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Abstract
In this paper, we empirically investigate the train-
ing journey of deep neural networks relative to
fully trained shallow machine learning models.
We observe that the deep neural networks (DNNs)
train by learning to correctly classify shallow-
learnable examples in the early epochs before
learning the harder examples. We build on this
observation this to suggest a way for partitioning
the dataset into hard and easy subsets that can be
used for improving the overall training process.
Incidentally, we also found evidence of a subset
of intriguing examples across all the datasets we
considered, that were shallow learnable but not
deep-learnable. In order to aid reproducibility,
we also duly release our code for this work at
https://github.com/karttikeya/Shallow to Deep/

1. Introduction
Analyzing the temporal journey taken by deep neural net-
works (DNNs) during training has elicited a lot of attention
recently. The authors in (Arpit et al., 2017) suggested that
DNNs learn simple patterns first, before memorizing. More
specifically, they posit that real world datasets are littered
with easy examples characterized by simple patterns that are
learned in the initial epoch(s) before the conquest of hard
examples in the training dataset. Tishby et al (Tishby &
Zaslavsky, 2015) conjectured that DNN training was charac-
terized by two distinct phases consisting of an initial fitting
phase (memorization) and a subsequent compression phase.
While this claim was questioned in (Saxe et al., 2018), the
authors do remark that when an input domain consists of
a subset of task-relevant and task-irrelevant information,
hidden representations do compress the task-irrelevant in-
formation. These works do suggest that the easy-vs-hard
dichotomy in real-world datasets does influence the learn-
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ing in DNNs and goad a data-dependent approach towards
understanding the capacity of DNNs. Taking cue from this,
we strive to contribute to this growing body of literature by
bringing in another viewpoint: The dichotomy between shal-
low learnable examples and deep learnable examples in the
dataset. More specifically we try to address the questions:

1. Is the notion of easiness same for models with as differ-
ent parameterizations and architectures as shallow machine
learning models and deep networks the same? And hence is
attached to the example independently of a model?

2. If we are to investigate the examples that a DNN learns to
correctly classify over the training batches, do we observe a
shallow learnable to deep learnable regime change?

3. Are there examples that are shallow learnable but some-
how a DNN with a far better overall accuracy fails to clas-
sify? At the heart of this quest is to understand if shallow
learnability is a good proxy for the easiness of an example.

We’d like to reiterate that the motivation behind this work is
to obtain insights into the changing scenery of the conquest
of the training dataset experienced by deep neural networks
and not to delineate the nature of compositional functions
that DNNs can learn and shallow algorithms cannot or com-
ment on the amount of training data required to do so. In
(Mhaskar et al., 2017), the authors have already shown how
DNNs can approximate the class of compositional functions
as well as shallow networks but with exponentially lower
number of training parameters and sample complexity.

The rest of the paper is organized as follows. In section 2,
we present the quantitative methodology we used to answer
these questions raised above. In section 3, we showcase our
empirical experiments with the results covered in section 4.
We conclude the paper in section 5.

2. Proposed Methodology
In this section we delineate our proposed method to study
the learning process of a deep learning model D relative to
a shallow machine learning modelM.

2.1. Tracking the learning process

We propose to measure the generalization capability of a
deep learning model D on unknown data using a custom
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Table 1. Construction of the contingency matrix T i on the test for
bench-marking D(i) against M.

M incorrect M correct
D(i) incorrect T (i)

00 T (i)
01

D(i) correct T (i)
10 T (i)

11

contingency matrix T . In other words, instead of just cal-
culating the accuracy of the deep learning model after i
steps of back propagation, D(i) on the test set, we propose
to calculate the contingency matrix T (i). Furthermore, to
study the learning process of model D relative toM, we
look at how the matrix T (i) evolves as the model trains.

