-of-the-art speech recognition network that has been
pruned to expose an accuracy/sparsity tradeoff (Narang et al., 2017), so we refer to these resources
for details regarding the network and associated training and pruning approaches. Our purpose here is
to see the performance of various algorithms on the different versions of the network that they trained.
Since we did not train these networks ourselves, we generated a random, unstructured nonzero pattern
for each workload; no load-balancing has been done prior to the optimization steps of our algorithm.
We reproduce the authors’ information from Table 3 for layer size, sparsity, and accuracy (character
error rate, CER) in our own Table 3, adding the performance of different algorithms on V100 for a
batch size of 1 and 256 time steps. (As shown above, varying time steps does not significantly change
the relative performance. We discuss the batch size further below.)

Table 3: CER and Execution Times of Various Deep Speech 2 Networks
Network Layer Size Density Eff. Size CER ms (GEMM) ms (Persistent)

Dense
704 100% 704 14.50 3.02 0.74

1760 100% 1760 10.67 10.80 1.11
2560 100% 2560 9.43 14.30 –

Sparse
1760 12% 610 12.88 3.95 0.72
2560 12% 887 10.59 4.70 0.89
3072 12% 1064 10.25 6.09 0.94

We see the familiar pattern: for a given effective layer size, larger and sparse layers lead to more
accurate models than small and dense layers. However, Figure 7 reveals that the dense persistent
approach is along the pareto-optimal curve in the absence of our technique. In other words, sparse
methods, though they may be faster than a dense GEMM (especially for a batch size of 1), can not
out-perform a dense persistent approach. If speed is a metric of importance, then dense persistent
kernels are the answer. If accuracy is the most important metric, then past work has not shown that a
sparse network can outperform any dense network.

Including our sparse persistent kernels, however, shows that they are better than dense persistent
kernels for a given network; for a particular speed target, they can provide higher accuracy with
a pruned network. At very low batch sizes, a sparse GEMM can occupy a useful spot in the
accuracy/speed tradeoff curve, but with only a batch size of 8, they fall to last place at all instances
of the network. Thus, in the absence of our technique, there would be no reason to prune a network
batched inference performance.
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Figure 7: Various algorithms applied to different Deep Speech 2 models; for an aggressive per-
formance target, pruned networks using a sparse persistent approach provide the lowest error rate.
Likewise, for all but the most stringent error rates, a pruned network accelerated with our algorithm
gives the highest throughput. The size of each marker is proportional to the size of the underlying
(unpruned) hidden layer.

3. CONCLUSIONS

Without consideration of the accuracy of pruned networks and their execution speed (on state-of-the-
art algorithms) together, the conclusion that a large, sparse network is better than a small, dense one
is not sufficiently proven. Our technique and these case studies show, among these insights, that this
can be the case, however:

• Our technique extends to LSTMs with little effort.
• Our technique allows for pruned recurrent layers to run more efficiently than with any other

existing algorithm.
• Naïve pruning is not necessarily better than pruning with load-balancing in mind, especially

when considering achievable performance.
• Like past work, we see that a larger, sparse network can be more accurate than a smaller,

dense one.
• Comparisons against persistent kernels, which can beat non-resident sparse approaches,

show that for a given accuracy or performance target, pruning a network and using our
technique is the best choice.
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