2.1.1. PREPARING THE CONTINGENCY MATRIX

The contingency matrix T is defined using the pattern of
classification of the test set examples by the models D and
M . Referring to Table 1, T (i)

00 denotes the number of
examples on the test set that both the models D(i) andM
make an error on. Similarly, T (i)

10 denotes the number of test
set examples that D(i) classifies correctly butM classifies
wrongly and so on and so forth for T (i)

01 and T (i)
11 .

2.1.2. ANALYZING LEARNING DYNAMICS

Several useful metrics can be derived from T that analyze
different aspects of the learning process. Naively, accuracies
of models D andM can be recovered simply by

Accuracy(D(i)) =
T (i)
10 + T (i)

11

T (i)
10 + T (i)

11 + T (i)
01 + T (i)

00

Accuracy(M) =
T (i)
01 + T (i)

11

T (i)
10 + T (i)

11 + T (i)
01 + T (i)

00

Note that since we’re tracking the learning dynamics for
D(i) and modelM is kept the same, Accuracy(M) actually
remains constant throughout. More interesting metrics can
be derived such as the accuracy of D(i) on subsets of the
training data thatM classifies correctly (Ri+) and those that
M classifies wrongly (Ri−).

Ri+ =
T (i)
11

T (i)
11 + T (i)

01

Ri− =
T (i)
10

T (i)
10 + T (i)

00

Also, to measure how many times more accurate D(i) is on
one subset versus the other, we study the ratio of the above
two accuracies Ri = Ri+/R

i
−.

3. Experiments
We perform our experiments under three different regimes
divided on the basis of relative performance of shallow

Machine Learning models to Deep Networks to check the
robustness of our observations. We experiment with (a)
The MNIST dataset, where the ML models tend to perform
competitively with the ConvNets (b) The CIFAR10 dataset
where ML models perform worse than neural networks but
not are still quite good and lastly (c) the CIFAR100 dataset,
where the deep networks far outperform the shallow Ma-
chine Learning models. We preprocess all the datasets to
center and normalize the images before training models but
do not augment data to avoid other potential confounding
factors in our observations.

3.1. Datasets

MNIST: MNIST (Mixed National Institute of Standards and
Technology) (LeCun, 1998) is a very popular toy dataset
consisting of images of handwritten digits and their numeric
value as their labels. It consists of a total of 70, 000 gray-
scale 28 × 28 labelled images divided in training set of
60, 000 and another test set of 10, 000 images. It is widely
used to examine image recognition techniques and consid-
ered a relatively simple starter dataset.

CIFAR: The CIFAR database (Krizhevsky, 2009) refers to
two related but different datasets namely, the CIFAR10
and CIFAR100 datasets. CIFAR10 consists of 60, 000
color 32× 32 images divided into 10 object categories like
airplane, bird, cat etc. It consists of a training set of
50, 000 and a test set of 10, 000 images.

CIFAR100 also has the same characterstics and size except
it consists of 100 image classes rather than just 10. Thus, it
consists of 600 examples of each class which are grouped
proportionally into 500 in the training set and 100 in the test
set. The dataset also contains the 100 classes grouped into
20 super classes but in this work we use fine grained classes
for comparing models on CIFAR100.

3.2. Training shallow ML Models

We train two types of machine learning models to study
the learning process – Support Vector Machines (Cortes &
Vapnik, 1995) and Random Forests (Breiman, 2001).

Random Forest: Random Forest are another family of suc-
cessful Machine Learning models which have been applied
to a large number of classification and regression problems
(Liaw et al., 2002) like real time face detection (Cootes et al.,
2012), Gene Selection (Dı́az-Uriarte & De Andres, 2006),
Remote sensing (Pal, 2005) and several other applications.
In this paper, we train the Random Forests using 20 estima-
tors and the gini index criterion (Pedregosa et al., 2011).
We flatten the preprocessed images into a 784 dimensional
vector in case of MNIST and into a 1024 dimensional vector
for CIFAR to facilitate training the random forest.

Support Vector Machines: Support Vector Machines
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Ratio of Accuracies Ri plotted against i with M being a Support Vector Machine.

Accuracies of D on the SVM-correct subset (Ri+), SVM-incorrect subset (Ri−) and the overall testset (Accuracy(D(i))).

Values of the contingency matrix T i plotted against i (smoothed and scaled for plotting). Referring to Table 1, the entries T00, T01, T10

and T11 are denoted by red, orange, green and blue respectively.

Figure 1. Graphs showing evolution of various metrics on the test set (defined in Section 3) as training progresses for MNIST (left
columns), CIFAR10 (middle column) and CIFAR100 (right column) datasets. Each X-tick represents: 640 images for MNIST, 128
images for CIFAR10 and 25, 600 images for CIFAR100 dataset.

(SVM) are extremely popular ML models shown to achieve
good results in several limited data domains like hand writ-
ten character recognition (Decoste & Schölkopf, 2002), face
recognition (Heisele et al., 2001), hypertext classification
(Pradhan et al., 2004) and several biological applications
(Cuingnet et al., 2011; Yang, 2004). We train a SVM with
slacks under the Radial Basis Kernel (Pedregosa et al., 2011)
with hyperparameters C = 1.0 and γ = 0.1. Similar to Ran-
dom Forests, we flatten out the images for training an SVM.

3.3. Training Deep Neural Networks

We train a different deep network on each dataset because
of two reasons. First, some networks we train have a much
larger capacity than others and hence are not suited for a
small dataset like MNIST. Likewise, the architecture suited
for MNIST is too small for a more complicated dataset

like CIFAR and would not be a optimal choice for good
performance. Second, we want to check robustness of our
observations across different model sizes and architectures
and hence experiment with very popular but very different
ontologies like DenseNet and ResNet.

Convolutional Neural Network: We train a small Con-
volution Network with the architecture : [Conv . ReLu .
MaxPool] 7→ [Conv . ReLu . MaxPool] 7→ [FC . ReLu]
7→ FC 7→ SoftMax. The network is trained on the MNIST
dataset with SGD with a learning rate 0.01, momentum set
to 0.5 and a batch size of 64.

DenseNet121: DenseNet 121 (Huang et al., 2017) is a deep
network that has been demonstrated to achieve a very good
performance on that task of Image recognition on a variety
of benchmarks. In a nutshell, DensetNet contains several
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Figure 2. Graphs showing evolution of the same metrics compared to the Random Forest model. All graphs are arranged in the same
configuration as Fig 1. We provide the plot for contigency matrix values for random forest in the appendix.

DenseBlocks which inside themselves are a constant feature
depth stack of ConvNets; connected in a fully connected
fashion. We train DenseNet 121 on the CIFAR10 dataset
with SGD with learning rate 0.1, momentum 0.5 and a batch
size of 128. Further training details are in the appendix.

Resnet 101: ResNet 101 belongs to the very popular family
of Residual Networks (He et al., 2016) and is widely used as
a backbone in a variety of computer vision tasks like Image
Recognition (He et al., 2016), Action Classification (Feicht-
enhofer et al., 2016), Image to Image Translation (Zhu et al.,
2017) etc. We use ResNet 101 for image recognition on
the CIFAR100 dataset where it is trained with SGD under
same parameters as mentioned for DenseNet121 but with
an additional weight decay of 5× 10−4.

4. Results
Here we discuss our observations while studying the training
process under the lens of machine learning models. Table
2 reports the maximum accuracy achieved with the models
discussed in Section 3.2 and 3.3. While the accuracies are
reported for completeness, this work studies the learning
process in the early stages and hence is not concerned with
the maximum accuracy. Moreover, in cases of CIFAR10 and
CIFAR100 datasets the operating regime for DenseNet121
and ResNet101 are far from their optimal performance.

4.1. Ratio of Accuracies

Referring to the top row in Fig 1 and 2, we observe how
the ratio of accuracies (R+) changes during training. Note
that if the two subsets,M-correct andM-incorrect were

Table 2. Maximum Accuracy achieved by various models on the
three Datasets. All accuracies are for top 1 prediction.

MNIST CIFAR10 CIFAR100

SVM 97.92% 40.08 % 14.42 %
Random Forests 96.14% 35.86 % 14.26 %

Deep Network
98.8%

(2 layer CNN)
95.04%

(DenseNet121)
77.78 %

(ResNet 101)

completely irrelevant and similar for training process of
D, R+ would remain identically 1. However, we observe
that across datasets and (M, D) pairs, the curve has a right
skewed unimodal shape with a sharp hump. We also note
that this happens in very early stages of training, sometimes
as early as just after 1/20th epoch over the training set. Also,
the accuracies can be very different on the two subsets with
D being upto 8 times more accurate onM-correct subsets
than on M-correct subsets in some cases. Furthermore,
we observe that the curve shows a long tail as the ratio Ri

returns back to 1. This observation is the cornerstone in
confirming out hypothesis that deep networks training starts
from quickly learning shallow classifiable easy examples
and then slowly extends to the hard ones.

4.2. Accuracy Plots

The second row of Fig. 1 and Fig. 2 depicts test accura-
cies as training progresses. Note that the overall trend is
increasing as expected from a network in early stages of
training, however there are huge gaps in accuracy on the
two different subsets. For example, in the case of CIFAR10
when the M -incorrect subset is ∼ 60% of the total set, it
weighs down the overall accuracy by over as much as 20% at
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times during training. Thus, identifying the hard examples
withM incorrectness can help in training procedures like
curriculum learning (Bengio et al., 2009), teacher forcing
(Jordan, 1986; Pineda, 1988) and professor forcing (Lamb
et al., 2016). Furthermore, weighing the training set exam-
ples on basis of whether they are correctly classified byM
can provide a more balanced dataset for training.

4.3. Contigency Matrix Values

Observe the long tail decay of T00 and T11 and the very
fast rise of T11 and T10 (bottom row Figure 1). This shows
that the the slow learning ofM-incorrect examples is the
major factor of slump in accuracy growth for deep networks
after the often observed initial fast ascent. This observation
can be used for iterating more onM-incorrect harder data
points after the initial phase and achieve faster convergence.

5. Conclusion and Future work
In this work, we track the training of DNNs relative to
shallow machine learning models. We showcase some re-
sults on analyzing the training trajectory of the DNNs rel-
ative to SVM and RF on three different datasets. Empiri-
cally, we observe that the during training the Deep Network
quickly learns shallow classifiable easy examples first and
then learns the hard examples in the later epochs. Further-
more, we find that the notion of hardness of an example
is largely independent of the model being used and can be
evaluated reliably using a shallow learning model. This
observation allows for a procedural slicing of the training
set into easy and hard categories that can improve network
training. We also report a slightly surprising finding per-
taining to the existence of a subset of examples in all the
datasets considered that were shallow-classifiable but not
deep-classifiable.

5.1. Future work

We are currently extending this work along the following
two paths. The first entails using the influence functions
framework (Koh & Liang, 2017) to understand the distri-
bution of the influence of the training examples and juxta-
posing this with respect to their shallow/deep learnability.
The second path entails understanding the nature of this
conquest of the training space of the deep and shallow clas-
sifiers from the viewpoint of complexity and interestingness
of images (Gygli et al., 2013). We conclude with a con-
jecture that complexity of images as measured by, say, it’s
JPEG compressibility will have strong correlations with it’s
shallow learnability.

References
Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio,

E., Kanwal, M. S., Maharaj, T., Fischer, A., Courville,
A., Bengio, Y., et al. A closer look at memorization in
deep networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 233–
242. JMLR. org, 2017.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum learning. In Proceedings of the 26th annual
international conference on machine learning, pp. 41–48.
ACM, 2009.

Breiman, L. Random forests. Machine learning, 45(1):
5–32, 2001.

Cootes, T. F., Ionita, M. C., Lindner, C., and Sauer, P. Robust
and accurate shape model fitting using random forest
regression voting. In European Conference on Computer
Vision, pp. 278–291. Springer, 2012.

Cortes, C. and Vapnik, V. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995.

Cuingnet, R., Rosso, C., Chupin, M., Lehéricy, S., Dormont,
D., Benali, H., Samson, Y., and Colliot, O. Spatial regu-
larization of svm for the detection of diffusion alterations
associated with stroke outcome. Medical image analysis,
15(5):729–737, 2011.

Decoste, D. and Schölkopf, B. Training invariant support
vector machines. Machine learning, 46(1-3):161–190,
2002.

Dı́az-Uriarte, R. and De Andres, S. A. Gene selection
and classification of microarray data using random forest.
BMC bioinformatics, 7(1):3, 2006.

Feichtenhofer, C., Pinz, A., and Wildes, R. Spatiotempo-
ral residual networks for video action recognition. In
Advances in neural information processing systems, pp.
3468–3476, 2016.

Gygli, M., Grabner, H., Riemenschneider, H., Nater, F.,
and Van Gool, L. The interestingness of images. In
Proceedings of the IEEE International Conference on
Computer Vision, pp. 1633–1640, 2013.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Heisele, B., Ho, P., and Poggio, T. Face recognition with
support vector machines: Global versus component-based
approach. In Proceedings Eighth IEEE International
Conference on Computer Vision. ICCV 2001, volume 2,
pp. 688–694. IEEE, 2001.



Do deep neural networks train by learning shallow learnable examples first?

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Jordan, M. Attractor dynamics and parallelism in a connec-
tionist sequential machine. In Proc. of the Eighth Annual
Conference of the Cognitive Science Society (Erlbaum,
Hillsdale, NJ), 1986, 1986.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In Proceedings of the 34th
International Conference on Machine Learning-Volume
70, pp. 1885–1894. JMLR. org, 2017.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, Citeseer, 2009.

Lamb, A. M., Goyal, A. G. A. P., Zhang, Y., Zhang, S.,
Courville, A. C., and Bengio, Y. Professor forcing: A new
algorithm for training recurrent networks. In Advances In
Neural Information Processing Systems, pp. 4601–4609,
2016.

LeCun, Y. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

Liaw, A., Wiener, M., et al. Classification and regression by
randomforest. R news, 2(3):18–22, 2002.

Mhaskar, H., Liao, Q., and Poggio, T. When and why are
deep networks better than shallow ones? In Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

Pal, M. Random forest classifier for remote sensing classifi-
cation. International Journal of Remote Sensing, 26(1):
217–222, 2005.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Pineda, F. J. Dynamics and architecture for neural computa-
tion. Journal of Complexity, 4(3):216–245, 1988.

Pradhan, S. S., Ward, W. H., Hacioglu, K., Martin, J. H.,
and Jurafsky, D. Shallow semantic parsing using support
vector machines. In Proceedings of the Human Language
Technology Conference of the North American Chapter
of the Association for Computational Linguistics: HLT-
NAACL 2004, 2004.

Saxe, A. M., Bansal, Y., Dapello, J., Advani, M., Kolchinsky,
A., Tracey, B. D., and Cox, D. D. On the information
bottleneck theory of deep learning. 2018.

Tishby, N. and Zaslavsky, N. Deep learning and the infor-
mation bottleneck principle. In 2015 IEEE Information
Theory Workshop (ITW), pp. 1–5. IEEE, 2015.

Yang, Z. R. Biological applications of support vector ma-
chines. Briefings in bioinformatics, 5(4):328–338, 2004.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired
image-to-image translation using cycle-consistent adver-
sarial networks. In Proceedings of the IEEE international
conference on computer vision, pp. 2223–2232, 2017.

6. Appendix
6.1. Training Details

The reported maximum accuracy (Table 2) results have been
achieved with decaying the learning rate by
(a) a factor of 20 after 60, 120, 160 and 200 epochs for
DenseNet121 on the CIFAR10 dataset
(b) a factor of 10 after 150 and 250 epochs for ResNet101
on the CIFAR100 dataset.


